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Abstract— Heterogeneous vehicular networks (HetVNets) are 
a promising approach to meet the various communication 
requirements of vehicular networks’ services using a variety of 
available access networks. However, due to their inherited 
characteristics, HetVNets are rigid, difficult to manage and suffer 
from a lack of programmability, flexibility, and scalability. In 
this paper, we first highlight the limits of current HetVNet 
architectures and show what the emerging software-defined 
networking (SDN) paradigm can bring to overcome these 
limitations with a focus on some use cases. We also provide a 
taxonomy of existing software-defined heterogeneous vehicular 
networks architectures and discuss their limits. Based on that, we 
continue by proposing a new SDN-based architecture for 
HetVNet. It is a cluster-based architecture with a semi-
centralized hierarchical control and an efficient fall back 
recovery mechanism, that functions in both infrastructure-less 
and infrastructure-based covered vehicular scenarios. Finally, we 
demonstrate the feasibility and the efficiency of the proposed 
architecture compared to the related SDN-based HetVNet 
architectures through simulation results. 

Keywords—Heterogeneous VANET; Software Defined 

Networking; Distributed Controllers; Mobile Multi-Controllers. 

I. INTRODUCTION

Heterogeneous vehicular network (HetVNet) [1] is a 
promising approach that integrates different access networks 
such as DSRC and cellular networks to reduce the deployment 
cost, support the large coverage, and meet the various quality-
of-service (QoS) communication requirements of vehicular 
services. However, the efficient management of HetVNets is 
still a hard task to perform due to the inherited characteristics 
of vehicular networks such as high mobility, dynamic topology 
and the intermittent nature of wireless connections. Indeed, 
current HetVNet architectures suffer from a lack of 
programmability, flexibility and scalability [2] to efficiently 
deal with these increasing challenges. Thus, a new open and 
flexible HetVNet architecture becomes an absolute requirement 
to allow an efficient utilization of vehicular resources. 

Software-Defined Networking (SDN) is among the 
emerging network architecture paradigms in the last few years. 
Originally designed for wired networks, SDN has known a 
phenomenal success both in academia and industry. SDN is 
based on: (i) a physical separation between the control plane 
and the data plane, and (ii) a logically centralized control and 

intelligence in a software controller. OpenFlow [3] is the most 
utilized standard for the communication between the control 
plane and data plane. It defines two kinds of networks 
equipment: OpenFlow controllers, which centralize all the 
network control functions and OpenFlow vStwichs, which only 
perform data packet forwarding functions. Each vSwitch has a 
flow table that contains controller flow entries. The controller 
handles the vSwitchs by formulating flow rules and installing 
corresponding entries in the flow table. A secure channel is 
used to connect the controller and corresponding vSwitchs. 

Given the growing popularity of SDN, researchers are 
increasingly exploring the possibility of integrating SDN in 
mobile wireless networks and more massively into cellular 
mobile networks (e.g., 4G/5G). Cellular networks are largely 
utilized in HetVNet to provide large coverage and high 
throughput to vehicular users. This brings new challenges as 
the heterogeneity of wireless infrastructures. With unified SDN 
network virtualization and abstraction, the integration of 
heterogeneous network technologies in vehicular networks 
became simple and transparent. Indeed, SDN promises to bring 
flexibility, scalability, and programmability for vehicular 
architectures, which can simplify the network management, 
reduce the cost and improve the performance of HetVNet. In 
this paper, we first highlight the limits of current HetVNet 
architectures and show how SDN paradigm can bring as a new 
solution to overcome these limitations with a focus on some 
use-cases. We also provide a taxonomy of existing software-
defined vehicular architectures and discuss their limits. Based 
on this discussion, we continue by proposing a new SDN-based 
architecture for HetVNet. It is an agile cluster-based 
architecture adapted to both infrastructure-less and 
infrastructure-based scenarios. Finally, we demonstrate the 
feasibility and the efficiency of the proposed architecture 
compared to the related SDN-based HetVNet architectures via 
the simulation results. 

II. SOFTWARE-DEFINED IN HETEROGENEOUS VEHICULAR
NETWORK: OVERVIEW AND TAXONOMY 

In this section, we briefly review the limits of existing 
HetVNets architectures, present benefits of integrating SDN 
paradigm in vehicular networks, describe some use cases and 
discuss a taxonomy of software-defined vehicular solutions. 
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A. Current Heterogeneous Vehicular Architecture Limitations

Although the popularity of current HetVNet architectures
[1], several limitations still exist. In addition to the 
heterogeneity of existing network infrastructures which causes 
challenges in network management and integration [4], we can 
cite for example, (i) the lack of scalability: it is very difficult to 
deploy services on a large scale, very dense and highly 
dynamic topology such as vehicular networks [2], (ii) the lack 
of intelligence: the heterogeneity of the vehicular equipment 
and their characteristics such as no programmability and the 
dependency to providers in development make these 
architectures rigid and difficult to manage, and (iii) the lack of 
flexibility and adaptability: given the diversity of deployment 
environments and the heterogeneity communication 
technologies, it is difficult to select the adequate technology to 
use according to the actual context and the fast changing of 
network parameters. These constraints limit the system 
functionality, slow down the creativity and often lead to the 
under-exploitation of network resources. Indeed, the solutions 
offered by these architectures are generally adapted only for a 
specific context or particular situation. 

B. SDN Benefits for Heterogeneous Vehicular Networks

SDN has emerged as an attractive approach to improve the
flexibility, programmability, efficiency and scalability of 
current network architectures. In addition, to the generic 
advantages that it brings to both wired and wireless networks, 
SDN keeps some unique benefits especially adapted to 
vehicular networks. Indeed, with the global awareness of 
network topology provided by the logically centralized control, 
it becomes easy to efficiently allocate all types of network 
resources (e.g., bandwidth, spectrum, power transmission, etc.). 
In one hand, the performance of existing vehicular 
architectures can be enhanced and better exploited by adapting 
the deployment of the most suitable solutions for each specific 
situation and adjusting the system parameters according to the 
actual context. In the other hand, with virtualization and 
abstraction that SDN brings, the integration of heterogeneous 
network technologies in vehicular networks becomes simple 
and transparent. In the following, we describe some use-cases 
that can be enhanced by software-defined HetVNets: 

 SDN-based global dynamic map: in traditional 
vehicular networks, vehicles collaborate with each other 
and exchange different information collected by their 
sensors to build a local dynamic map (LDM) on 
network conditions. This LDM contains static 
information such as road signs and dynamic information 
such as traffic and weather conditions. Integrating SDN 
into vehicular networks allows to the controller to 
centrally manage and maintain a global dynamic map 

(GDM) by collecting and filtering distributed vehicle 
LDMs. This allows the controller to get and construct a 
global dynamic view over the whole (or a part) of the 
network state, which can be used to make more 
informed and refined decisions as a reply to vehicle 
requests. 

 SDN-based offloading: Offloading consists of the 
transfer of a task to an external entity when it cannot be 
performed locally due to the lack of necessary 
resources. In traditional vehicular networks, the 
offloading decision is made based on a limited 
knowledge of the networks. Indeed, this decision is 
based, for example, on historical network parameters 
[5], which cannot reflect the current network state and 
even results in a non-beneficial decision. Besides, in the 
SDN-based vehicular networks, using the SDN 
controller centralized global view can dynamically 
make better profitable offloading decisions based on 
real-time networks state, which is more suitable to 
user’s requirements and adapted to current network 
conditions. 

C. Taxonomy Discussion on Software-defined Heterogeneous

Vehicular Networks

Several software-defined heterogeneous vehicular networks
(SDVN) architectures have recently been proposed. Table 1 
gives a short overview of these architectures considering main 
characteristics such as the number of used controllers and the 
support from the infrastructure. Based on the number of used 
SDN controllers, we can classify these architectures into two 
categories: (i) Uni-controller architectures [2, 4, 6, 7, 8]: These 
architectures use a unique controller that can be installed 
somewhere in the fixed infrastructure to handle all the network 
demands, and (ii) Multi-controllers architectures [9-12]: These 
architectures use multiple controllers installed over the fixed 
infrastructure, where each one handles a part of the network. 

The use of a unique controller in such dynamic, large, and 
dense networks as vehicular networks is challenging for several 
reasons we can cite for example (i) a serious risk of controller 
bottleneck confronting to the huge number of requests, (ii) a 
high installation delay of flow rules is generated especially 
when the distance between vehicles and the controller 
surpasses hundreds of kilometers, and (iii) omnipresent risks of 
reliability and security are raised especially with such 
intermittent and unstable nature of wireless connections. 
Therefore, the use of multiple controllers is more appropriate 
with heterogeneous vehicular networks. Indeed, some 
architectures [8-12] of the second category propose to install 
controllers as nearest as possible to vehicles in order to obtain 
an acceptable end-to-end delay and better, some works in [2, 4, 

TABLE 1 
COMPARISON BETWEEN SOFTWARE-DEFINED HETVNET ARCHITECTURES. 
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10, 12] use fall back recovery system to ensure the availability 
of service if one of the controllers fails. 

However, as we can notice in Table 1, all the available 
solutions are infrastructure-based architectures, i.e., they can 
only operate on the infrastructure-covered zones. This 
assumption seems strong one, especially with the first steps 
deployment of HetVNets, where the total coverage is far to be 
achieved. Motivating by this strong assumption, we tended to 
propose an architecture that can operate not only in 
infrastructure-covered zones but also in uncovered zones. 
Indeed, the proposed architecture, presented in the next section, 
is a semi-centralized SDN-based HetVNet architecture that 
supports heterogeneous communications: vehicle to vehicle 
(V2V), vehicle to infrastructure (V2I), infrastructure to 
infrastructure (I2I), and infrastructure to Cloud (I2Cloud). 

III. PROPOSED ARCHITECTURE

In this section, we present a novel flexible semi-centralized 
architecture for an SDN-based architecture for HetVNets, 
called cluster-based software defined heterogeneous vehicular 
networks (CSDHVN). It is based on a combination of different 
promising concepts that aim to: (i) extend traditional vehicular 
network resources capabilities by integrating already existing 
and largely deployed cellular networks (4G/5G) and high 
resources Cloud computing, (ii) partition and reorganize the 
network through clustering techniques to reduce interferences 
and overhead, and better support scalability, density and 
mobility, and (iii) use the emerging concept of SDN with 
hierarchically distributed multi-controllers to mitigate network 
heterogeneity and introduce flexibility, programmability, and 
facilitate the network management. The control in this 
architecture is semi-centralized: centralized in covered areas 
(i.e., infrastructure-based zones) where the coverage of the 
fixed infrastructure is available, and distributed multi-hops in 
uncovered areas (i.e., infrastructure-less zones) where the 
coverage of the fixed infrastructure is not available. The 
description of this architecture is detailed in below. 

A. System Architecture

The basic idea of our architecture, as illustrated in Fig. 1, is
summarized as follows: (i) based on the availability or not of 
fixed infrastructure coverage, we divide the network into two 
zones: covered infrastructure-based areas and uncovered 
infrastructure-less areas, (ii) partition and organize the network 
topology according to certain criteria (e.g., mobility, position, 
etc.) into two hierarchical clusters: static level-1 clusters, 

which are formed during the installation of cellular base 
stations. They have a size equals to the radio range of a base 
station (LTE\eNodeB) and dynamic level-0 clusters, which are 
periodically formed and updated using clustering algorithms 
such as in [13] for covered areas and in [14] for uncovered 
areas. Level-0 clusters have a maximal size equals to the IEEE 
802.11p radio range and regroup vehicles which are close to 
each other and have similar characteristics (e.g., direction, 
velocity, position, etc.), (iii) deploy a local mobile distributed 
controller on each level-0 cluster-head, (iv) deploy a central 
distributed controller on each level-1 cluster-head (i.e., cellular 
base stations such as eNodeB), and (v) deploy a global 
controller on the Cloudlet server. The architecture installs the 
multi-controllers in the network edge, physically close to 
vehicles to ensure a short end-to-end response delay and 
support delay-sensitive (safety) services requirements 

The main novelty of the proposed architecture is that it 
provides a complete and flexible architecture with hierarchical 
multi-controllers that perform in both covered areas, in which 
the control is centralized through three hierarchical distributed 
multi-controllers and uncovered areas, in which the topology is 
structured in clusters and the control is multi-hops distributed 
through the local mobile controllers at cluster-heads. In this 
case, local controllers collaborate and communicate with each 
other to construct a backhaul for system communications. The 
uncovered areas can also be used as a fallback recovery 
mechanism in covered scenarios when the connection with 
central controllers is lost. The proposed architecture is agile, 
when a vehicle leaves a covered zone to an uncovered zone and 
vice versa the system switches between an infrastructure-based 
centralized control and an infrastructure-less distributed control 
to ensure the continuity of service in a transparency way. 

To allow SDN to operate on traditional HetVNet 
equipment, the architecture proposes to add an SDN module 
that offers necessary hardware (i.e., computing and storage 
unit) and software (i.e., SDN operating system, hypervisors and 
network services, etc.) resources to enable these equipment to 
support SDN, as illustrated in Fig. 1. To avoid adding new 
materials and limit the hardware modifications, the architecture 
prefers to reuse, if possible, the available computing and 
storage resources of the network equipment. The SDN 
architecture of our architecture is described in below. 

Fig. 1. Cluster-based software-defined for a heterogeneous vehicular network. 
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B. SDN Architecture

Our architecture is based on the three SDN layers:

1. Data plane layer: It consists of all network equipment
that only performs the collection and the forwarding of
data information, i.e., mobile vehicles cluster members,
roadside units (RSUs) and all network components
between the base station and the cloudlet server. The
data plane is divided according to the compounds’
mobility into two types:

- Fixed data plane: It is known as fixed because it
consists of static RSUs, which provides a support for
V2V communications when two neighboring vehicles
cannot communicate with each other, and all the fixed
network forwarding equipment between the cellular
base station and the cloudlet server.

- Mobile data plane: It is known as mobile because it
consists of mobile vehicles level-0 cluster members.
A vehicle compatible SDN in our architecture (or
simplify a vehicle) is a traditional mobile vehicle with
the SDN module to support SDN functionalities, as
illustrated in Fig. 1. SDN vehicles ensure data
information forwarding and the monitoring and the
collect of vehicle parameters through a software local
collect and monitoring agent. This monitored
information is periodically communicated to the local
controller. A vehicle can sometimes play the role of a
local controller when is selected as a cluster-head. The
architecture of vehicle compatible SDN is deployed at
the facilities layer of the standard OSI CALM
(communication architecture for land mobile), which
assumes the existence of multiple wireless interfaces
in a vehicle. Thus, each vehicle has a flow table and
has several communication interfaces: (i) two
broadband wireless interfaces (i.e., IEEE 802.11p),
one for the V2V control communications between
cluster members and the local controller and the other
for the data communications between vehicle cluster
members and, (ii) a wideband wireless cellular
interface (LTE/4G) used for V2I communications
between local controllers and central controllers.

2. Control plane layer: It consists of all network
equipment that centralizes the network intelligence
and control, i.e., multiple controllers at the cluster-
head, the eNodeB and the cloudlet. In our
architecture, software controllers are deployed as
virtual machines on a hypervisor at the SDN module.
Each controller maintains a global view of the
network state of the zone that it controls. The control
plane is divided according to the mobility of its
compounds into two types:

- Fixed control plane: It is known as fixed because it
consists of all controllers hosted on the fixed
infrastructure, i.e., the global controller installed on
the Cloudlet server and the central controllers
installed on cellular base stations (eNodeB). An
eNodeB compatible SDN (or simplify eNodeB) in
our architecture is a traditional eNodeB with an

additional SDN module to support SDN 
functionalities. Each eNodeB has several 
communications interfaces: (i) two wired interfaces, 
an X2 interface that connects to other eNodeB and 
allows I2I communications between central 
controllers, and an Internet interface TLS (Transport 
Layer Security) used for I2Cloud communications 
between central controllers and the global controller, 
and a wideband wireless cellular interface, used for 
infrastructure to vehicle (I2V) communications 
between the central controllers and the local 
controllers, as illustrated in Fig. 1. 

- Mobile control plane: It is known as mobile because
it consists of the local controllers deployed on the
mobile vehicles cluster heads.

The proposed architecture uses a hierarchy of multiple 
controllers to alleviate high-level controllers by delegating a 
part of general responsibilities to lower controllers, reduce the 
high-density overhead and conserve bandwidth by sending to 
higher controllers only out-capabilities requests in an 
aggregated and compressed message. The proposed 
architecture defines three hierarchical controllers: 

a. Global controller: It is the level-2 controller
deployed on the cloudlet server. The global controller
has a very powerful storage, calculation capabilities
and a global view of the whole network topology. It
only intervenes to handle very specific requests that
require a global view of the whole network, very large
resources in terms of computing/storage and
operations which are bandwidth-sensitive or that
cannot be served by lower-level central controllers.
The global controller is considered as level-2
controller and represents the master of whole network
controllers.

b. Central controllers: They are level-1 distributed
controllers deployed on cellular base stations
(eNodeB) with powerful storage and calculation
capabilities. Central controllers handle specific
operations that require a central view, large
computing/storage resources, operations that are not
delay-sensitive or operations that cannot be deserved
by lower-level local controllers. They are considered
as level-1 controllers and act as a slave of the global
controller, a master for correspondent local controllers
and equivalent to each other.

c. Local mobile controllers: They represent level-0
distributed controllers deployed on the SDN module
on each vehicle, i.e., the local controller is initially in
a standby mode and activated only when its hosting
vehicle becomes a cluster head. Each local controller
has modest storage and calculation capabilities. Local
controllers deal with local general requests, delay-
sensitive requests and operations that do not need
large storage/computation resources. The local
controller is considered as a master in its domain, a
slave of its central controller and equivalent to its
local controller's neighbors. The local controller is the
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unique controller that intervenes in the covered and 
uncovered scenarios. 

3. Service and Applications layer: It contains all the
business applications installed on the controllers.

4. Communication interfaces: Currently there are
neither standardized SDN interfaces for directly
integrating SDN into HetVNets, nor an ad-hoc (no IP-
oriented) version of OpenFlow protocol compatible
with security applications features of HetVNet. Thus,
we propose to use a customized version of OpenFlow
protocol adapted to HetVNet scenarios as southbound
API to communicate between the control plane and
the data plane and to use a customized interface as
Northbound API to communicate between the control
plane and applications [4].

C. Fall Back Recovery Mechanism

Among fall back recovery mechanisms for SDN in
HetVNet available in the literature, one initiative [2] proposes 
to switch to the traditional vehicular networks when the unique 
controller fails. This assumption may increase the complexity 
of software and hardware design [12]. Another initiative [4] 
uses a trajectory prediction to pre-install entries in the flow 
table, which can be used if the controller fails. But, this 
initiative does not envisage any solution if the failure lasts after 
the end of the entry lifetime. In [12], the authors use two types 
of hierarchical controllers, and if the high-level controller fails, 
the low-level controllers collaborate together to ensure the 
service. This solution only considers the high-level controller 
failure and does not support low-level controller failures. 

Our architecture is based on the use of a hierarchy of 
distributed multi-controllers. As a fallback recovery 
mechanism, we propose to permanently anticipate the possible 
failure of each controller at all levels and prepare the recovery 
scenario in advance while exploiting intelligently and 
efficiency the hierarchy of controllers. Therefore, a list of 
candidate recovery controllers is permanently managed by each 
local controller. The identifier (id) of the best candidate is 
periodically communicated to all level-0 cluster members and 
stored in a newly added recovery field in the flow table. 
Therefore, if an upper controller fails (level-2, resp. level-1), 
the architecture will switch to a multi-hops distributed control 
scheme in which the controllers of the strictly lower level 
(level-1, resp. level-0) takes over the service and collaborate 
with each other to ensure service continuity. If a low-level 
controller (level-0) fails, the pre-prepared recovery controller 
will take over to ensure the service continuity. Vehicles can 
directly start their requests to this recovery controller who is 
the corresponding identifier is pre-installed in their flow tables. 

IV. SIMULATION RESULTS

In this section, we present our simulation configuration and 
results. The simulation scenario is implemented using the 
network simulator NS3 [15] and the traffic mobility simulator 
SUMO [16]. The main purpose of these simulations is to 
demonstrate the reliability and the efficiency of the proposed 
architecture and study the impact of the controller deployment 
distance on the average flow rule installation time. For 

simulation, we consider a simple HetVNet scenario similar to 
that illustrated in Fig. 1, where the network topology is 
deployed in 10000 x 10000 m area. The eNodeB is situated 
1000 m far from the road. The node density is 100 vehicles. 
Each vehicle has a velocity between 15 and 25 m/s and it is 
equipped with a 4G cellular interface and an IEEE 802.11p 
interface. 

In the evaluation illustrated in Fig. 2, we simulate a 
scenario where a vehicle moves passing by an uncovered road 
segment where the connecting link with the central controller is 
not reachable even because of obstacles (e.g., high building, 
tunnel, etc.) or because of the absence of the fixed 
infrastructure. Afterward, we evaluate how our architecture 
(CSDHVN) with the multi-level hierarchical controllers reacts 
to this situation. We compare the performance of the proposed 
architecture with others SDVN infrastructure-based works in 
[4-9], [11],[12] (we called, SDVN Infrastructure-based works), 
that deploy the controller on the fixed vehicular infrastructure 
according to the packet delivery ratio, which represents the 
ratio of packets successfully received to the total sent. 

Fig. 2. Effect of uncovered zones on packet delivery ratio. 

Fig. 2 shows that just when the vehicle enters into the 
uncovered infrastructure-less zone, the packet delivery ratio in 
SDVN infrastructure-based works starts to decrease 
dramatically and it still drops until the vehicle leaves the 
uncovered zone and the connection with the controller is 
established once again, after that, the system resumes a good 
delivery ratio. Contrarily, our CSDHVN maintains a good 
packet delivery ratio. This behavior can be justified by the fact 
that in the related infrastructure-based SDVN solutions in [4-
9], [11], [12], the SDN controller is installed somewhere on the 
fixed vehicular infrastructure and if the connection with this 
controller is lost or it is unavailable, the service will be 
interrupted due to the centralized control logic of SDN. More 
efficient, our CSDHVN architecture ensures a good packet 
delivery ratio even in the covered infrastructure-based zone or 
in the uncovered infrastructure-less zone, thanks to the multi-
level hierarchical controllers and specially the local controller 
on the cluster head vehicle that takes over to ensure the service 
continuity when the connection with the controller on the fixed 
infrastructure is lost. This evaluation demonstrates the 
reliability and the efficiency of our CSDHVN architecture and 
confirms that the consideration of infrastructure-less zone in 
the design of SDVN architecture is primordial given the 
negative effect that represents on the packet delivery ratio. 

Uncovered 
Infrastructure-less Zone
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We study in the evaluation illustrated in Fig.3, the impact 
of the physical distance of controller deployment from the 
vehicles, on the flow rule installation time, which represents the 
elapsed time since a vehicle requests the controller for a flow 
rule and the time when it is installed in the flow table. Thus, we 
focus on a scenario of a set of vehicles connected to a 
controller and we varied the distance between the vehicles and 
the controller for different vehicles number. 

(a) 

(b) 
Fig. 3. Effect of Controller deployment distance on flow rule installation time. 

Fig. 3 shows that the average flow rule installation time 
increases with the increase of vehicles number and the 
controller deployment distance. Also from Fig. 3. we can 
conclude that to ensure a flow rules installation time sufficient 
to satisfy the lower latency requirement of the most of 
vehicular road safety applications (≤ 100 ms [1]) in such dense 
networks as HetVNet, the SDN controller must be installed on 
the edge of network, the nearest as possible from the vehicles 
(no far than 5 km). Our CSDHVN architecture is based on 
multi-level hierarchical controllers. The low-level controller 
(local controller) is installed on the cluster head vehicle, no 
more than 300 m far of vehicles and the second, central 
controller, on the eNodeB (far about 1 km). This can ensure a 
low flow rules installation time and better handles the delay-
sensitive and low latency road safety applications. 

V. CONCLUSION

Based on the taxonomy discussion of SDN-based HetVNet 
architectures, we conclude that the current general tendency 
should be the use of multiple distributed controllers installed on 
the edge of the network with an efficient fall back recovery 
mechanism. Moreover, the uncovered infrastructure-less zones 
should be considered in the design of SDN-based HetVNet 
architectures. Consequently, we present in this paper a semi-
centralized flexible SDN-based HetVNet architecture with 

hierarchical multi-controllers installed on the edge of the 
network. Our SDN-based architecture is robust thanks to an 
effective fallback recovery mechanism, and works in both 
covered and uncovered areas. We also demonstrate the 
feasibility and the efficiency of our proposed architecture 
compared to the related SDVN infrastructure-based works 
based on simulation results. 

The implementation complexity and cost, the high mobility 
of vehicles, and the dense network topology, rest open 
challenges in front of SDN integration in VANETs. As future 
work, we plan to perform more intensive experimentations to 
proof the efficiency of the proposed architecture. 
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