
HAL Id: hal-02871989
https://hal.science/hal-02871989

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Software-Defined heterogeneous vehicular networks:
Taxonomy and architecture

Ahmed Alioua, Sidi-Mohammed Senouci, Samira Moussaoui, Hichem
Sedjelmaci, Abdelwahab Boualouache

To cite this version:
Ahmed Alioua, Sidi-Mohammed Senouci, Samira Moussaoui, Hichem Sedjelmaci, Abdelwahab
Boualouache. Software-Defined heterogeneous vehicular networks: Taxonomy and architecture. 2017
Global Information Infrastructure and Networking Symposium (GIIS), Oct 2017, Saint Pierre, France.
pp.50-55, �10.1109/GIIS.2017.8169805�. �hal-02871989�

https://hal.science/hal-02871989
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Abstract— Heterogeneous vehicular networks (HetVNets) are
a promising approach to meet the various communication
requirements of vehicular networks’ services using a variety of
available access networks. However, due to their inherited
characteristics, HetVNets are rigid, difficult to manage and suffer
from a lack of programmability, flexibility, and scalability. In
this paper, we first highlight the limits of current HetVNet
architectures and show what the emerging software-defined
networking (SDN) paradigm can bring to overcome these
limitations with a focus on some use cases. We also provide a
taxonomy of existing software-defined heterogeneous vehicular
networks architectures and discuss their limits. Based on that, we
continue by proposing a new SDN-based architecture for
HetVNet. It is a cluster-based architecture with a semi-
centralized hierarchical control and an efficient fall back
recovery mechanism, that functions in both infrastructure-less
and infrastructure-based covered vehicular scenarios. Finally, we
demonstrate the feasibility and the efficiency of the proposed
architecture compared to the related SDN-based HetVNet
architectures through simulation results.

Keywords—Heterogeneous VANET; Software Defined

Networking; Distributed Controllers; Mobile Multi-Controllers.

I. INTRODUCTION

Heterogeneous vehicular network (HetVNet) [1] is a
promising approach that integrates different access networks
such as DSRC and cellular networks to reduce the deployment
cost, support the large coverage, and meet the various quality-
of-service (QoS) communication requirements of vehicular
services. However, the efficient management of HetVNets is
still a hard task to perform due to the inherited characteristics
of vehicular networks such as high mobility, dynamic topology
and the intermittent nature of wireless connections. Indeed,
current HetVNet architectures suffer from a lack of
programmability, flexibility and scalability [2] to efficiently
deal with these increasing challenges. Thus, a new open and
flexible HetVNet architecture becomes an absolute requirement
to allow an efficient utilization of vehicular resources.

Software-Defined Networking (SDN) is among the
emerging network architecture paradigms in the last few years.
Originally designed for wired networks, SDN has known a
phenomenal success both in academia and industry. SDN is
based on: (i) a physical separation between the control plane
and the data plane, and (ii) a logically centralized control and

intelligence in a software controller. OpenFlow [3] is the most
utilized standard for the communication between the control
plane and data plane. It defines two kinds of networks
equipment: OpenFlow controllers, which centralize all the
network control functions and OpenFlow vStwichs, which only
perform data packet forwarding functions. Each vSwitch has a
flow table that contains controller flow entries. The controller
handles the vSwitchs by formulating flow rules and installing
corresponding entries in the flow table. A secure channel is
used to connect the controller and corresponding vSwitchs.

Given the growing popularity of SDN, researchers are
increasingly exploring the possibility of integrating SDN in
mobile wireless networks and more massively into cellular
mobile networks (e.g., 4G/5G). Cellular networks are largely
utilized in HetVNet to provide large coverage and high
throughput to vehicular users. This brings new challenges as
the heterogeneity of wireless infrastructures. With unified SDN
network virtualization and abstraction, the integration of
heterogeneous network technologies in vehicular networks
became simple and transparent. Indeed, SDN promises to bring
flexibility, scalability, and programmability for vehicular
architectures, which can simplify the network management,
reduce the cost and improve the performance of HetVNet. In
this paper, we first highlight the limits of current HetVNet
architectures and show how SDN paradigm can bring as a new
solution to overcome these limitations with a focus on some
use-cases. We also provide a taxonomy of existing software-
defined vehicular architectures and discuss their limits. Based
on this discussion, we continue by proposing a new SDN-based
architecture for HetVNet. It is an agile cluster-based
architecture adapted to both infrastructure-less and
infrastructure-based scenarios. Finally, we demonstrate the
feasibility and the efficiency of the proposed architecture
compared to the related SDN-based HetVNet architectures via
the simulation results.

II. SOFTWARE-DEFINED IN HETEROGENEOUS VEHICULAR
NETWORK: OVERVIEW AND TAXONOMY

In this section, we briefly review the limits of existing
HetVNets architectures, present benefits of integrating SDN
paradigm in vehicular networks, describe some use cases and
discuss a taxonomy of software-defined vehicular solutions.

Ahmed Alioua∗, Sidi-Mohammed Senouci∗∗, Samira Moussaoui∗, Hichem Sedjelmaci∗∗, and Abdelwahab
Boualouache* ∗Department of Computer Science, RIIMA laboratory, USTHB University, Bab Ezzouar, Algiers, Algeria ∗∗DRIVE EA1859, Univ. Bourgogne Franche-Comte, 58000, Nevers, France

Email: aalioua@usthb.dz, Sidi-Mohammed.Senouci@u-bourgogne.fr, smoussaoui@usthb.dz, sid-ahmed-

hichem.sedjelmaci@u-bourgogne.fr, aboualouache@usthb.dz

Software-Defined Heterogeneous Vehicular
Networks: Taxonomy and Architecture

1

A. Current Heterogeneous Vehicular Architecture Limitations

Although the popularity of current HetVNet architectures
[1], several limitations still exist. In addition to the
heterogeneity of existing network infrastructures which causes
challenges in network management and integration [4], we can
cite for example, (i) the lack of scalability: it is very difficult to
deploy services on a large scale, very dense and highly
dynamic topology such as vehicular networks [2], (ii) the lack
of intelligence: the heterogeneity of the vehicular equipment
and their characteristics such as no programmability and the
dependency to providers in development make these
architectures rigid and difficult to manage, and (iii) the lack of
flexibility and adaptability: given the diversity of deployment
environments and the heterogeneity communication
technologies, it is difficult to select the adequate technology to
use according to the actual context and the fast changing of
network parameters. These constraints limit the system
functionality, slow down the creativity and often lead to the
under-exploitation of network resources. Indeed, the solutions
offered by these architectures are generally adapted only for a
specific context or particular situation.

B. SDN Benefits for Heterogeneous Vehicular Networks

SDN has emerged as an attractive approach to improve the
flexibility, programmability, efficiency and scalability of
current network architectures. In addition, to the generic
advantages that it brings to both wired and wireless networks,
SDN keeps some unique benefits especially adapted to
vehicular networks. Indeed, with the global awareness of
network topology provided by the logically centralized control,
it becomes easy to efficiently allocate all types of network
resources (e.g., bandwidth, spectrum, power transmission, etc.).
In one hand, the performance of existing vehicular
architectures can be enhanced and better exploited by adapting
the deployment of the most suitable solutions for each specific
situation and adjusting the system parameters according to the
actual context. In the other hand, with virtualization and
abstraction that SDN brings, the integration of heterogeneous
network technologies in vehicular networks becomes simple
and transparent. In the following, we describe some use-cases
that can be enhanced by software-defined HetVNets:

 SDN-based global dynamic map: in traditional
vehicular networks, vehicles collaborate with each other
and exchange different information collected by their
sensors to build a local dynamic map (LDM) on
network conditions. This LDM contains static
information such as road signs and dynamic information
such as traffic and weather conditions. Integrating SDN
into vehicular networks allows to the controller to
centrally manage and maintain a global dynamic map

(GDM) by collecting and filtering distributed vehicle
LDMs. This allows the controller to get and construct a
global dynamic view over the whole (or a part) of the
network state, which can be used to make more
informed and refined decisions as a reply to vehicle
requests.

 SDN-based offloading: Offloading consists of the
transfer of a task to an external entity when it cannot be
performed locally due to the lack of necessary
resources. In traditional vehicular networks, the
offloading decision is made based on a limited
knowledge of the networks. Indeed, this decision is
based, for example, on historical network parameters
[5], which cannot reflect the current network state and
even results in a non-beneficial decision. Besides, in the
SDN-based vehicular networks, using the SDN
controller centralized global view can dynamically
make better profitable offloading decisions based on
real-time networks state, which is more suitable to
user’s requirements and adapted to current network
conditions.

C. Taxonomy Discussion on Software-defined Heterogeneous

Vehicular Networks

Several software-defined heterogeneous vehicular networks
(SDVN) architectures have recently been proposed. Table 1
gives a short overview of these architectures considering main
characteristics such as the number of used controllers and the
support from the infrastructure. Based on the number of used
SDN controllers, we can classify these architectures into two
categories: (i) Uni-controller architectures [2, 4, 6, 7, 8]: These
architectures use a unique controller that can be installed
somewhere in the fixed infrastructure to handle all the network
demands, and (ii) Multi-controllers architectures [9-12]: These
architectures use multiple controllers installed over the fixed
infrastructure, where each one handles a part of the network.

The use of a unique controller in such dynamic, large, and
dense networks as vehicular networks is challenging for several
reasons we can cite for example (i) a serious risk of controller
bottleneck confronting to the huge number of requests, (ii) a
high installation delay of flow rules is generated especially
when the distance between vehicles and the controller
surpasses hundreds of kilometers, and (iii) omnipresent risks of
reliability and security are raised especially with such
intermittent and unstable nature of wireless connections.
Therefore, the use of multiple controllers is more appropriate
with heterogeneous vehicular networks. Indeed, some
architectures [8-12] of the second category propose to install
controllers as nearest as possible to vehicles in order to obtain
an acceptable end-to-end delay and better, some works in [2, 4,

TABLE 1
COMPARISON BETWEEN SOFTWARE-DEFINED HETVNET ARCHITECTURES.

2

10, 12] use fall back recovery system to ensure the availability
of service if one of the controllers fails.

However, as we can notice in Table 1, all the available
solutions are infrastructure-based architectures, i.e., they can
only operate on the infrastructure-covered zones. This
assumption seems strong one, especially with the first steps
deployment of HetVNets, where the total coverage is far to be
achieved. Motivating by this strong assumption, we tended to
propose an architecture that can operate not only in
infrastructure-covered zones but also in uncovered zones.
Indeed, the proposed architecture, presented in the next section,
is a semi-centralized SDN-based HetVNet architecture that
supports heterogeneous communications: vehicle to vehicle
(V2V), vehicle to infrastructure (V2I), infrastructure to
infrastructure (I2I), and infrastructure to Cloud (I2Cloud).

III. PROPOSED ARCHITECTURE

In this section, we present a novel flexible semi-centralized
architecture for an SDN-based architecture for HetVNets,
called cluster-based software defined heterogeneous vehicular
networks (CSDHVN). It is based on a combination of different
promising concepts that aim to: (i) extend traditional vehicular
network resources capabilities by integrating already existing
and largely deployed cellular networks (4G/5G) and high
resources Cloud computing, (ii) partition and reorganize the
network through clustering techniques to reduce interferences
and overhead, and better support scalability, density and
mobility, and (iii) use the emerging concept of SDN with
hierarchically distributed multi-controllers to mitigate network
heterogeneity and introduce flexibility, programmability, and
facilitate the network management. The control in this
architecture is semi-centralized: centralized in covered areas
(i.e., infrastructure-based zones) where the coverage of the
fixed infrastructure is available, and distributed multi-hops in
uncovered areas (i.e., infrastructure-less zones) where the
coverage of the fixed infrastructure is not available. The
description of this architecture is detailed in below.

A. System Architecture

The basic idea of our architecture, as illustrated in Fig. 1, is
summarized as follows: (i) based on the availability or not of
fixed infrastructure coverage, we divide the network into two
zones: covered infrastructure-based areas and uncovered
infrastructure-less areas, (ii) partition and organize the network
topology according to certain criteria (e.g., mobility, position,
etc.) into two hierarchical clusters: static level-1 clusters,

which are formed during the installation of cellular base
stations. They have a size equals to the radio range of a base
station (LTE\eNodeB) and dynamic level-0 clusters, which are
periodically formed and updated using clustering algorithms
such as in [13] for covered areas and in [14] for uncovered
areas. Level-0 clusters have a maximal size equals to the IEEE
802.11p radio range and regroup vehicles which are close to
each other and have similar characteristics (e.g., direction,
velocity, position, etc.), (iii) deploy a local mobile distributed
controller on each level-0 cluster-head, (iv) deploy a central
distributed controller on each level-1 cluster-head (i.e., cellular
base stations such as eNodeB), and (v) deploy a global
controller on the Cloudlet server. The architecture installs the
multi-controllers in the network edge, physically close to
vehicles to ensure a short end-to-end response delay and
support delay-sensitive (safety) services requirements

The main novelty of the proposed architecture is that it
provides a complete and flexible architecture with hierarchical
multi-controllers that perform in both covered areas, in which
the control is centralized through three hierarchical distributed
multi-controllers and uncovered areas, in which the topology is
structured in clusters and the control is multi-hops distributed
through the local mobile controllers at cluster-heads. In this
case, local controllers collaborate and communicate with each
other to construct a backhaul for system communications. The
uncovered areas can also be used as a fallback recovery
mechanism in covered scenarios when the connection with
central controllers is lost. The proposed architecture is agile,
when a vehicle leaves a covered zone to an uncovered zone and
vice versa the system switches between an infrastructure-based
centralized control and an infrastructure-less distributed control
to ensure the continuity of service in a transparency way.

To allow SDN to operate on traditional HetVNet
equipment, the architecture proposes to add an SDN module
that offers necessary hardware (i.e., computing and storage
unit) and software (i.e., SDN operating system, hypervisors and
network services, etc.) resources to enable these equipment to
support SDN, as illustrated in Fig. 1. To avoid adding new
materials and limit the hardware modifications, the architecture
prefers to reuse, if possible, the available computing and
storage resources of the network equipment. The SDN
architecture of our architecture is described in below.

Fig. 1. Cluster-based software-defined for a heterogeneous vehicular network.

3

B. SDN Architecture

Our architecture is based on the three SDN layers:

1. Data plane layer: It consists of all network equipment
that only performs the collection and the forwarding of
data information, i.e., mobile vehicles cluster members,
roadside units (RSUs) and all network components
between the base station and the cloudlet server. The
data plane is divided according to the compounds’
mobility into two types:

- Fixed data plane: It is known as fixed because it
consists of static RSUs, which provides a support for
V2V communications when two neighboring vehicles
cannot communicate with each other, and all the fixed
network forwarding equipment between the cellular
base station and the cloudlet server.

- Mobile data plane: It is known as mobile because it
consists of mobile vehicles level-0 cluster members.
A vehicle compatible SDN in our architecture (or
simplify a vehicle) is a traditional mobile vehicle with
the SDN module to support SDN functionalities, as
illustrated in Fig. 1. SDN vehicles ensure data
information forwarding and the monitoring and the
collect of vehicle parameters through a software local
collect and monitoring agent. This monitored
information is periodically communicated to the local
controller. A vehicle can sometimes play the role of a
local controller when is selected as a cluster-head. The
architecture of vehicle compatible SDN is deployed at
the facilities layer of the standard OSI CALM
(communication architecture for land mobile), which
assumes the existence of multiple wireless interfaces
in a vehicle. Thus, each vehicle has a flow table and
has several communication interfaces: (i) two
broadband wireless interfaces (i.e., IEEE 802.11p),
one for the V2V control communications between
cluster members and the local controller and the other
for the data communications between vehicle cluster
members and, (ii) a wideband wireless cellular
interface (LTE/4G) used for V2I communications
between local controllers and central controllers.

2. Control plane layer: It consists of all network
equipment that centralizes the network intelligence
and control, i.e., multiple controllers at the cluster-
head, the eNodeB and the cloudlet. In our
architecture, software controllers are deployed as
virtual machines on a hypervisor at the SDN module.
Each controller maintains a global view of the
network state of the zone that it controls. The control
plane is divided according to the mobility of its
compounds into two types:

- Fixed control plane: It is known as fixed because it
consists of all controllers hosted on the fixed
infrastructure, i.e., the global controller installed on
the Cloudlet server and the central controllers
installed on cellular base stations (eNodeB). An
eNodeB compatible SDN (or simplify eNodeB) in
our architecture is a traditional eNodeB with an

additional SDN module to support SDN
functionalities. Each eNodeB has several
communications interfaces: (i) two wired interfaces,
an X2 interface that connects to other eNodeB and
allows I2I communications between central
controllers, and an Internet interface TLS (Transport
Layer Security) used for I2Cloud communications
between central controllers and the global controller,
and a wideband wireless cellular interface, used for
infrastructure to vehicle (I2V) communications
between the central controllers and the local
controllers, as illustrated in Fig. 1.

- Mobile control plane: It is known as mobile because
it consists of the local controllers deployed on the
mobile vehicles cluster heads.

The proposed architecture uses a hierarchy of multiple
controllers to alleviate high-level controllers by delegating a
part of general responsibilities to lower controllers, reduce the
high-density overhead and conserve bandwidth by sending to
higher controllers only out-capabilities requests in an
aggregated and compressed message. The proposed
architecture defines three hierarchical controllers:

a. Global controller: It is the level-2 controller
deployed on the cloudlet server. The global controller
has a very powerful storage, calculation capabilities
and a global view of the whole network topology. It
only intervenes to handle very specific requests that
require a global view of the whole network, very large
resources in terms of computing/storage and
operations which are bandwidth-sensitive or that
cannot be served by lower-level central controllers.
The global controller is considered as level-2
controller and represents the master of whole network
controllers.

b. Central controllers: They are level-1 distributed
controllers deployed on cellular base stations
(eNodeB) with powerful storage and calculation
capabilities. Central controllers handle specific
operations that require a central view, large
computing/storage resources, operations that are not
delay-sensitive or operations that cannot be deserved
by lower-level local controllers. They are considered
as level-1 controllers and act as a slave of the global
controller, a master for correspondent local controllers
and equivalent to each other.

c. Local mobile controllers: They represent level-0
distributed controllers deployed on the SDN module
on each vehicle, i.e., the local controller is initially in
a standby mode and activated only when its hosting
vehicle becomes a cluster head. Each local controller
has modest storage and calculation capabilities. Local
controllers deal with local general requests, delay-
sensitive requests and operations that do not need
large storage/computation resources. The local
controller is considered as a master in its domain, a
slave of its central controller and equivalent to its
local controller's neighbors. The local controller is the

4

unique controller that intervenes in the covered and
uncovered scenarios.

3. Service and Applications layer: It contains all the
business applications installed on the controllers.

4. Communication interfaces: Currently there are
neither standardized SDN interfaces for directly
integrating SDN into HetVNets, nor an ad-hoc (no IP-
oriented) version of OpenFlow protocol compatible
with security applications features of HetVNet. Thus,
we propose to use a customized version of OpenFlow
protocol adapted to HetVNet scenarios as southbound
API to communicate between the control plane and
the data plane and to use a customized interface as
Northbound API to communicate between the control
plane and applications [4].

C. Fall Back Recovery Mechanism

Among fall back recovery mechanisms for SDN in
HetVNet available in the literature, one initiative [2] proposes
to switch to the traditional vehicular networks when the unique
controller fails. This assumption may increase the complexity
of software and hardware design [12]. Another initiative [4]
uses a trajectory prediction to pre-install entries in the flow
table, which can be used if the controller fails. But, this
initiative does not envisage any solution if the failure lasts after
the end of the entry lifetime. In [12], the authors use two types
of hierarchical controllers, and if the high-level controller fails,
the low-level controllers collaborate together to ensure the
service. This solution only considers the high-level controller
failure and does not support low-level controller failures.

Our architecture is based on the use of a hierarchy of
distributed multi-controllers. As a fallback recovery
mechanism, we propose to permanently anticipate the possible
failure of each controller at all levels and prepare the recovery
scenario in advance while exploiting intelligently and
efficiency the hierarchy of controllers. Therefore, a list of
candidate recovery controllers is permanently managed by each
local controller. The identifier (id) of the best candidate is
periodically communicated to all level-0 cluster members and
stored in a newly added recovery field in the flow table.
Therefore, if an upper controller fails (level-2, resp. level-1),
the architecture will switch to a multi-hops distributed control
scheme in which the controllers of the strictly lower level
(level-1, resp. level-0) takes over the service and collaborate
with each other to ensure service continuity. If a low-level
controller (level-0) fails, the pre-prepared recovery controller
will take over to ensure the service continuity. Vehicles can
directly start their requests to this recovery controller who is
the corresponding identifier is pre-installed in their flow tables.

IV. SIMULATION RESULTS

In this section, we present our simulation configuration and
results. The simulation scenario is implemented using the
network simulator NS3 [15] and the traffic mobility simulator
SUMO [16]. The main purpose of these simulations is to
demonstrate the reliability and the efficiency of the proposed
architecture and study the impact of the controller deployment
distance on the average flow rule installation time. For

simulation, we consider a simple HetVNet scenario similar to
that illustrated in Fig. 1, where the network topology is
deployed in 10000 x 10000 m area. The eNodeB is situated
1000 m far from the road. The node density is 100 vehicles.
Each vehicle has a velocity between 15 and 25 m/s and it is
equipped with a 4G cellular interface and an IEEE 802.11p
interface.

In the evaluation illustrated in Fig. 2, we simulate a
scenario where a vehicle moves passing by an uncovered road
segment where the connecting link with the central controller is
not reachable even because of obstacles (e.g., high building,
tunnel, etc.) or because of the absence of the fixed
infrastructure. Afterward, we evaluate how our architecture
(CSDHVN) with the multi-level hierarchical controllers reacts
to this situation. We compare the performance of the proposed
architecture with others SDVN infrastructure-based works in
[4-9], [11],[12] (we called, SDVN Infrastructure-based works),
that deploy the controller on the fixed vehicular infrastructure
according to the packet delivery ratio, which represents the
ratio of packets successfully received to the total sent.

Fig. 2. Effect of uncovered zones on packet delivery ratio.

Fig. 2 shows that just when the vehicle enters into the
uncovered infrastructure-less zone, the packet delivery ratio in
SDVN infrastructure-based works starts to decrease
dramatically and it still drops until the vehicle leaves the
uncovered zone and the connection with the controller is
established once again, after that, the system resumes a good
delivery ratio. Contrarily, our CSDHVN maintains a good
packet delivery ratio. This behavior can be justified by the fact
that in the related infrastructure-based SDVN solutions in [4-
9], [11], [12], the SDN controller is installed somewhere on the
fixed vehicular infrastructure and if the connection with this
controller is lost or it is unavailable, the service will be
interrupted due to the centralized control logic of SDN. More
efficient, our CSDHVN architecture ensures a good packet
delivery ratio even in the covered infrastructure-based zone or
in the uncovered infrastructure-less zone, thanks to the multi-
level hierarchical controllers and specially the local controller
on the cluster head vehicle that takes over to ensure the service
continuity when the connection with the controller on the fixed
infrastructure is lost. This evaluation demonstrates the
reliability and the efficiency of our CSDHVN architecture and
confirms that the consideration of infrastructure-less zone in
the design of SDVN architecture is primordial given the
negative effect that represents on the packet delivery ratio.

Uncovered
Infrastructure-less Zone

5

We study in the evaluation illustrated in Fig.3, the impact
of the physical distance of controller deployment from the
vehicles, on the flow rule installation time, which represents the
elapsed time since a vehicle requests the controller for a flow
rule and the time when it is installed in the flow table. Thus, we
focus on a scenario of a set of vehicles connected to a
controller and we varied the distance between the vehicles and
the controller for different vehicles number.

(a)

(b)
Fig. 3. Effect of Controller deployment distance on flow rule installation time.

Fig. 3 shows that the average flow rule installation time
increases with the increase of vehicles number and the
controller deployment distance. Also from Fig. 3. we can
conclude that to ensure a flow rules installation time sufficient
to satisfy the lower latency requirement of the most of
vehicular road safety applications (≤ 100 ms [1]) in such dense
networks as HetVNet, the SDN controller must be installed on
the edge of network, the nearest as possible from the vehicles
(no far than 5 km). Our CSDHVN architecture is based on
multi-level hierarchical controllers. The low-level controller
(local controller) is installed on the cluster head vehicle, no
more than 300 m far of vehicles and the second, central
controller, on the eNodeB (far about 1 km). This can ensure a
low flow rules installation time and better handles the delay-
sensitive and low latency road safety applications.

V. CONCLUSION

Based on the taxonomy discussion of SDN-based HetVNet
architectures, we conclude that the current general tendency
should be the use of multiple distributed controllers installed on
the edge of the network with an efficient fall back recovery
mechanism. Moreover, the uncovered infrastructure-less zones
should be considered in the design of SDN-based HetVNet
architectures. Consequently, we present in this paper a semi-
centralized flexible SDN-based HetVNet architecture with

hierarchical multi-controllers installed on the edge of the
network. Our SDN-based architecture is robust thanks to an
effective fallback recovery mechanism, and works in both
covered and uncovered areas. We also demonstrate the
feasibility and the efficiency of our proposed architecture
compared to the related SDVN infrastructure-based works
based on simulation results.

The implementation complexity and cost, the high mobility
of vehicles, and the dense network topology, rest open
challenges in front of SDN integration in VANETs. As future
work, we plan to perform more intensive experimentations to
proof the efficiency of the proposed architecture.

REFERENCES
[1] K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Zhou,

"Heterogeneous Vehicular Networking: A Survey on Architecture,
Challenges, and Solutions," in IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, 2015, pp. 2377-2396.

[2] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E. Cerqueira,
"Towards software-defined VANET: Architecture and services," 13th
Annual Mediterranean Ad Hoc Networking Workshop, 2014.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
2008, pp. 69–74.

[4] Z. He, J. Cao, and X. Liu, "SDVN: enabling rapid network innovation
for heterogeneous vehicular communication," in IEEE Network, vol. 30,
no. 4, July-August 2016, pp. 10-15.

[5] S. Nirjon, A. Nicoara, C.-H. Hsu, J. P. Singh, and J. A. Stankovic,
"Multinets: A system for real-time switching between multiple network
interfaces on mobile devices, " ACM Trans. Embed. Comput. Syst.,
vol.13, no. 4s, 2014, pp. 121:1–121:25.

[6] Y. C. Liu, C. Chen, and S. Chakraborty, "A Software Defined Network
architecture for GeoBroadcast in VANETs," IEEE International
Conference on Communications (ICC), London, 2015, pp. 6559-6564.

[7] X. Huang, J. Kang, R. Yu, M. Wu, Y. Zhang, and S. Gjessing, "A
Hierarchical Pseudonyms Management Approach for Software-Defined
Vehicular Networks," IEEE 83rd Vehicular Technology Conference
(VTC Spring), Nanjing, 2016, pp. 1-5.

[8] X. Wang; C. Wang, J. Zhang, M. Zhou, and C. Jiang, "Improved Rule
Installation for Real-Time Query Service in Software-Defined Internet
of Vehicles," in IEEE Transactions on Intelligent Transportation
Systems , vol.PP, no.99, 2016, pp.1-11.

[9] Q. Zheng, K. Zheng, H. Zhang, and V. C. M. Leung, "Delay-Optimal
Virtualized Radio Resource Scheduling in Software-Defined Vehicular
Networks via Stochastic Learning," in IEEE Transactions on Vehicular
Technology, vol. 65, no. 10, Oct. 2016, pp. 7857-7867.

[10] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, "Software defined
networking-based vehicular Adhoc Network with Fog Computing,"

IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ottawa, 2015, pp. 1202-1207.

[11] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, "Software-Defined
Networking for RSU Clouds in Support of the Internet of Vehicles,"
in IEEE Internet of Things Journal, vol. 2, no. 2, 2015, pp. 133-144.

[12] A. Kazmi, M. A. Khan, and M. U. Akram, "DeVANET: Decentralized
Software-Defined VANET Architecture," IEEE International
Conference on Cloud Engineering Workshop (IC2EW), Berlin, 2016.

[13] G. Remy, M. Cherif, SM. Senouci, and F. Jan, Y. Gourhant,
"LTE4V2X: LTE for a Centralized VANET Organization," IEEE
GLOBECOM’2011, Houston, Texas, 2011, pp. 5-9.

[14] G. Remy, M. Cherif, SM. Senouci, F. Jan, and Y. Gourhant, "LTE4V2X
- Collection, dissemination and multi-hop forwarding," IEEE ICC’2012,
Ottawa, Canada, 2012, pp. 10-15.

[15] Network simulator 3 (ns-3), http://www.nsnam.org
[16] Simulation of urban mobility (sumo), http://sumo-sim.org/.

6

