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Abstract

A variety of deep functional maps have been proposed recently, from fully
supervised to totally unsupervised, with a range of loss functions as well as
different regularization terms. However, it is still not clear what are minimum
ingredients of a deep functional map pipeline and whether such ingredients unify
or generalize all recent work on deep functional maps. We show empirically mini-
mum components for obtaining state of the art results with different loss functions,
supervised as well as unsupervised. Furthermore, we propose a novel framework
designed for both full-to-full as well as partial to full shape matching that achieves
state of the art results on several benchmark datasets outperforming even the
fully supervised methods by a significant margin. Our code is publicly available at
https://github.com/Not-IITian/Weakly-supervised-Functional-map

1 Introduction

Shape correspondence is a fundamental problem in computer vision, computer graphics and related
fields since it facilitates many applications such as texture or deformation transfer and statistical
shape analysis Bogo et al. [2014] to name a few. While classical correspondence methods have
been based on handcrafted features or deformation models Van Kaick et al. [2011], more recent
approaches have focused on learning an optimal model directly from 3D data. This includes ap-
proaches based on template fitting and reconstruction Groueix et al. [2018, 2019], and methods that
exploit different definitions of convolution and phrase correspondence as a dense labeling problem
Wei et al. [2016], Masci et al. [2015], Boscaini et al. [2016] among others.

A prominent direction in learning-based shape matching was pioneered by the FMNet work
Litany et al. [2017a] by exploiting the functional map representation Ovsjanikov et al. [2012]
and learning features that recover optimal functional maps rather than e.g. individual point la-
bels. The use of the functional map representation allows to efficiently impose global correspon-
dence constraints, and has been recently been extended in both unsupervised Halimi et al. [2019],
Roufosse et al. [2019] and supervised settings Donati et al. [2020]. Despite significant progress in
this area, there still exist three major issues. First, the most accurate recent approach Donati et al.
[2020] is limited to supervised setting that requires ground truth correspondences that are difficult
to obtain considering the cost of annotating a point to point map from the data. Second, despite a
variety of deep functional maps-based methods, it is still not clear what are minimum ingredients of
a deep functional map pipeline. More importantly, do such minimum ingredients unify or generalize
all recent work on deep functional maps. While a battery of loss functions and regularization have
been proposed for different deep functional maps, as we demonstrate below, the devil is not in the
loss functions. Instead, using a low number of Laplacian eigen basis, very weak supervision in the
form of rigid alignment and enforcing basic structural properties of resulting functional map are
sufficient. Moreover, our findings generalize to all loss functions proposed recently. Third, recent
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learning-based approaches are neither designed nor tested for the partial shape matching problem
[Rodolà et al., 2017, Litany et al., 2017b] which is of great interest in robotics[Chavdar et al., 2012]
and Virtual reality applications[Sharma et al., 2016]. To this end, we propose a weakly supervised
framework that addresses all three major issues.

In this paper, weak supervision implies that datasets are only approximately rigidly aligned. Broadly,
there are three main components to any deep functional map pipeline, namely feature extractor,
choice of basis functions and design of empirical loss or regularization on functional Map. In this pa-
per, we make contributions on all three fronts. First, we propose to learn feature descriptors directly
from raw data with a very weak supervision and establish that for non-rigid shape correspondence,
rigid alignment supervision turns out to be sufficient to obtain high quality results. Remarkably,
it also outperforms the fully supervised state-of-the-art methods, which rely on ground truth point-
to-point correspondences, on challenging benchmarks by a significant margin. Secondly, we show
that combination of our feature extractor projected to low number of Laplacian eigen basis (30) and
unsupervised loss, consisting of regularization terms, suffice to obtain state of the art result for any
recently proposed loss functions. Thirdly, to address partial shape matching, we propose a novel
data driven method to learn an optimal alignment between source and target Laplacian eigen basis
functions which paves the way for future work on deep functional maps in partial shape matching.

2 Related Work

Functional Maps Computing point-to-point maps between two 3D discrete surfaces is a very
well-studied problem. We refer to a recent survey Sahillioğlu [2019] for an in-depth discussion.
Our method builds upon the functional map pipeline, introduced in Ovsjanikov et al. [2012] and
then significantly extended in follow-up works Ovsjanikov et al. [2017]. Functional maps encode
correspondences as small matrices, expressed in a reduced basis, which greatly simplifies the as-
sociated optimization problems. A range of recent works, including Kovnatsky et al. [2013],
Huang et al. [2014], Burghard et al. [2017], Rodolà et al. [2017], Nogneng and Ovsjanikov [2017],
Ren et al. [2018] among many others, have extended the generality and improved the robustness of
the functional map estimation pipeline, by suggesting regularizers, robust penalties and powerful
post-processing approaches. Nevertheless, existing non-learning based methods are strongly tied
to the choice of descriptor (also known as “probe”) functions, which must be specified manually a
priori. We also note that there also exist other techniques that learn correspondences without using
the functional map representation, e.g., Wei et al. [2016], Boscaini et al. [2016], Monti et al. [2017].
However, such techniques typically either require significantly more training data (essentially be-
cause they treat shape correspondence as a dense labeling problem with a very large number of
labels), or do not learn from 3D geometry which is the main goal of this paper.

Supervised Learning from raw 3D shape In contrast to axiomatic approaches that use hand-
crafted features, a variety of methods have also been proposed to learn the optimal features or
descriptors from 3D data. In the functional maps domain, this was first suggested in Corman et al.
[2014] using classical optimisation techniques and then in the seminal Deep Functional Maps work
Litany et al. [2017a] that proposed a deep learning architecture called FMNet to compute opti-
mal features from data. This architecture was based on optimizing a non-linear transformation of
SHOT descriptors Tombari et al. [2010] to obtain maps that are as close as possible to given ground
truth correspondences. Follow-up works have extended this approach to the unsupervised setting
Roufosse et al. [2019], Halimi et al. [2019] by modifying the training loss, but still used pre-defined
descriptors for optimization. These methods generalize poorly across datasets as the input features
such as SHOT descriptors Tombari et al. [2010] are sensitive to the triangle mesh structure, which
varies drastically across different datasets.

Most recently, Groueix et al. [2018], Donati et al. [2020] have shown that feature functions can be
learned directly from the raw 3D data without relying on pre-defined descriptors, resulting in a
significantly more robust and accurate method. However, to obtain good results this work had to rely
on ground truth correspondences and does not generalize its empirical success beyond its own setup.
Although PointNet Qi et al. [2017a] and its variants (Qi et al. [2017b]) achieve impressive results
from raw point clouds for classification tasks, they are not yet competitive for shape correspondence
task.
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Partial Shape Matching While some formulations of functional maps allow to deal with the lack
of isometry and partiality, this framework is in principle not designed to deal with partial correspon-
dence. Rodolà et al. [2017] provided an empirical evidence and theoretical analysis of a surprising
property of interaction between Laplacian eigenfunctions as a result of removing parts from surfaces.
This implies that there exists an unknown alignment between eigenfunctions of partial shapes and
full shapes and knowing it results in a special slanted diagonal structure of the correspondence ma-
trix. However, it requires a complicated alternating optimization over the spectral domain and the
spatial domain. Instead, Litany et al. [2017b] proposed an efficient and fully spectral domain method
for finding this transformation matrix between the two eigen space. However, it still relies on hand
crafted features, optimization on Stiefel manifold and is instance specific. Besides, replacing hand-
crafted features by learnable feature descriptors is not straightforward due to manifold optimization
involved in the process. We address both these issue by proposing a novel method that mitigates
these issues by learning directly from raw data.

3 Background

As mentioned above, in this work we focus on the functional map representation, due to its efficiency,
rich geometric structure and improved ability to generalize beyond a small training setDonati et al.
[2020].

Basic Deep Functional Map Pipeline Given a source and a target shape, S1, S2, containing,
respectively, n1 and n2 vertices, the basic pipeline for computing a map between them using the
functional map framework Ovsjanikov et al. [2012] and its deep counterparts is as follows:

1. On each shape, compute a small set of k1, k2 of basis functions , e.g. by taking the first few
eigenfunctions of the respective Laplace-Beltrami operators.

2. Compute a set of descriptor (also known as “probe”) functions on each shape that should
be preserved by the unknown map. In our case, these functions are PointNet features that
are further projected onto the first 30 Laplacian eigen functions and their coefficients are
stored as columns of matrices A,B.

3. Compute the optimal functional map C by solving the following optimization problem:

Copt = argmin
C

Edesc
(

C
)

+ αEreg
(

C
)

, (1)

where Edesc
(

C
)

=
∥

∥CA − B
∥

∥

2

aims at the descriptor preservation whereas the second
term acts as a regularizer on the map by enforcing its overall structural properties. Eq
1 can be solved with any convex solver. However, when descriptor functions are neural
network based, we need to differentiate the solution with respect to the spectral features
A,B, which is challenging when C is computed via an iterative solver. Deep functional
maps avoid this by only optimizing C the first part of the energy :

∥

∥CA−B
∥

∥

2

by solving
a simple linear system for which the derivatives can be computed in closed form.

4. The functional map C in spectral domain is then converted to a point-to-point spatial map
using one of several techniques e.g nearest neighbor search in the spectral embedding.

4 Method

4.1 Overview

In this section, we first introduce our approach to learning descriptors from raw 3D shapes for
full to full shape matching. Afterwards, we detail our novel partial shape matching algorithm that
learns an optimal alignment of laplacian eigen basis functions given the spectrum of partial and full
shape. Note that the feature descriptor extraction is common to both approaches. However, our
unsupervised loss function is totally different for partial and full shape matching.

4.2 Weak Supervision

In both full and partial matching cases, our method is “weakly supervised” in the sense that we ex-
pect the input non-rigid shapes to be approximately rigidly aligned. This means having a consistent
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‘up’ direction (along, e.g., the y axis) and an approximate forward-facing direction (along, e.g., the
z direction). Some existing datasets, such as partial SHRECCosmo et al. [2016], already satisfy this
assumption. When considering multiple datasets, we only need to make sure that these axes are con-
sistent, which can be done with very little manual intervention. We stress that we do not use ground
truth point-to-point or functional correspondences, and that obtaining reliable detailed ground truth
maps requires significant effort especially when considering cross-dataset learning. Weak supervi-
sion is necessary due to the presence of symmetries. Since some poses (e.g. the neutral pose) are
fully extrinsically symmetric, a PointNet like feature extractor cannot distinguish left/right unless
the shapes are aligned, we need some way to disambiguate them for correspondence. Therefore,
some amount of weak supervision, such as rigid alignment, is necessary and as we show in exper-
iments later, explains the performance drop of a fully supervised methods like GeomFmap when
trained on aligned dataset and tested on Scape(non-aligned).

4.3 Feature extractor

Our main goal is to learn functional characterizations of point clouds that will later be used to
compute spectral descriptors and then functional maps. Thus, this network must be applied with the
same weights to the source and target shapes in a siamese way using a shared learnable parameters.
Our feature extractor is based on Pointnet ++ Qi et al. [2017b] that extracts local features capturing
fine geometric structures from small neighborhoods. Such local features are further grouped into
larger units and processed to produce higher level features. Our feature extraction network is based
on the standard architecture consisting of 4 sampling layers, with first layer sampling 1024 points
and 4 feature propagation layers such that final layer outputs 128 dimension feature descriptor for
each input shape. For details on all the parameters of network, please see the source code.

4.4 Unsupervised loss for full shape matching

Given the extracted feature functions, we first project them onto the Laplacian basis and then com-
pute the optimal functional map by minimizingminC

∥

∥CA−B
∥

∥

2

. As noted in Litany et al. [2017a],
this leads to a simple linear system of equation, whose solution can be differentiated during training.
We therefore train feature extraction network by imposing an unsupervised loss on the optimized
functional map. Our loss follows the approach of Roufosse et al. [2019] and is based on three key
structural properties of a functional map between two full isometric shapes.

Bijectivity Transporting functions on a shape and transporting them back should yield the same
functions. Following Eynard et al. [2016], Roufosse et al. [2019], we therefore enforce that com-
position between C12 and C21 turn out to be as closely as possible to I, the identity matrix:
E1 = ‖C12C21 − I‖2 + ‖C21C12 − I‖2

Orthogonality As observed in the functional map literature Ovsjanikov et al. [2012],
Rustamov et al. [2013], Roufosse et al. [2019] a point-to-point map is locally area preserving if
and only if the corresponding functional map is orthonormal. Thus, for shape pairs, approx-
imately satisfying this assumption, a natural penalty in our unsupervised pipeline is: E2 =
‖C⊤

12
C12 − I‖2 + ‖C⊤

21
C21 − I‖2

Laplacian commutativity Having functional maps that commute with the Laplace-Beltrami op-
erators is known to be a common regularizer in the functional map pipeline Rosenberg [1997],
Ovsjanikov et al. [2012]. We recall that this constraint helps find better mappings since certain
operators are preserved under isometries: E3 =

∥

∥C12Λ1−Λ2C12

∥

∥

2

+
∥

∥C21Λ2−Λ1C21

∥

∥

2

where
Λ1 and Λ2 are diagonal matrices of the Laplace-Beltrami eigenvalues on the two shapes.

Thus, our unsupervised loss function is a combination of all three structural properties and weighted
as follows: L = E1 + E2 + .001 ∗ E3 where the weighing scalars are found empirically.

4.5 Basis Alignment for Partial Shape Matching

The basic pipeline described above for shape matching breaks down in the case of partial shape
matching. This is primarily because structural properties of map such as bijectivity, area preserva-
tion (orthogonality) are not applicable anymore. Rodolà et al. [2017] showed that for each “partial”
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eigenfunction (i.e., each eigenfunction of a partial shape), there exists a corresponding “full” eigen-
function (i.e., some eigenfunction of the full shape). The problem then reduces to finding alignment
in k dimensional eigen space that is achieved by optimizing for a new basis on one shape only and
keeping the other fixed to the standard Laplacian eigenfunctions. Due to this coupling, the new basis
functions will behave consistently resulting in almost perfectly diagonal C even in the absence of a
perfect isometry. Mathematically, it is written as follows:

min
X

∥

∥Ar −X
⊤
B
∥

∥

2

+ off(X⊤
ΛX), (2)

where Ar contains the r × k submatrix of Ar (the first r rows of matrix Ar) and X of size k × r
is a transformation matrix between the two eigen spaces that stores the coefficients of desired linear
combination. Λ is a diagonal matrix of the first k eigenvalues of partial shape. The second term
in Eq. (2) is a regularizer on X that ensures that resulting eigen basis functions on partial shape
minimize the Dirchelet energy on its Laplacian Beltrami operator ∆. The value of r is estimated
from the spectrum of partial and full shape as follows: r = max

kp

i=1
{i | λp

i < max
kf

j=1
λ
f
j } after

setting kp = kf = 60 where f denotes the full shape and p denotes the partial one. We upper bound
the rank obtained by 40.

The method of Litany et al. [2017b] obtains the descriptor function matrix A and B using precom-
puted SHOT descriptors. Besides, it constrains X to be an orthogonal matrix and thus optimize it
using manifold optimization solver on Stiefel Manifold. However, we do not impose any orthogonal-
ity constraint on X and optimize Eq. (2) differently since our descriptor functions are PointNet ++
based and need to be learned simultaneously. So, instead of optimzing over X, we are optimizing
the functional over X, A and B.

min
X,A,B

∥

∥Ar −X
⊤
B
∥

∥

2

+ off(X⊤
ΛX), (3)

We split the functional in Eq. 3 in two parts and first optimize for X by solving
∥

∥Ar−X
⊤
B
∥

∥

2

with
a simple linear system for which the derivatives can be computed in closed form. Given this optimal
X, we then impose the loss on X by computing the second part of Eq (3) and use this unsupervised
loss to backpropagate gradients to learn the appropriate descriptor functions. Note that for partial
matching this loss term is the only one we use, whereas in the full shape matching setting we use a
more powerful loss described in Section 4.4.

Implementation We implemented our method in TensorFlowAbadi et al. [2015]. We train our
network with a batch size of 8 shape pairs for 10000 steps. We use a learning rate of 1e − 4 with
Adam optimizer. During training, we randomly sample 4000 points from each shape while training
with Surreal dataset whose shapes contain 7000 points each. For other datasets such as Scape and
Faust remesh, that contains roughly 5000 points each, we randomly sample 3000 points during
for training. Since partial shape dataset contains very limited number of shapes, we describe its
experimental setup later in Section 5.3. For a fair comparison with some baseline methods, we use a
very recent and efficient refining algorithm, called ZoomOut Melzi et al. [2019] based on navigating
between spatial and spectral domains while progressively increasing the number of spectral basis
functions.

5 Results

This section is divided into three subsections where each provides a separate evaluation of our con-
tributions. Section 5.1 shows the experimental comparison of our weakly supervised approach with
fully supervised state-of-the art methods for near-isometric shape matching. Section 5.2 demon-
strates that weak rigid alignment of datasets, low number of Laplacian eigen basis and enforcing
structural properties of a map suffice to obtain excellent results across a variety of loss functions. Fi-
nally, Section 5.3 demonstrates the effectiveness of our novel partial shape matching framework. We
evaluate all results by reporting the per-point-average geodesic distance between the ground truth
map and the computed map. All results are multiplied by 100 for the sake of readability.

5.1 Near-isometric Shape Matching

In this section we evaluate our method for complete (full to full) near isometric shape matching.
We compare our method with state-of-the-art approaches while focusing especially on the the very
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Table 1: Results on remeshed Faust and Scape.

Method \ Dataset F S F on S S on F
SURFMNet 15. 12. 32. 32.
SURFMNet+icp 7.4 6.1 19. 23.
Unsup FMNet 10. 16. 29. 22.
Unsup FMNet+pmf 5.7 10. 12. 9.3
FMNet 11. 17. 30. 33.
FMNet+pmf 5.9 6.3 11. 14.
3D-CODED 2.5 31. 31. 33.
GeomFmap 3.1 4.4 11. 6.0
GeomFmap +zo 1.9 3.0 9.2 4.3

Ours 3.3 7.3 11.7 6.2
Ours + zo 1.9 4.9 8.0 4.3

Table 2: Results when trained on Sur-
real and tested on remeshed Faust and
Scape.

Method \ Dataset F S
GeomFmap +Zo 2.5 9.2
3D-CODED 4.9 6.0
Ours 5.0 8.3
Ours+zo 2.8 5.5

recent functional map-based technique Donati et al. [2020], which was shown to outperform existing
competitors.

Datasets For a fair comparison with Donati et al. [2020], we follow the same experimental setup
and test our method on a wide spectrum of datasets: first, the re-meshed versions of FAUST dataset
Bogo et al. [2014] and the SCAPE Anguelov et al. [2005], made publicly available by Ren et al.
Ren et al. [2018]. Lastly, we also use the training dataset of 3D-CODED, consisting in 230K syn-
thetic shapes generated using SURREAL Varol et al. [2017] with the parametric model SMPL intro-
duced in Loper et al. [2015]. We use a subset of it for training purposes to compare the generalization
ability of different methods to changes in connectivity and triangulation. This is achieved by training
on this synthetic data and testing on re-meshed datasets such as FAUST and SCAPE.

Baselines We compare our method to several state of the art methods: the first category includes
a variety of unsupervised deep functional maps proposed recently with SHOT descriptors. Second
category includes supervised methods that directly learn from 3D data. This includes the supervised
template based approach of 3D-CODED Groueix et al. [2018] as well as the recent work GeomFmap
Donati et al. [2020]. All baseline results are taken from Donati et al. [2020]. In the case of SHOT
based deep functional maps Litany et al. [2017a], Halimi et al. [2019], Roufosse et al. [2019], all
results are invariant by any rigid transformation of the input shapes and therefore, no alignment is
required. For a fair comparison with other methods, we show our results with and without ZoomOut
Melzi et al. [2019] refinement, referred to as ZO. For conciseness, we refer to our method as Ours
in the following text. We compare these different methods in Table 1.

Losses All E1 E2 E3 (E1+E3) All-not-aligned

Scape 8.3 13 16 10.5 9.2 22
Faust 5.0 11 14 9.0 6.3 8.0

Table 3: Ablation study of individual losses with and without alignment when trained with Surreal.

Generalization Experiments Following the standard protocol, we split FAUST re-meshed and
SCAPE re-meshed into training and test sets containing 80 and 20 shapes for FAUST, and 51 and
20 shapes for SCAPE. F and S in Table 1 shows the results for training and testing on same dataset,
FAUST and SCAPE, respectively whereas F on S means trained on FAUST and tested on SCAPE. In
Table 2, results are shown with the SURREAL dataset from which we sample 500 shapes for training
and test the trained models on test sets of FAUST re-meshed, SCAPE re-meshed. We compare
with 3D-CODED and GeomFMap since they outperform every other method and learn from raw
3D geometry. We report baseline numbers from Donati et al. [2020] which report performance of
different methods by varying the size of training set from few hundred to thousands. We pick the
best results obtained with any number of shapes. All results are multiplied by 100 for the sake of
readability. We also report results without ZoomOut refinement.
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Results and Discussion As evident in Table 1, our method performs on par with the fully super-
vised approaches such as 3D-CODED Groueix et al. [2018] and GeomFMap Donati et al. [2020].
We observe substantial gains over supervised approach in Table 2. We obtain remarkable perfor-
mance on the SCAPE dataset at test when trained with any other dataset. On FAUST, we are com-
parable with GeomFMap even though it is trained with ground truth correspondences.

We would like to stress that baselines such as 3D-CODED and GeomFMap require hundreds of
SURREAL shapes, 2000 for 3D-CODED, in order to obtain reasonable results on SCAPE whereas
we can obtain high quality results with significant improvement over GeomFMap with as low as 100
and 50 shapes. We stress that no other method is able to achieve such a generalization with this low
number of shapes. We attribute our superior results over GeomFmap to a range of factors. First,
in contrast to our unsupervised loss, GeomFmap uses a supervised loss without adequate regular-
ization that leads to severe overfitting on challenging datasets with different poses such as SCAPE.
This underscores the importance of enforcing structural properties of functional map in any loss func-
tion. Second, GeomFmap achieves a consistent forward facing direction with data augmentation and
ground truth functional map supervision, whereas we align it manually. These experimental results
confirm our findings that the devil in non-rigid shape matching lies in approximate rigid alignment
and such weak supervision is equivalent to having supervised ground truth correspondence as we
show next. Compared to GeomFmap, we obtain better results with zoomout as it refines initial maps
better if they do not contain large errors, e.g. due to symmetries, which we observe with GeomFmap.
Also, when the initial maps are good, refined map is often similar regardless of initial maps.

Ablation Study We show in Table 3 the ablation of our method trained on Surreal and tested on
Faust and Scape. E3 (Laplacian commutativity) is the most important while E2 (Orthonormality) is
the least among the three losses. Drastic decrease in performance of our method (All) without weak
supervision underlines its importance. The drop is less severe in case of Faust where one axis is
already aligned in contrast to Scape that is not aligned at all.

5.2 Deep Functional Maps with any Loss Function

The goal of this section is to unpack the minimum ingredients of a deep functional map pipeline
such that it leads to unification of all the recent work under these minimum conditions. To this
end, we test one representative deep functional map each from supervised setting and unsupervised
setting with different loss functions. We optimize their loss functions with our PointNet++ feature
extractor with low eigen basis (30) and our regularizers in both functional map pipeline and discard
any other regularizer or feature extractor as proposed in these works. We train on SURREAL dataset
from which we sample 500 shapes for training and test the trained models on test sets of FAUST
re-meshed, SCAPE re-meshed.

Unsup FMNet loss + Ours Halimi et al. [2019] is an unsupervised approach that uses a soft cor-
respondence based loss with geodesic matrix. Note that in their paper, Unsup FMNet relies on the
SHOT descriptor that we replace with a PointNet++ feature extractor. We use their unsupervised
loss in addition to our regularization terms.

GeomFmap loss + Ours We also evaluate Donati et al. [2020], a supervised approach where the
ground truth functional map is computed in the spectral domain. We use this supervised loss func-
tion but discard their regularization proposed to alleviate overfitting. We also discard their feature
extractor and do not perform any data augmentation. We sample 6000 vertices randomly for each
shape as more vertices should lead to a better ground truth functional map estimation.

GeomFmap simply reports the performance of Donati et al. [2020] without any modifications.

Results and Discussion We summarize the findings in Table 4. Remarkably, we obtain state of
the art results with both loss functions. In particular, GeomFmap supervised spectral loss when op-
timized with our framework leads to 200 percent increase in accuracy on the challenging SCAPE
dataset. This shows the generalization capability of our framework since GeomFmap already con-
tains a feature extractor and a regularization layer especially designed to reduce overfitting which
evidently are not sufficient. Similar performance boost is observed with Unsup FMNet on both
datasets. It must be noted that memory footprint/training time of Halimi et al. [2019] is 50 times
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Table 4: Comparative results of different loss functions
when trained with our framework on Surreal and tested on
remeshed Faust and Scape.

Method \ Dataset F S
GeomFap+zo 2.5 9.2
Unsup FMNet loss + Ours 6.3 7.7
Unsup FMNet loss + Ours +zo 4.4 5.2
GeomFap loss + Ours 5.0 7.7
GeomFap loss + Ours +zo 2.7 4.6
Ours 5.0 8.3
Ours +zo 2.8 5.5

Table 5: Comparative results on partial
Shrec benchmark

Method \ Dataset Holes Cuts
Litany et. al 16 13
Ours 13 15

more as it requires either geodesic matrices to fit to RAM or load them on the fly for each pair. Over-
all, these results demonstrate the usage of low laplacian eigen basis, regularization by enforcing
basic structural properties of map under weak supervision suffice to obtain state-of-the-art results
with different loss functions.

5.3 Partial Shape Matching

Finally, we quantitatively evaluate our method in the partial matching scenario on the challenging
SHREC’16 Partial Correspondence benchmarkCosmo et al. [2016]. The dataset is composed of 200
partial shapes (from a few hundred to 9K vertices each) belonging to 8 different classes (humans and
animals), undergoing nearly-isometric deformations in addition to having missing parts of various
forms and sizes. Each class comes with a “null” shape in a standard pose which is used as the full
template to which partial shapes are to be matched. The dataset is split into two subsets, namely cuts
(removal of a few large parts) and holes (removal of many small parts).

Experimental Setup The dataset contains several shapes whose number of points range from few
hundreds to 2000. We use some of these shapes as a validation set and separate them from training
or test set. Since the number of overall shapes are not enough in each subset for a learning based
method to train and test separately, we first split each subset randomly into train and test and then
combine the training set of both holes and cuts subset to create our training data. Holes dataset is
shown to be more challenging than cuts in Litany et al. [2017b]. Our loss function for partial shape
matching does not contain any hyperparameters. Thus, we use validation set to only validate the
training iterations. We consider Litany et al. [2017b] as our main baseline as it is considered state of
the art for partial shape matching. Remark that no existing functional maps learning-based approach
has yet been proposed for partial non-rigid shape matching.

Results and Discussion We present our findings on partial shape matching in Table 5. Note that
the method of Litany et al. [2017b] is not learning based but relies on expensive manifold optimiza-
tion for every pair of shapes at test time. In contrast, our method obtains a correspondence directly
with pre-trained features and without the need for any test time optimization.

6 Conclusion and Future Work

We presented a novel weakly supervised method based on the functional map representation for
both full and partial shape matching. Our main observation is that weak supervision in the form of
approximately rigidly aligned input data is sufficient for learning powerful features to solve the non-
rigid correspondence problem from raw data. Moreover, we establish that the key to cross dataset
generalization lies in working with low number of eigen basis and enforcing very basic structural
properties of a functional map. Our method for partial shape matching is also the first approach
towards learning partial functional map and is of independent interest. We believe that this method
will set the future direction of research, especially towards simpler techniques and weak supervision,
in both near isometric as well as partial shape matching.
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8 Broader Impact

Shape matching is a fundamental problem that arises in many areas of science and engineering
from statistical shape analysis, creation of virtual avatars, medical imaging (for instance for detect-
ing anomalies, and performing follow-up analysis) as well as other areas such as archeology and
palaeontology (for comparing artefacts and anatomical features) among others. Efficient algorithms
for solving the shape correspondence problem, therefore have immediate impact in those areas fa-
cilitating tedious manual intervention and requirements for expert knowledge, which are often not
available. Our approach which achieves state-of-the-art results on challenging benchmarks can im-
mediately be adapted and tested in such diverse scenarios. This is particularly true as our method
does not place any assumptions on the shape category (e.g., not being restricted to only human
shapes as some previous approaches), is efficient and fully automatic. We believe that the observa-
tions made in our work can also lead to new insights in other areas including graph matching and
machine translation, where data is often represented as point clouds in some embedding space.
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