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Abstract

A variety of deep functional maps have been proposed recently, from fully super-
vised to totally unsupervised, with a range of loss functions as well as different
regularization terms. However, it is still not clear what are minimum and suffi-
cient ingredients of a deep functional map pipeline and whether such ingredients
unify or generalize all recent work on deep functional maps. With a slight abuse
of notation, we show minimum and sufficient conditions for obtaining state of
the art results with any loss function, supervised as well as unsupervised. Fur-
thermore, we propose a novel framework designed for both full-to-full as well
as partial to full shape matching that achieves state of the art results on bench-
mark datasets outperforming even the fully supervised methods by a large mar-
gin. Our code will be publicly available at https://github.com/Not-IITian/
Weakly-supervised-Functional-map

1 Introduction

Shape correspondence is a fundamental problem in computer vision, computer graphics and related
fields since it facilitates many applications such as texture or deformation transfer and statistical
shape analysis Bogo et al. [2014] to name a few. While classical correspondence methods have been
based on handcrafted features or deformation models Van Kaick et al. [2011], more recent approaches
have focused on learning an optimal model directly from 3D data. This includes approaches based
on template fitting and reconstruction Groueix et al. [2018, 2019], and methods that exploit different
definitions of convolution and phrase correspondence as a dense labeling problem Wei et al. [2016],
Masci et al. [2015], Boscaini et al. [2016] among others.

A prominent direction in learning-based shape matching was pioneered by the FMNet work Litany
et al. [2017a] by exploiting the functional map representation Ovsjanikov et al. [2012] and learning
features that recover optimal functional maps rather than e.g. individual point labels. The use of the
functional map representation allows to efficiently impose global correspondence constraints, and has
been recently been extended in both unsupervised Halimi et al. [2019], Roufosse et al. [2019] and
supervised settings Donati et al. [2020]. Despite significant progress in this area, there still exist three
major issues. First, the most accurate recent approach Donati et al. [2020] is limited to supervised
setting that requires ground truth correspondences that are difficult to obtain considering the cost of
annotating a point to point map from the data. Second, despite a variety of deep functional maps-
based methods, it is still not clear what are minimum and sufficient ingredients of a deep functional
map pipeline. More importantly, do such minimum and sufficient ingredients unify or generalize
all recent work on deep functional maps. While a battery of loss functions and regularization have
been proposed for different deep functional maps, as we demonstrate below, the devil is not in the
loss functions. Instead, using a low number of Laplacian eigen basis, very weak supervision in the
form of rigid alignment and enforcing basic structural properties of resulting functional map are
sufficient. Moreover, our findings generalize to all loss functions proposed recently. Third, recent
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learning-based approaches are neither designed nor tested for the partial shape matching problem
[Rodolà et al., 2017, Litany et al., 2017b] which is of great interest in robotics[Chavdar et al., 2012]
and Virtual reality applications[Sharma et al., 2016]. To this end, we propose a weakly supervised
framework that addresses all three major issues.

In this paper, weak supervision implies that datasets are only approximately rigidly aligned. Broadly,
there are three main components to any deep functional map pipeline, namely feature extractor, choice
of basis functions and design of empirical loss or regularization on functional Map. In this paper, we
make contributions on all three fronts. First, we propose to learn feature descriptors directly from
raw data with a very weak supervision and establish that for non-rigid shape correspondence, rigid
alignment supervision turns out to be sufficient to obtain high quality results. Remarkably, it also
outperforms the fully supervised state-of-the-art methods, which rely on ground truth point-to-point
correspondences, on challenging benchmarks by a large margin. Secondly, we show that combination
of our feature extractor projected to low number of Laplacian eigen basis (30) and unsupervised loss,
consisting of regularization terms, is empirically a minimum and sufficient ingredient to obtain state
of the art result for any recently proposed loss functions. Thirdly, to address partial shape matching,
we propose a novel data driven method to learn an optimal alignment between source and target
Laplacian eigen basis functions which paves the way for future work on deep functional maps in
partial shape matching.

2 Related Work

Functional Maps Computing point-to-point maps between two 3D discrete surfaces is a very
well-studied problem. We refer to a recent survey Sahillioğlu [2019] for an in-depth discussion.
Our method builds upon the functional map pipeline, introduced in Ovsjanikov et al. [2012] and
then significantly extended in follow-up works Ovsjanikov et al. [2017]. Functional maps encode
correspondences as small matrices, expressed in a reduced basis, which greatly simplifies the
associated optimization problems. A range of recent works, including Kovnatsky et al. [2013],
Huang et al. [2014], Burghard et al. [2017], Rodolà et al. [2017], Nogneng and Ovsjanikov [2017],
Ren et al. [2018] among many others, have extended the generality and improved the robustness of
the functional map estimation pipeline, by suggesting regularizers, robust penalties and powerful
post-processing approaches. Nevertheless, existing non-learning based methods are strongly tied
to the choice of descriptor (also known as “probe”) functions, which must be specified manually a
priori. We also note that there also exist other techniques that learn correspondences without using
the functional map representation, e.g., Wei et al. [2016], Boscaini et al. [2016], Monti et al. [2017].
However, such techniques typically either require significantly more training data (essentially because
they treat shape correspondence as a dense labeling problem with a very large number of labels), or
do not learn from 3D geometry which is the main goal of this paper.

Supervised Learning from raw 3D shape In contrast to axiomatic approaches that use hand-
crafted features, a variety of methods have also been proposed to learn the optimal features or
descriptors from 3D data. In the functional maps domain, this was first suggested in Corman et al.
[2014] using classical optimisation techniques and then in the seminal Deep Functional Maps work
Litany et al. [2017a] that proposed a deep learning architecture called FMNet to compute optimal
features from data. This architecture was based on optimizing a non-linear transformation of SHOT
descriptors Tombari et al. [2010] to obtain maps that are as close as possible to given ground truth
correspondences. Follow-up works have extended this approach to the unsupervised setting Roufosse
et al. [2019], Halimi et al. [2019] by modifying the training loss, but still used pre-defined descriptors
for optimization. These methods generalize poorly across datasets as the input features such as SHOT
descriptors Tombari et al. [2010] are sensitive to the triangle mesh structure, which varies drastically
across different datasets.

Most recently, Groueix et al. [2018], Donati et al. [2020] have shown that feature functions can
be learned directly from the raw 3D data without relying on pre-defined descriptors, resulting in a
significantly more robust and accurate method. However, to obtain good results this work had to rely
on ground truth correspondences and does not generalize its empirical success beyond its own setup.
Although PointNet Qi et al. [2017a] and its variants (Qi et al. [2017b]) achieve impressive results
from raw point clouds for classification tasks, they are not yet competitive for shape correspondence
task.
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Partial Shape Matching While some formulations of functional maps allow to deal with the lack of
isometry and partiality, this framework is in principle not designed to deal with partial correspondence.
Rodolà et al. [2017] provided an empirical evidence and theoretical analysis of a surprising property
of interaction between Laplacian eigenfunctions as a result of removing parts from surfaces. This
implies that there exists an unknown alignment between eigenfunctions of partial shapes and full
shapes and knowing it results in a special slanted diagonal structure of the correspondence matrix.
However, it requires a complicated alternating optimization over the spectral domain and the spatial
domain. Instead, Litany et al. [2017b] proposed an efficient and fully spectral domain method for
finding this transformation matrix between the two eigen space. However, it still relies on hand crafted
features, optimization on Stiefel manifold and is instance specific. Besides, replacing handcrafted
features by learnable feature descriptors is not straightforward due to manifold optimization involved
in the process. We address both these issue by proposing a novel method that mitigates these issues
by learning directly from raw data.

3 Background

As mentioned above, in this work we focus on the functional map representation, due to its efficiency,
rich geometric structure and improved ability to generalize beyond a small training set, as was recently
demonstrated in Donati et al. [2020].

Basic Deep Functional Map Pipeline Given a source and a target shape, S1, S2, containing,
respectively, n1 and n2 vertices, the basic pipeline for computing a map between them using the
functional map framework Ovsjanikov et al. [2012] and its deep counterparts is as follows:

1. On each shape, compute a small set of k1, k2 of basis functions , e.g. by taking the first few
eigenfunctions of the respective Laplace-Beltrami operators.

2. Compute a set of descriptor (also known as “probe”) functions on each shape that should be
preserved by the unknown map. In our case, these functions are PointNet features that are
further projected onto the first 30 Laplacian eigen functions and their coefficients are stored
as columns of matrices A,B.

3. Compute the optimal functional map C by solving the following optimization problem:

Copt = arg min
C

Edesc
(
C
)

+ αEreg
(
C
)
, (1)

where Edesc
(
C
)

=
∥∥CA − B

∥∥2 aims at the descriptor preservation whereas the second
term acts as a regularizer on the map by enforcing its overall structural properties. Eq 1 can
be solved with any convex solver. However, when descriptor functions are neural network
based, we need to differentiate the solution with respect to the spectral features A,B, which
is challenging when C is computed via an iterative solver. Deep functional maps avoid this
by only optimizing C the first part of the energy :

∥∥CA−B
∥∥2 by solving a simple linear

system for which the derivatives can be computed in closed form.
4. The functional map C in spectral domain is then converted to a point-to-point spatial map

using one of several techniques e.g nearest neighbor search in the spectral embedding.

4 Method

4.1 Overview

In this section, we first introduce our approach to learning descriptors from raw 3D shapes for full to
full shape matching. Afterwards, we detail our novel partial shape matching algorithm that learns
an optimal alignment of laplacian eigen basis functions given the spectrum of partial and full shape.
Note that the feature descriptor extraction is common to both approaches. However, our unsupervised
loss function is totally different for partial and full shape matching.

4.2 Supervision

In both full and partial matching cases, our method is “weakly supervised” in the sense that we
expect the input non-rigid shapes to be approximately rigidly aligned. This means having a consistent
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‘up’ direction (along, e.g., the y axis) and an approximate forward-facing direction (along, e.g., the
z direction). Many existing datasets, such as FAUST Bogo et al. [2014], partial SHRECCosmo
et al. [2016], already satisfy this assumption. When considering multiple datasets we only need to
make sure that these axes are consistent, which can be done with very little manual intervention.
We stress that we do not use ground truth point-to-point or functional correspondences, and that
obtaining reliable detailed ground truth maps requires significant effort especially when considering
cross-dataset learning. Please see the supplementary for example shapes and their approximate
alignment in our training and test data.

4.3 Feature extractor

Our main goal is to learn functional characterizations of point clouds that will later be used to compute
spectral descriptors and then functional maps. Thus, this network must be applied with the same
weights to the source and target shapes in a siamese way using a shared learnable parameters. Our
feature extractor is based on Pointnet ++ Qi et al. [2017b] that extracts local features capturing fine
geometric structures from small neighborhoods. Such local features are further grouped into larger
units and processed to produce higher level features. Our feature extraction network is based on the
standard architecture consisting of 4 sampling layers, with first layer sampling 1024 points and 4
feature propagation layers such that final layer outputs 128 dimension feature descriptor for each
input shape. For details on all the parameters of network, please see supplement.

4.4 Unsupervised loss for full shape matching

Given the extracted feature functions, we first project them onto the Laplacian basis and then compute
the optimal functional map by minimizing minC

∥∥CA−B
∥∥2. As noted in Litany et al. [2017a], this

leads to a simple linear system of equation, whose solution can be differentiated during training.

We therefore train feature extraction network by imposing an unsupervised loss on the optimized
functional map. Our loss follows the approach of Roufosse et al. [2019] and is based on three key
structural properties of a functional map between two full isometric shapes.

Bijectivity Transporting functions on a shape and transporting them back should yield the same
functions. Following Eynard et al. [2016], Roufosse et al. [2019], we therefore enforce that com-
position between C12 and C21 turn out to be as closely as possible to I, the identity matrix:
E1 = ‖C12C21 − I‖2 + ‖C21C12 − I‖2

Orthogonality As observed in the functional map literature Ovsjanikov et al. [2012], Rustamov
et al. [2013], Roufosse et al. [2019] a point-to-point map is locally area preserving if and only if the
corresponding functional map is orthonormal. Thus, for shape pairs, approximately satisfying this
assumption, a natural penalty in our unsupervised pipeline is: E2 = ‖C>

12C12−I‖2+‖C>
21C21−I‖2

Laplacian commutativity Having functional maps that commute with the Laplace-Beltrami op-
erators is known to be a common regularizer in the functional map pipeline Rosenberg [1997],
Ovsjanikov et al. [2012]. We recall that this constraint helps find better mappings since certain
operators are preserved under isometries: E3 =

∥∥C12Λ1−Λ2C12

∥∥2 +
∥∥C21Λ2−Λ1C21

∥∥2 where
Λ1 and Λ2 are diagonal matrices of the Laplace-Beltrami eigenvalues on the two shapes.

Thus, our unsupervised loss function is a combination of all three structural properties and weighted
as follows: L = E1 + E2 + .001 ∗ E3 where the weighing scalars are found empirically.

4.5 Basis Alignment for Partial Shape Matching

The basic pipeline described above for shape matching breaks down in the case of partial shape
matching. This is primarily because structural properties of map such as bijectivity, area preservation
(orthogonality) are not applicable anymore. Rodolà et al. [2017] showed that for each “partial” eigen-
function (i.e., each eigenfunction of a partial shape), there exists a corresponding “full” eigenfunction
(i.e., some eigenfunction of the full shape). The problem then reduces to finding alignment in k
dimensional eigen space that is achieved by optimizing for a new basis on one shape only and keeping
the other fixed to the standard Laplacian eigenfunctions. Due to this coupling, the new basis functions
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will behave consistently resulting in almost perfectly diagonal C even in the absence of a perfect
isometry. Mathematically, it is written as follows:

min
X

∥∥Ar −X>B
∥∥2 + off(X>ΛX), (2)

where Ar contains the r × k submatrix of Ar (the first r rows of matrix Ar) and X of size k × r is
a transformation matrix between the two eigen spaces that stores the coefficients of desired linear
combination. Λ is a diagonal matrix of the first k eigenvalues of partial shape. The second term
in Eq. (2) is a regularizer on X that ensures that resulting eigen basis functions on partial shape
minimize the Dirchelet energy on its Laplacian Beltrami operator ∆. The value of r is estimated from
the spectrum of partial and full shape as follows: r = max

kp

i=1{i | λ
p
i < max

kf

j=1 λ
f
j } after setting

kp = kf = 60 where f denotes the full shape and p denotes the partial one. We upper bound the rank
obtained by 40.

The method of Litany et al. [2017b] obtains the descriptor function matrixA and B using precomputed
SHOT descriptors. Besides, it constrains X to be an orthogonal matrix and thus optimize it using
manifold optimization solver on Stiefel Manifold. However, we do not impose any orthogonality
constraint on X and optimize Eq. (2) differently since our descriptor functions are PointNet ++
based and need to be learned simultaneously. So, instead of optimzing over X, we are optimizing the
functional over X, A and B.

min
X,A,B

∥∥Ar −X>B
∥∥2 + off(X>ΛX), (3)

We split the functional in Eq. 3 in two parts and first optimize for X by solving
∥∥Ar −X>B

∥∥2 with
a simple linear system for which the derivatives can be computed in closed form. Given this optimal
X, we then impose the loss on X by computing the second part of Eq (3) and use this unsupervised
loss to backpropagate gradients to learn the appropriate descriptor functions. Note that for partial
matching this loss term is the only one we use, whereas in the full shape matching setting we use a
more powerful loss described in Section 4.4.

Implementation We implemented our method in TensorFlowAbadi et al. [2015]. We train our
network with a batch size of 8 shape pairs for 10000 steps. We use a learning rate of 1e−4 with Adam
optimizer. During training, we randomly sample 4000 points from each shape while training with
Surreal dataset whose shapes contain 7000 points each. For other datasets such as Scape and Faust
remesh, that contains roughly 5000 points each, we randomly sample 3000 points during for training.
Since partial shape dataset contains very limited number of shapes, we describe its experimental
setup later in Section 5.3. For a faircomparison with some baseline methods, we use a very recent
and efficient refining algorithm, called ZoomOut Melzi et al. [2019] based on navigating between
spatial and spectral domains while progressively increasing the number of spectral basis functions.

5 Results

This section is divided into three subsections where each provides a separate evaluation of our
contributions. Section 5.1 shows the experimental comparison of our weakly supervised approach
with fully supervised state-of-the art methods for near-isometric shape matching. Section 5.2
demonstrates that weak rigid alignment of datasets, low number of Laplacian eigen basis and
enforcing structural properties of a map suffice to obtain excellent results across a variety of loss
functions. Finally, Section 5.3 demonstrates the effectiveness of our novel partial shape matching
framework. We evaluate all results by reporting the per-point-average geodesic distance between the
ground truth map and the computed map. All results are multiplied by 100 for the sake of readability.

5.1 Near-isometric Shape Matching

In this section we evaluate our method for complete (full to full) near isometric shape matching.
We compare our method with state-of-the-art approaches while focusing especially on the the very
recent functional map-based technique Donati et al. [2020], which was shown to outperform existing
competitors.
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Table 1: Comparative results (×100) of the different methods on FAUST and SCAPE remesh datasets.

Method \ Dataset F S F on S S on F
SURFMNet 15. 12. 32. 32.
SURFMNet+icp 7.4 6.1 19. 23.
Unsup FMNet 10. 16. 29. 22.
Unsup FMNet+pmf 5.7 10. 12. 9.3
FMNet 11. 17. 30. 33.
FMNet+pmf 5.9 6.3 11. 14.
3D-CODED 2.5 31. 31. 33.
GeomFmap 3.1 4.4 11. 6.0
GeomFmap +zo 1.9 3.0 9.2 4.3
Ours 3.6 6.2 11 6.2
Ours + zo 1.9 2.6 8.0 4.3

Table 2: Comparative results (×100) of the different methods when trained on the SURREAL dataset
and tested on remeshed FAUST and SCAPE shapes.

Method \ Dataset F S
GeomFmap +Zo 2.5 9.2
3D-CODED 4.9 6.0
Ours 5.2 7.5
Ours+zo 2.5 4.5

Datasets For a fair comparison with Donati et al. [2020], we follow the same experimental setup
and test our method on a wide spectrum of datasets: first, the re-meshed versions of FAUST dataset
Bogo et al. [2014] and the SCAPE Anguelov et al. [2005], made publicly available by Ren et al. Ren
et al. [2018]. Lastly, we also use the training dataset of 3D-CODED, consisting in 230K synthetic
shapes generated using SURREAL Varol et al. [2017] with the parametric model SMPL introduced
in Loper et al. [2015]. We use a subset of it for training purposes to compare the generalization ability
of different methods to changes in connectivity and triangulation. This is achieved by training on this
synthetic data and testing on re-meshed datasets such as FAUST and SCAPE.

Baselines We compare our method to several state of the art methods: the first category includes
a variety of unsupervised deep functional maps proposed recently with SHOT descriptors. Second
category includes supervised methods that directly learn from 3D data. This includes the supervised
template based approach of 3D-CODED Groueix et al. [2018] as well as the recent work GeomFmap
Donati et al. [2020]. All baseline results are taken from Donati et al. [2020]. In the case of SHOT
based deep functional maps Litany et al. [2017a], Halimi et al. [2019], Roufosse et al. [2019], all
results are invariant by any rigid transformation of the input shapes and therefore, no alignment is
required. For a fair comparison with other methods, we show our results with and without ZoomOut
Melzi et al. [2019] refinement, referred to as ZO. For conciseness, we refer to our method as Ours in
the following text. We compare these different methods in Table 1.

Generalization Experiments Following the standard protocol, we split FAUST re-meshed and
SCAPE re-meshed into training and test sets containing 80 and 20 shapes for FAUST, and 51 and
20 shapes for SCAPE. F and S in Table 1 shows the results for training and testing on same dataset,
FAUST and SCAPE, respectively whereas F on S means trained on FAUST and tested on SCAPE. In
Table 2, results are shown with the SURREAL dataset from which we sample 100 shapes for training
and test the trained models on test sets of FAUST re-meshed, SCAPE re-meshed. We compare
with 3D-CODED and GeomFMap since they outperform every other method and learn from raw
3D geometry. We report baseline numbers from Donati et al. [2020] which report performance of
different methods by varying the size of training set from few hundred to thousands. We pick the
best results obtained with any number of shapes. All results are multiplied by 100 for the sake of
readability. We also report results without ZoomOut refinement.
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Table 3: Comparative results of the different loss functions when trained with our framework on
Surreal dataset and tested on FAUST and SCAPE remesh.

Method \ Dataset F S
GeomFap+zo 2.5 9.2
Unsup FMNet loss + Ours 6.3 7.7
Unsup FMNet loss + Ours +zo 4.4 5.2
GeomFap loss + Ours 5.0 7.7
GeomFap loss + Ours +zo 2.7 4.6
Ours 5.2 7.5
Ours +zo 2.5 4.5

Results and Discussion As evident in Table 1, our method performs on par with the fully supervised
approaches such as 3D-CODED Groueix et al. [2018] and GeomFMap Donati et al. [2020]. We
observe substantial gains over supervised approach in Table 2. We obtain remarkable performance
on the SCAPE dataset which is shown to be very challenging at test when trained with any other
dataset. On FAUST, we are comparable with GeomFMap even though it is trained with ground truth
correspondences.

We would like to stress that baselines such as 3D-CODED and GeomFMap require hundreds of
SURREAL shapes, 2000 for 3D-CODED, in order to obtain reasonable results on SCAPE whereas
we obtain high quality results with 200 percent improvement over GeomFMap with as low as 100
and 50 shapes. Please see supplement on the effect of varying the training size. We stress that no
other method is able to achieve such a generalization with this low number of shapes. We attribute
our superior results over GeomFmap to a range of factors. First, in contrast to our unsupervised loss,
GeomFmap uses a supervised loss without adequate regularization that leads to severe overfitting
on challenging datasets with different poses such as SCAPE. This underscores the importance of
enforcing structural properties of functional map in any loss function. Third, GeomFmap achieves
a consistent forward facing direction with data augmentation and ground truth functional map
supervision, whereas we align it manually. These experimental results confirm our findings that the
devil in non-rigid shape matching lies in approximate rigid alignment and such weak supervision is
equivalent to having supervised ground truth correspondence as we show next.

5.2 Deep Functional Maps with any Loss Function

The goal of this section is to unpack the minimum and sufficient ingredients of a deep functional map
pipeline such that it leads to unification of all the recent work under these minimum and sufficient
conditions. To this end, we test one representative deep functional map each from supervised setting
and unsupervised setting with different loss functions. We optimize their loss functions with our
PointNet++ feature extractor with low eigen basis (30) and our regularizers in both functional map
pipeline and discard any other regularizer or feature extractor as proposed in these works. We train
on SURREAL dataset from which we sample 100 shapes for training and test the trained models on
test sets of FAUST re-meshed, SCAPE re-meshed.

Unsup FMNet loss + Ours Halimi et al. [2019] is an unsupervised approach that uses a soft
correspondence based loss with geodesic matrix. Note that in their paper, Unsup FMNet relies on the
SHOT descriptor that we replace with a PointNet++ feature extractor. We use their unsupervised loss
in addition to our regularization terms.

GeomFmap loss + Ours We also evaluate Donati et al. [2020], a supervised approach where the
ground truth functional map is computed in the spectral domain. We use this supervised loss function
but discard their regularization proposed to alleviate overfitting. We also discard their feature extractor
and do not perform any data augmentation. We sample 6000 vertices randomly for each shape as
more vertices should lead to a better ground truth functional map estimation.

GeomFmap simply reports the performance of Donati et al. [2020] without any modifications.

Results and Discussion We summarize the findings in Table 3. Remarkably, we obtain state of
the art results with both loss functions. In particular, GeomFmap supervised spectral loss when
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Table 4: Comparative results on partial Shrec benchmark

Method \ Dataset Holes
Litany et. al 16
Ours 13

optimized with our framework leads to 200 percent increase in accuracy on the challenging SCAPE
dataset. This shows the generalization capability of our framework since GeomFmap already contains
a feature extractor and a regularization layer especially designed to reduce overfitting which evidently
are not sufficient. Similar performance boost is observed with Unsup FMNet on both datasets. It
must be noted that memory footprint/training time of Halimi et al. [2019] is 50 times more as it
requires either geodesic matrices to fit to RAM or load them on the fly for each pair. Overall, these
results demonstrate the usage of low laplacian eigen basis, regularization by enforcing basic structural
properties of map under weak supervision suffice to obtain state-of-the-art results with different
loss functions. In the supplement, we show empirically that all three conditions are necessary and
exclusion of anyone results in inferior performance.

5.3 Partial Shape Matching

Finally, we quantitatively evaluate our method in the partial matching scenario on the challenging
SHREC’16 Partial Correspondence benchmarkCosmo et al. [2016]. The dataset is composed of 200
partial shapes (from a few hundred to 9K vertices each) belonging to 8 different classes (humans and
animals), undergoing nearly-isometric deformations in addition to having missing parts of various
forms and sizes. Each class comes with a “null” shape in a standard pose which is used as the full
template to which partial shapes are to be matched. The dataset is split into two subsets, namely cuts
(removal of a few large parts) and holes (removal of many small parts).

Experimental Setup The dataset contains several shapes whose number of points range from few
hundreds to 2000. We use some of these shapes as a validation set and separate them from training
or test set. Since the number of overall shapes are not enough in each subset for a learning based
method to train and test separately, we first split each subset randomly into train and test and then
combine the training set of both holes and cuts subset to create our training data. We show results
on holes dataset for test as it is shown to be more challenging than cuts in Litany et al. [2017b]. We
provide results on cuts in supplement. Our loss function for partial shape matching does not contain
any hyperparameters. Thus, we use validation set to only validate the training iterations. We consider
Litany et al. [2017b] as our main baseline as it is considered state of the art for partial shape matching.
Remark that no existing functional maps learning-based approach has yet been proposed for partial
non-rigid shape matching.

Results and Discussion We present our findings on partial shape matching in Table 4. Note that the
method of Litany et al. [2017b] is not learning based but relies on expensive manifold optimization
for every pair of shapes at test time. In contrast our method obtains a correspondence directly with
pre-trained features and without the need for any test time optimization.

6 Conclusion and Future Work

We presented a novel weakly supervised method based on the functional map representation for
both full and partial shape matching. Our main observation is that weak supervision in the form
of approximately rigidly aligned input data is sufficient for learning powerful features to solve the
non-rigid correspondence problem from raw data. Moreover, we establish that the key to cross dataset
generalization lies in working with low number of eigen basis and enforcing very basic structural
properties of a functional map. Our method for partial shape matching is also the first approach
towards learning partial functional map and is of independent interest. We believe that this method
will set the future direction of research, especially towards simpler techniques and weak supervision,
in both near isometric as well as partial shape matching.
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8 Broader Impact

Shape matching is a fundamental problem that arises in many areas of science and engineering from
statistical shape analysis, creation of virtual avatars, medical imaging (for instance for detecting
anomalies, and performing follow-up analysis) as well as other areas such as archeology and palaeon-
tology (for comparing artefacts and anatomical features) among others. Efficient algorithms for
solving the shape correspondence problem, therefore have immediate impact in those areas facilitating
tedious manual intervention and requirements for expert knowledge, which are often not available.
Our approach which achieves state-of-the-art results on challenging benchmarks can immediately
be adapted and tested in such diverse scenarios. This is particularly true as our method does not
place any assumptions on the shape category (e.g., not being restricted to only human shapes as some
previous approaches), is efficient and fully automatic. We believe that the observations made in our
work can also lead to new insights in other areas including graph matching and machine translation,
where data is often represented as point clouds in some embedding space.
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