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In this paper we analyze the origin-destination matrix arising from freight flows that occur in single-mode
transport networks and compare unbiased maximum-entropy models of the corresponding networks. An
original model based on earlier results allows to reconstruct a weighted network, from degree and strength
sequences, taking distances into account. As an application, the properties of the European railroad
freight are analyzed in detail in year 2010, with a focus on spatial effects.
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1. Introduction

In this article rail freight data aggregated at the regional scale are represented as a weighted directed
network, following earlier works on airline networks [2], rail infrastructure and passenger traffic [15],
cargo ships [14].

Publicly available origin-destination (OD) matrices by Eurostat summing the freight mass carried
from some area i to another j over a year are represented as complex networks. In contrast with human
mobility studies where precisely geocoded data are commonplace (social networks, phone, smart card),
such data are aggregated at the regional level.

Furthermore we propose a maximum-entropy point of view, following trade studies where interna-
tional trade networks have long been studied in that way.

In section 2 the network is characterized and compared to observations in the literature, and spatial
effects are evidenced. In section 3 the properties of random network null models are compared to
empirical ones. In section 4 we discuss the results and conclude. The computer code to reproduce all
experiments is available1.

2. European freight origin-destination networks

Transportation system have been actively studied as spatial networks in the complex networks commu-
nity, both at the infrastructure, and traffic flow level.

While infrastructure network (rail, roads) are spatial planar networks where edges are not allowed
to intersect, and for which specific results exist [6], airline [3] and cargo [14] were modeled as non-
planar spatial networks. As shown in [15] railroad traffic flows may be uncorrelated to the topology
of the physical infrastructure. Even though a complete picture of a transportation system requires the

1https://gitlab.com/hazaa/mplex

c© The author 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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knowledge of both infrastructure and traffic2, we will focus here on traffic flows.
The OD matrix W = {wi j}16i, j6N with wi j ∈ N is a possible starting point to analyze traffic flows.

The geographical area of interest is divided into i ∈ [1,N] zones. The elements in the OD matrix rep-
resent the count of transported units between zones i and j in a given time lapse. W defines a directed
weighted network G = (V,E), without loops, and a corresponding adjacency matrix A = {ai j}16i, j6N
with ai j ∈ {0,1}. OD matrix are found in epidemiology, human mobility, transport engineering. The
route assignment of the transported units is unknown, as well as the traffic of elementary physical seg-
ments (for example between two rail stations).

OD matrix for European rail freight are publicly available from Eurostat under the label tran_r_rago
and represent the annual freight mass in tonnes between and origin an a destination region with detail up
to NUTS2 subdivision3 with population ranging between 800000 and 3 millions. Cleaned and consistent
data were prepared by the ETIS+ project4 for years 2005 and 2010, and will be used below.

We then turn to the comparison between the expected and observed properties of G in a complex
networks perspective. From previous studies in the field concerning non-planar spatial networks repre-
senting transport flow:

• the distribution P(ki) of node degree ki = ∑ j 6=i ai j is expected to be peaked for infrastructure
networks, to be power-law distributed (with a cutoff) in airline, and right-skewed for passenger
train traffic, which reveals a heterogeneous topology with a few highly connected nodes [15].

• the distribution P(si) of strength si = ∑ j 6=i wi j was found to be broad, for airlines and train traffic
[15].

• a nonlinear dependence was reported between topology and strength. Empirically it was estab-
lished [3] that s scales as s ∝ kβw . Larger units are thus expected to exchange larger quantities,
more than linearly with their size. This dependence was later modeled in [20] where the values
βw = βd = 3

2 were obtained analytically in a simple and robust setting, and compared to several
empirical values.

• the effect of spatial constraint on topology can be measured by the distance strength sd
i =∑ j 6=i ai jdi j,

with di j standing for the geodesic distance between regions i and j. A power-law dependence of
the form sd ∝ kβd was noticed. In the case of the North-American airline network, the value
βd = 1.4 was measured [3].

• a slightly disassortative behavior was reported in airline networks, and is prevalent in technolog-
ical networks, as opposed to social networks. This is measured by the average nearest neighbor
degree (ANND) knn

i =
∑ j 6=i ai jk j

ki

Basic network measures for the undirected network associated to G are summarized in Tab. 1, and
compared to non-planar spatial networks that represent well-studied transportation systems. As a con-
sequence of coarse geographic resolution, G is smaller, denser and more clustered than other networks.
The degree distribution P(k) is represented in inset of Fig. 1(left). While peaked, it clearly differs from
the planar case, that has a low cutoff value. It can be fit by a lognormal density, if k is approximated by

2because traffic flows do not indicate the most loaded and vulnerable segments.
3NUTS stands for Nomenclature of Territorial Units for Statistics. It is a Eurostat geocode standard, that often coincides with

national administrative boundaries of EU countries.
4https://ftp.demis.nl/outgoing/etisplus/datadeliverables/
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a continuous random variable. The empirical tail behavior is compared to an exponential, (associated
to random graphs), a lognormal and a power-law distribution. The best fit is found with a lognormal
distribution, as shown by the complementary cumulated density function (CCDF) k → P(K > k) in
Fig. 1(left). Decreasing slower than an an exponential, this distribution is heavy-tailed, which can be
explained by the presence of hub regions. Since it decreases faster than a power-law, it is not fat-tailed.
These observations are confirmed by a likelihood ratio test, that doesn’t reject the lognormal null hypoth-
esis against a power-law. Thus the network is not scale-free, and a multiplicative generative mechanism
may be searched for, rather than a preferential attachment one, as in scale-free networks. Similarly, the
best fit for the distributions of node strengths P(s) and edge weights P(w) are lognormally distributed,
which is confirmed by a likelihood ratio test. The scaling of strength s and distance strength sd with
respect to topology measured by the degree k is represented in Fig. 2. A superlinear scaling s ∝ kβw and
sd ∝ kβd is found with exponents βw and βd larger than 1. This behavior, that translates the influence of
geographical constraints on G itself, is consistent with expectations as mentioned above. Larger regions
do exchange larger quantities, with more distant regions. Whether or not the value of βd constitutes a
direct measurement of the magnitude of geographical constraints is unclear. In the growing network
model [3] βd varies, depending on this magnitude. On the opposite, in the fitness model [20], βd is fixed
with the value 3

2 . Furthermore, as remarked in [5], the scaling exponents were reported to depend on the
level of spatial aggregation, which calls for further studies, that would control the effect of the level of
aggregation.

Concerning directional effects, 31% of the links in the directed network are not reciprocated. This
fact was noticed in [5], as characterizing distribution networks by contrast with transportation networks5.
We didn’t find imbalances between in-degree and out-degree, nor between directed average nearest-
neighbor degree (see Appendix for definitions of directed quantities): in-degree is highly correlated to
out-degree, in/in ANND is highly correlated to out/out ANND.

Rail Sea Air
Notation Name ETIS+ GCSN WAN

Non-spatial measures
directed yes yes no
number of nodes 289 951 3880
number of edges 7248 36351 18810
density 0.17 0.04 0.0002
clustering 0.67 0.49
reciprocity % 69 59

βw scaling exponent s ∝ kβw 1.26 1.46 1.5
〈k〉 average degree 50.1 76.5 9.7

Spatial measures
βd scaling exponent sd ∝ kβd 1.25

Table 1. Transport networks measures of non-planar spatial networks. GCSN: Global Cargo Ship Network [14]. WAN: world-
wide airport network [2]. ETIS+ is converted to undirected network for comparison, except for reciprocity.

5”basically every individual performs a round trip implying symmetrical weights” in [5]
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FIG. 1. Complementary CDF (left) degree ki; (right) strength si. Histograms are in inset.
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FIG. 2. Scaling of si and sd
i with ki.

The assortativity, measured by the ANND shown in Fig. 5(top, red dots) is decreasing with k, as
expected. This differs from the flat behavior found in planar spatial networks. Furthermore an unex-
pected cluster is observed in the inferior left corner, which presence can be traced back to geographical
constraints. Indeed a core/periphery structure is noticed in the choropleth in Fig.3, where color represent
values of ki and knn

i in each region. Top-ranking regions by degree are listed in Tab. 2, and are all located
in central Europe or in northern Italy, except Lorraine. Peripheral regions (with respect to continental
Europe) have a lower degree. Neighboring region have correlated degrees, despite local disparities.

Apart from their effect on G, the influence of geographical constraints has also been characterized in
former studies by the distribution P(di j) where D = {di j}16i, j6N stands for the distance matrix. In [3],
P(di j) was exponential which was explained by ”the existence of physical and economical restrictions
on airline planning in a continental setting”. Fig. 4 represents the histogram in inset which can be fit
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Region name Country Degree
Steiermark AT 165
Oberosterreich AT 164
Lombardia IT 152
Niederosterreich AT 149
Stredni Cechy CZ 145
Moravskoslezsko CZ 135
Lorraine FR 134
Friuli-Venezia Giulia IT 132
Veneto IT 132
Emilia-Romagna IT 127

Table 2. Top-ranking EU regions by degree. Data from ETIS+, rail freight in tonnes, year 2010.

by a lognormal distribution, and the tail behavior that decreases faster than the best fit lognormal. We
found no explanation for this distribution in the literature. In [6], theoretical results on the distance dis-
tribution between the centers of cells in a Poisson-Voronoi tessellation are discussed and may be helpful
if administrative boundaries of regions are considered as resulting from a tesselation, taking the regional
capital as the cell center. Empirically, inter-city distance distribution have been studied (although, far
less than human mobility distance distribution). Studies in economy address the relationship between
city-size and spatial distribution of cities. Recent empirical works [13], in the case of the USA group
cities in bins based on their population and analyze their distribution. In [9] the authors compare several
intra-country between-city distributions (some of which are similar to results reported in Fig. 4) and
propose a generative mechanism.

Lastly we remark that while working with networks built from OD matrices, measures based on
paths (such as shortest path or betweenness centrality) have an unclear interpretation. They will not be
considered in this article, as well as the small-world property.

In section 3, maximum entropy models of the spatial network G, able to reproduce local properties,
are considered.

3. Maximum entropy null models

In section 2 the empirical properties of G were presented. In the present section a comparison is made
with null models, built on a minimal set of assumptions. Differences between expectations based on the
model and empirical measures may be informative concerning the nature of the observed phenomenon.

The model of [20] discussed in section 2 belongs to the family of hidden variables models, and offers
a spatial and weighted generalization of fitness models [8]. In [20] the classical hypothesis pi j ∝ xix j
is modified, and is true only if the product of fitnesses is greater that some distance-dependent cost
xix j > c(di j).

Maximum entropy models are part of the same family: in [18], the authors discuss the properties
of exponential random graphs (ERG) derived from the maximum entropy methodology, that defines
constraints in an average sense over the probability distribution of networks P(W). In [11] a maximum-
likelihood method to estimate hidden variables in binary networks from the degree sequence {ki}i∈[1,N]

is presented. In [7], the authors consider a spatial binary model that accounts for the distance bin that
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FIG. 3. Choropleth. Measures variables plotted per region (left) ki ; (right) knn
i . Data from ETIS+, rail freight in tonnes, year 2010.
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FIG. 4. CCDF of di j . Histogram in inset, linear coordinates.

a specific edge e(i, j) associated to the distance di j falls into. The maximum likelihood method was
later extended to weighted networks with constrained degree and strength sequences {ki}i∈[1,N] and
{si}i∈[1,N] [16], and to spatial binary and weighted networks where inter-node distances {di j}i, j∈[1,N]

are fixed. In the case of the space-dependent International Trade Network (ITN), the authors in [1]
state that ”the topology of the ITN must have an immediate effect on the expected volume of trade
between two countries” while ”the expected topology of the ITN is independent of the expected volume
of trade”. This justifies our separate treatment of both aspects below. Furthermore it was shown that
ERG models succeed in reproducing average higher-order properties such as the ANND, and that the
function knn

i = f (ki) could be explained by the sole local constraints exerted on the degree sequence
{ki}i∈[1,N].
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These models are classically compared to the gravity model (GM) that is suited for complete weighted
graphs where all nodes are connected to each other, but not appropriate to recover the topology of a net-
work, as a consequence of the hypothesis wi j ∝ sis j. The GM was successfully used for example in
cargo trade network by [14], however significant errors associated to non-existent links are evidenced.
Other properties of the GM are further discussed in [5] and [4].

In the present article, two undirected weighted models that constrain topology and distance will be
fit to the rail freight data. Firstly, the Enhanced Gravity Model (EGM) [1] is a state-of-the-art weighted
network model, that circumvents the drawbacks of the GM. It derives from the Bose-Fermi distribution
in [12], associated to the following Hamiltonian that constrains 〈ai j〉 and 〈wi j〉:

H(W) = ∑
i< j

αi jΘ(wi j)βi jwi j (3.1)

where Θ(.) is the Heavyside function. The maximum-entropy probability P(W) is:

P(W) = ∏
i< j

qi j(wi j) (3.2)

The probability qi j(w) was shown in [12] to be:

qi j(w) = ∏
i< j

xΘ(w)
i j yw

i j(1− yi j)

1− yi j + xi jyi j
(3.3)

under the hypothesis that w ∈ (O,∞), where {xi j}16i, j6N and {yi j}16i, j6N are coefficients associated to
the Lagrange multipliers αi j and βi j. So that xi j and yi j are related to the strengths si and distances di j
we follow the method in [1], and choose the following functional forms. First, the edge probability are
related to strengths si as in the Fitness-induced Configuration Model (FiCM) [10]:

pi j =
δ sis j

1+δ sis j
(3.4)

More detail is given about this model in Appendix. Remark that the topology derived from eq.(3.4)
depends on strength only, thus topological measures are expected not to depend on di j.

Then, the conditional average weight given that the edge e(i, j) exists, is written:

〈wi j|ai j = 1〉= c(sis j)
α d−γ

i j (3.5)

Parameters δ ,c,α,γ are found solving a maximum-likelihood problem numerically. As regards topol-
ogy, the algorithm is guaranteed to respect the empirical number of link L, but does not enforce the
degree sequence as a constraint.

Secondly, we build a alternative model using two methods found in the maximum-entropy literature:

• the Degree-Corrected Gravity Model (DCGM) [22] allows one to reconstruct and sample a weighted
network from the strength sequence si and the number of links L. Internally it also rests upon the
FiCM to reconstruct the edge probability pi j from the strength sequence si and the link density.
We propose here to replace this probability by an expression that accounts for distances di j.

• the algorithm in [7], labeled DiBCM henceforth, is a distance-preserving variation of the classical
binary configuration model in [18]. It assigns distance-dependent weights Wd to edges e(i, j),
with a functional form similar to:

pi j =
xix jWd(di j)

1+ xix jWd(di j)
(3.6)
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The resulting algorithm, labeled DCGM+DiBCM, takes as inputs the degree and strength sequences,
the distance matrix D = {di j}16i, j6N , and returns sampled weight matrices W that are used in turn
to compute averages such as 〈wi j〉, 〈ki〉, 〈si〉, 〈sd

i 〉 and 〈knn
i 〉. Details about DCGM and DiBCM are

available in the Appendix.
In Fig. 5 empirical measurements are compared to averages under the null models just presented.

The knn
i = f (ki) scatter plot of experimental measures is approximated by a smooth function of ki in

the case of the EGM model, that corresponds well to the upper part of the points. By contrast, DiBCM
average points are more evenly spread over the set of observed points. This is expected because pi j
in the DiBCM has one more degree of freedom since it depends on di j, unlike in the EGM case. For
example, the low-k/low-knn zone is ignored in the EGM case, while it is better accommodated by the
DiBCM. Both models find the expected disassortative trend, due to the local constraints of the degree
sequence. For the sake of completeness, the inference was done with another model, the Configuration
Model with Distances (DDCM) [19] but results were not found to be superior.

In the weighted case snn
i = f (ki) the DGCM+DiBCM again performs a better spread over the

observed points, except in the low-snn zone and despite the correct reconstruction of knn seen above.
This calls for a detailed analysis of the weight reconstruction in this zone. The tendency of the EGM to
overestimate snn

i and sd
i is even stronger than in the binary case.

The distance strength sd
i = f (ki) is nicely reconstructed by the DGCM+DiBCM algorithm, except

for the low-k /low-sd zone in which EU regions have less rail trade neighbors, that are on average closer
to each other, and that are less connected. This interesting discrepancy between the model and the
measurement again justifies the quest for a good null model.

For example, a degree-dependent difference has been observed in [21] between observed and mod-
eled sd

i and explained by a tendency of poorly connected countries to trade more locally. However, we
do not observe such degree-dependent difference here.

Finally, the good agreement obtained using DCGM+DiCM allows us to conclude that in first approx-
imation higher order topological properties of G can be explained by {ki}i∈[1,N] and D only, with no
need for other explanatory mechanism. More work is needed however to capture faithfully the weight-
dependent properties.

4. Discussion and conclusion

In this article, material flows between EU zones are studied as an origin-destination matrix represented
by a directed network, and are proxied by European rail freight data at the regional NUTS2 level,
prepared by Eurostat and the ETIS+ project.

The dataset is studied in a complex-network perspective, which had not been done previously to the
best of our knowledge. Several empirical findings concerning the non-planar spatial weighted network
are similar to national-level observations for trade data: P(k) and P(s) have a heavy subexponential tail,
but are not fat-tailed.

Geographical effects are evidenced on the region-center distance distribution, and on the network
itself: s and sd scale in a superlinear way with k, with exponents βw,βd , larger than 1 and close the
value 3

2 predicted in [20]. Moreover, an interesting core/periphery structure appears, with respect to
node degree. Even though directional effects are observed, the input and output degree sequences are
highly correlated.

Several maximum entropy null models are fit to available data in order to check if the network’s
characteristics can be explained only by degree sequence, the strength sequence and the inter-distance
matrix, or if other mechanisms must be looked for. The Enhanced Gravity Model is used as a bench-
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mark, and compared to a custom model labeled DCGM+DiCM that mixes the Degree-Corrected Grav-
ity Model and a distance-weighted configuration model. This strategy allows to separate the problem-
specific topology reconstruction (that depends on distance) from the weight reconstruction. DCGM+DiCM
allows a better agreement with data than EGM for higher-order measures of topological structure and
for distance strength, while weighted measures need to be improved.

Future works first need to address the problem of coarse geographic resolution, for example taking
advantage of the literature on network renormalization, in order to quantify the spatial effect in an
accurate manner, and to compare to existing fitness of growth models. Furthermore, maximum entropy
benchmark models will include recent propositions in the field to better reflect the weight structure, and
the distance dependency.

Lastly, results from related fields that currently tend to increase their geographical level of detail
(Material Flow Accounting, Multi-Regional Input-Output, Life-cycle Inventory and Carbon accounting)
could be compared to the picture given above.

A. Directed ANND

The definitions of directed average nearest-neighbor degree ANND are reproduced from [24, §3.1.2]
below:

knn,in/in
i =

∑ j 6=i a jikin
j

kin
i

knn,out/out
i =

∑ j 6=i ai jkout
j

kout
i

knn,out/out
i measures the correlation between the out-degree of node i and the out-degree of nodes that

i is pointing to. More definitions are available from the same reference.

B. FiCM

In the Fitness-Induced Configuration Model (FiCM), similarly to fitness (or hidden-variables) models
[8], the topology of the network derives from intrinsic properties of the nodes.

Unlike in the case of the Configuration Model (CM), no information about node degrees is available.
Fitnesses are known a priori from empirical unnormalized measures, for example the GDP of countries:
xi =

GDPi
∑i GDPi

.
In the undirected case the connection probabilities are thus determined by the equation:

pi j =
δxix j

1+δxix j
(A.1)

which can be compared to the expression pi j =
xix j

1+xix j
for binary network under the configuration model

in [17].
There is only one free parameter: δ . As explained in [10], only the empirical network density is

necessary to solve for δ . The probability of the graph associated to the incidence matrix A is then [23]:

P(A) = ∏
i< j

p
ai j
i j (1− pi j)

1−ai j (A.2)
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C. DCGM

The Degree-Corrected Gravity Model in [22] is aiming at reconstructing both the topological and the
weights structure of a directed network, from strength sequences {sin

i }i∈[1,N] and {sout
i }i∈[1,N] and the

number of links only.
As explained in the main text, reconstructing the topology is done using the FiCM. Then, the weights

are found using the formula:

wi j =

{
0 with probability 1− pi j,

sout
i sin

j
W pi j

with probability pi j
(A.1)

with W the sum of weights. This recovers the GM specification 〈wi j〉 =
sout
i sin

j
W . The average strength

sequence does not correspond exactly to the input constraint {sin
i }, {sout

i }, and an additionnal correction
term is necessary. The interested reader will find the details in [22].

D. DiBCM

The distance-based model in [7], that we labeled DiBCM for distance-preserving binary configuration
model in this article, is a variation over the classical configuration model.

The degree sequence {ki}i∈[1,N] and the distance structure D = {di j}16i, j6N constrain the Lagrange
multipliers and thus the values of hidden variables xi below.

The distances in D are binned in intervals Il = (dl−1,dl), l ∈ [1,L]. χl(.) is the indicating function
for interval Il .

The connection probabilities are written:

pi j =
xix j ∑l χl(di j)W (dl)

1+ xix j ∑l χl(di j)W (dl)
(A.1)

The weights {W (dl)}l∈[1,L] are distances-related hidden variables. All hidden variables are numeri-
cally approximated.
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6. Barthélemy, M. (2017) Morphogenesis of spatial networks. Springer Berlin Heidelberg, New York, NY.
7. Bianconi, G., Pin, P. & Marsili, M. (2009) Assessing the relevance of node features for network structure.

Proceedings of the National Academy of Sciences, 106(28), 11433–11438.
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