Olivier Gouvert 
  
Member, IEEE Thomas Oberlin 
  
Senior Member, IEEE Cédric Févotte 
  
Negative Binomial Matrix Factorization

Keywords: negative matrix factorization, Poisson factorization, majorization-minimization, over-dispersion, collaborative filtering

We introduce negative binomial matrix factorization (NBMF), a matrix factorization technique specially designed for analyzing over-dispersed count data. It can be viewed as an extension of Poisson factorization (PF) perturbed by a multiplicative term which models exposure. This term brings a degree of freedom for controlling the dispersion, making NBMF more robust to outliers. We describe a majorization-minimization (MM) algorithm for a maximum likelihood estimation of the parameters. We provide results on a recommendation task and demonstrate the ability of NBMF to efficiently exploit raw data.

I. INTRODUCTION

Poisson factorization (PF) is a special case of non-negative matrix factorization (NMF) with applications in dictionary learning for signal & image processing [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF], [START_REF] Smaragdis | Static and dynamic source separation using nonnegative factorizations: A unified view[END_REF], [START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF], text information retrieval [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF], [START_REF] Buntine | Discrete component analysis[END_REF] or recommender systems [START_REF] Ma | Probabilistic Factor Models for Web Site Recommendation[END_REF], [START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF]. In this setting, the data is assumed to be drawn from the Poisson distribution making it specially well suited for count/integer-valued data. More precisely, each entry y ui of the data matrix Y is generated from the process:

y ui ∼ Poisson([WH T ] ui ), (1) 
where W ∈ R U ×K + is the dictionary matrix and H ∈ R I×K + is the activation matrix. Usually, K min(U, I) which implies a low-rank data approximation. A limitation of using the Poisson distribution is that the variance is fixed and equal to the mean: var(y ui ) = E(y ui ), making it poorly adapted for over-dispersed data.

As such, we propose in this letter a new probabilistic matrix factorization (MF) model, coined negative binomial matrix factorization (NBMF), which is especially designed for overdispersed count data. In particular, NBMF offers an additional degree of freedom for controlling data dispersion, which is beneficial when analyzing raw data.

In particular, we illustrate this ability by applying NBMF to collaborative filtering (CF). CF is a common application of MF methods, which aims at analyzing user preferences in order to make recommendations. Since the Netflix Prize [START_REF] Bennett | The Netflix Prize[END_REF], CF has been giving state-of-the-art results for recommender systems by exploiting user historical data. These data can either be explicit (ratings given by users to items) or implicit (count data from users listening to songs, clicking on web pages, watching This work was supported by the European Research Council (ERC FACTORY-CoG-6681839) and the ANR-3IA (ANITI).

O. Gouvert and C. Févotte are with the IRIT, Université de Toulouse, CNRS, France (e-mail: firstname.lastname@irit.fr). T. Oberlin is with ISAE-SUPAERO, Université de Toulouse, France (e-mail: firstname.lastname@isae.fr). videos, etc). Count data can be summarized into a matrix Y ∈ N U ×I , where y ui corresponds to the number of times a user u interacts with an item i, U and I are the number of users and items respectively, and N is the set of non-negative integer values. This type of data, easy to collect, is known to be very sparse, noisy and bursty [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF], [START_REF] Schein | Poisson-Gamma dynamical systems[END_REF]. Therefore, to remain robust to outliers, a pre-processing stage is often carried out before applying PF [START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF], [START_REF] Liang | Modeling User Exposure in Recommendation[END_REF]: all positive values are thresholded to 1, producing binary data, i.e., Y ∈ {0, 1} U ×I . On the contrary, we propose to process the raw data with NBMF, avoiding the loss of information induced by any pre-processing stage.

This paper is organized as follows. In Section II, we introduce NBMF. In Section III, we discuss its connections with the state of the art. In Section IV, we study the maximum likelihood estimator of NBMF and discuss the fit function/divergence it implies. Finally, in Section V, we illustrate the benefits of NBMF with experiments on a real dataset.

II. NEGATIVE BINOMIAL MATRIX FACTORIZATION

In this section, we introduce NBMF, which is a NMF method especially designed for over-dispersed count data. We chose to illustrate the concepts and properties of NBMF for data generated by users interacting with items. However, NBMF can be applied to a wider range of data.

A. Model

We assume that, for each user u ∈ {1, . . . , U } and item i ∈ {1, . . . , I}, our observations y ui = [Y] ui are sampled from the generative process

y ui ∼ NB α, [WH T ] ui [WH T ] ui + α , (2) 
where W represents the preferences of users and H represents the attributes of items [START_REF] Koren | Matrix Factorization Techniques for Recommender Systems[END_REF]. NB(α, p) is the negative binomial (NB) distribution parametrized by a dispersion coefficient α ∈ R + and a probability parameter p ∈ [0, 1]. Its probability mass function, displayed in Figure 1, is given by:

P(Y = y) = Γ(y + α) y! Γ(α) p y (1 -p) α , (3) 
where Γ(.) is the gamma function. When α ≤ 0, the mode of the NB distribution is located in 0. When α tends to infinity and the average is fixed, we recover the Poisson distribution. Like in PF and many mean-parametrized matrix factorization models [START_REF] Tan | Automatic relevance determination in nonnegative matrix factorization with the beta-divergence[END_REF], the expected value of the observations is given by: E(y ui ) = [WH T ] ui , which gives an intuitive understanding of the model. Contrary to the Poisson distribution, the NB distribution has a second parameter α which enables to add variance to the model:

var(y ui ) = [WH T ] ui 1 + [WH T ] ui α > E(y ui ). (4) 
It is important to note that, contrary to the method of the same name introduced in [START_REF] Zhou | Nonparametric Bayesian negative binomial factor analysis[END_REF], we place the factorization [WH T ] ui on the probability parameter of the NB distribution and not on the shape parameter.

The NB distribution can also be viewed as a Poisson-gamma mixture. Note that this formulation is different from [START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF] where gamma priors are put on W and/or H. Using this property, we can write the following equivalent hierarchical model:

a ui ∼ Gamma(α, α), (5) 
y ui |a ui ∼ Poisson(a ui [WH T ] ui ), (6) 
where the latent variables a ui control local variabilities. We denote by A the U × I matrix with coefficients [A] ui = a ui .

By construction, we have E(a ui ) = 1 and var(a ui ) = α -1 .

B. Interpretation of the Latent Variable A

The matrix A captures local variations that cannot be explained by the product WH T , by attenuating or accentuating them. In the field of recommender systems, A can be viewed as an exposure variable [START_REF] Liang | Modeling User Exposure in Recommendation[END_REF] which models how much a user is exposed to an item. For example, in the context of song recommendation, we have the following interpretations:

• If a ui 1, the user is under-exposed to the item. It may be explained by several reasons: the user does not frequent the places/communities where the song is played, he is not aware of the release of a new song, etc.

• If a ui 1, the user is over-exposed to the item. This overexposure can be "active", e.g., the user listens to the song on repeat, or "passive", e.g., the item is heavily broadcasted on the radio, is highlighted on a website, etc.

• If a ui ≈ 1, the exposure does not affect the listening pattern of the user which is fully described by WH T .

III. RELATED WORKS A. Negative Binomial Regression

Regression for count data based on the Poisson distribution has been considered by [START_REF] Gardner | Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models[END_REF]. It has been augmented by a latent variable a to model over-dispersion in [START_REF] Lawless | Negative binomial and mixed Poisson regression[END_REF], [START_REF] Hilbe | Negative Binomial Regression[END_REF], [START_REF] Zhou | Lognormal and gamma mixed negative binomial regression[END_REF]:

y i ∼ Poisson(a i exp(x T i b)), (7) 
where y i ∈ N is the response variable, x i is the covariate vector for sample i and b is the vector of regression coefficients. When a i is given a gamma prior and marginalized, we get NB regression:

y i ∼ NB α, (1 + α exp(-x T i b)) -1 . (8) 
Equation ( 8) defines a generalized linear model [START_REF] Mccullagh | Regression models for ordinal data[END_REF] in which the data expectation is not linear in the parameters. We work instead with the mean-parametrized form of Equation ( 2), which is more natural to the MF and dictionary learning settings. Furthermore, we also learn the "covariates" (similar to W in our case) and assume all variables to be non-negative.

B. Robust NMF

The latent variable A can be interpreted as a variable that accounts for outliers. Indeed, A is a multiplicative perturbation which can explain unexpectedly high or low values (see Section II-B). In [START_REF] Févotte | Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization[END_REF], the authors proposed a different way for handling outliers in NMF models and in particular in Poisson factorization (in the context of hyperspectral image unmixing). The outliers are modeled with an additive latent variable. The data is assumed Poisson-distributed with expectation [WH T ] ui + s ui where s ui is imposed to be sparse and nonnegative. The non-negativity implies that only unexpectedly large data values can be captured with such a model.

C. Exposure and Poisson Modeling

NBMF can be cast as a particular instance of the following general model:

A ∼ p(A; Θ), (9) 
y ui |a ui ∼ Poisson(a ui [WH T ] ui ), (10) 
where p(A; Θ) is a distribution governed by its own parameters Θ.

There are a few examples of such models in the literature, as described next.

• When A is deterministic with ∀(u, i), a ui = 1, we recover the well-known PF model [START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF], [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF], [START_REF] Buntine | Discrete component analysis[END_REF], [START_REF] Ma | Probabilistic Factor Models for Web Site Recommendation[END_REF], [START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF].

• Zero-inflated models. In [START_REF] Simchowitz | Zero-Inflated Poisson Factorization for Recommendation Systems[END_REF], a ui is drawn from a Bernoulli distribution: a ui ∼ Bern(µ). Marginalizing out this latent variable leads to the zero-inflated Poisson distribution [START_REF] Lambert | Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing[END_REF]:

y ui ∼ (1 -µ)δ 0 + µ Poisson([WH T ] ui ). (11) 
In practice, it appears that the Bernoulli distribution puts too much weight on 0. The gamma distribution offers a softer alternative. [START_REF] Simchowitz | Zero-Inflated Poisson Factorization for Recommendation Systems[END_REF] also proposes more sophisticated hierarchical models for µ (which becomes µ ui ) to include external sources of knowledge (social network or geographical informations). Such ideas could also be incorporated in our setting. Note that a zero-inflated NB model has also been introduced in [START_REF] Risso | A general and flexible method for signal extraction from single-cell rna-seq data[END_REF], but the parametrization of this model differs from Eq. ( 11).

• Coupled compound PF. In [START_REF] Basbug | Coupled compound poisson factorization[END_REF] the authors consider matrix completion with PF and missing-not-at-random phenomenas. Their approach relies on the following assumption

a ui ∼ Poisson([UV T ] ui ), (12) 
which is more restrictive in terms of support and structure than our proposal. The general purpose is also different.

• Random graphs. In reference [START_REF] Paquet | One-class Collaborative Filtering with Random Graphs[END_REF], the exposure is modeled with bipartite random graphs and it is arbitrarily assumed that half of the unconsumed items are missing feedbacks.

D. Exposure and Gaussian modeling

Besides the models with a Poisson likelihood, the notion of exposure was also introduced in the context of Gaussian modeling.

• Exposure matrix factorization. In [START_REF] Liang | Modeling User Exposure in Recommendation[END_REF], the authors develop the so-called exposure matrix factorization (ExpoMF). This model posits a Gaussian distribution for the binary observations with factorized matrix expectation. A binary variable modeling exposure is introduced. It models whether a user knows an item or not:

a ui ∼ Bern(µ), (13) 
y ui |a ui ∼ N (0, a ui [WH T ] ui ). ( 14 
)
The authors of this paper emphasize the fact that weighted MF (WMF) [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF] applied to binary data is a special case of ExpoMF.

They developed an EM algorithm to infer the parameters of the model. A similar model has been introduced in [START_REF] Pierson | Zifa: Dimensionality reduction for zero-inflated single-cell gene expression analysis[END_REF], in the context of gene expression analysis. Contrary to those works, we choose to work with the Poisson distribution which is better adapted to count data [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF]. In addition, we do not apply preprocessing to the data.

• Semi-blind source separation. In semi-blind source separation, a similar model has been developed to allow for more flexibility in the modeling [START_REF] Leglaive | Semi-blind student's t source separation for multichannel audio convolutive mixtures[END_REF], [START_REF] Yoshii | Student's t nonnegative matrix factorization and positive semidefinite tensor factorization for singlechannel audio source separation[END_REF]. It assumes that the timefrequency coefficients y ui of each source follow a Student's t distribution. The parameters of the distribution are structured by an NMF model. This model is equivalent to the hierarchical model:

a ui ∼ IG(α/2, α/2) (15) y ui |a ui ∼ N (0, a ui [WH T ] ui ). (16) 
The latent variable A has a role similar to our exposure variable, allowing to obtain a marginal distribution with a heavier tail.

IV. MAXIMUM LIKELIHOOD ESTIMATION In this section, we study maximum likelihood (ML) estimation in the proposed model (2) and discuss the data fitting term that arises from our model.

A. A New Divergence

The ML estimator of W and H is obtained by minimizing the objective function defined by:

C ML (W, H) = -log p(Y; W, H) (17) 
= ui d α (y ui |[WH T ] ui ) + cst, ( 18 
)
where cst is a constant with respect to (w.r.t.) W and H and

d α (a|b) = a log a b -(α + a) log α + a α + b . ( 19 
)
We exhibit a new divergence, denoted by d α , which is associated to the mean-parametrized NB distribution with fixed dispersion coefficient α. It is displayed in Figure 1 for various values of α. To the best of our knowledge, this divergence does not have a name nor corresponds to a well-known case from the literature. As expected, we recover in the limit case the generalized Kullback-Leibler divergence associated with the Poisson distribution:

lim α→∞ d α (a|b) = a log a b -a + b = KL(a|b). (20) 

B. Block-Descent Majorization-Minimization

As it turns out, maximum likelihood reduces to minimization of

C(W, H) = D α (Y|WH T ) ( 21 
)
where The individual updates for W and H can be obtained using majorization-minimization (MM) like in many NMF cases, and such as NMF with the β-divergence [START_REF] Févotte | Algorithms for Nonnegative Matrix Factorization with the beta-divergence[END_REF]. The roles of W and H can be exchanged by transposition (Y ≈ WH T is equivalent to Y T ≈ HW T ) and we may for example address the update of H given W. MM amounts to optimizing an upper bound G(H| H) of C(W, H), constructed so as to be tight at the current iterate H (G( H| H) = C(W, H)). This produces a descent algorithm where the objective function is decreased at every iteration [START_REF] Hunter | A tutorial on MM algorithms[END_REF].

D α (•|•)
In our setting, a tight upper bound can be constructed by majorizing the convex and concave parts of C(W, H), following the approach proposed in [START_REF] Févotte | Algorithms for Nonnegative Matrix Factorization with the beta-divergence[END_REF] for NMF with the β-divergence. The convex part (terms inlog(x)) may be majorized using Jensen's inequality. The concave part (terms in log(x + c)) can be majorized using the tangent inequality. This procedure leads to the following multiplicative update that preserves non-negativity given positive initializations:

h ik = hik u y ui [W HT ] ui w uk u y ui + α [W HT ] ui + α w uk . (22) 
Similarly, the update for W is given by:

w uk = wuk i y ui [ WH T ] ui h ik i y ui + α [ WH T ] ui + α h ik . (23) 
As expected, the multiplicative updates of KL-NMF [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] are obtained in the limit α → ∞. This algorithm scales with the number of entries U I in the matrix Y, and not with the number of non-zero entries like for KL-NMF algorithm. This increase of computational complexity can be a drawback in applications where the matrix Y is large but sparse. 

NDCG@20

Model ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5
≥ 6 NBMF (α = 1) 0.223 (± 0.005) 0.234 (± 0.006) 0.242 (± 0.006) 0.243 (± 0.009) 0.239 (± 0.008) 0.246 (± 0.009) NBMF (α = 10) 0.224 (± 0.005) 0.237 (± 0.005) 0.247 (± 0.006) 0.250 (± 0.008) 0.247 (± 0.008) 0.254 (± 0.009) NBMF (α = 100) 0.222 (± 0.005) 0.235 (± 0.005) 0.245 (± 0.006) 0.248 (± 0.008) 0.245 (± 0.008) 0.252 (± 0.009) KL-NMF-raw 0.221 (± 0.005) 0.235 (± 0.005) 0.244 (± 0.006) 0.247 (± 0.008) 0.244 (± 0.009) 0.250 (± 0.009) KL-NMF-bin 0.265 (± 0.006) 0.251 (± 0.006) 0.239 (± 0.007) 0.226 (± 0.009) 0.212 (± 0.010) 0.213 (± 0.009)

Bayesian inference of NBMF can also be considered, by introducing gamma priors on the latent variables W and H [3], [START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF]. In particular, coordinate ascent variational inference (CAVI) algorithm is detailed in the technical report [START_REF] Gouvert | Negative Binomial Matrix Factorization for Recommender Systems[END_REF].

V. EXPERIMENTAL RESULTS

A. Experimental Setup a) Dataset: We apply our algorithm to the Taste Profile dataset provided by The Echo Nest [START_REF] Bertin-Mahieux | The Million Song Dataset[END_REF]. This dataset contains the listening history of users in the form of song play counts. As in [START_REF] Liang | Modeling User Exposure in Recommendation[END_REF], we select a subset of the original data by only keeping users who listened to at least 20 different songs, and songs which have been listened to at least by 50 different users. This pre-processing ensures enough information for each user and item, while it avoids the cold-start problem inherent in CF. This leads to a dataset with a number of users U = 1509 and a number of items I = 805.

b) Recommendation Task: The goal of recommender system is to propose to each user a personalized list of new items (items he has not consumed yet) that he may like. To evaluate our algorithm, we randomly divide the observed matrix Y into two matrices Y train and Y test . Y train is composed of 80% of the non-zero values of Y (the other values are set to zero, i.e., are assumed not to have been listened to in the train set), while Y test is composed of the remaining 20%. For each user, we propose a list of recommendations composed of m items never consumed in Y train , i.e., such that y train ui = 0. The list is constructed by decreasing order of the score: s ui = [ Ŵ ĤT ] ui , where Ŵ are the estimated user preferences and Ĥ are the estimated item attributes. c) Normalized discounted cumulative gain: We use the normalized discounted cumulative gain (NDCG) to measure the quality of these lists of recommendations [START_REF] Järvelin | Cumulated gain-based evaluation of IR techniques[END_REF]. For each user, we calculate the discounted cumulative gain (DCG), defined by:

DCG u = m l=1 rel(u, l) log 2 (l + 1) , (24) 
where rel(u, l) is the ground-truth relevance of the l-th item of the list of the user u. The denominator penalizes relevant items which are at the end of the proposed list. It accounts for the fact that a user will only browse the beginning of the list, and will not pay attention to items which are ranked at the end. The NDCG is a normalized version of the DCG:

NDCG u = DCG u IDCG u ∈ [0, 1], (25) 
where IDCG u is the DCG score obtained by an ideal list of recommendations.

In our experiments, we chose the following definition of the ground-truth relevance:

rel(u, l) = 1[y ui(l) ≥ s], (26) 
where i(l) is the index of the l-th item of the list, and s is a fixed threshold. When s = 1, we recover the classic NDCG metric for binary data. When s > 1, we focus only on items which have been listened to at least s times. It totally ignores listening counts lower than s for which the confidence may not be high enough. Note that the introduction of the threshold s only affects evaluation and not training. d) Compared methods: We compare our algorithm (called NBMF), described by the update rules in Eq. ( 22)-( 23), with two versions of KL-NMF [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF]. One with pre-processing stage where we binarize Y train , denoted by KL-NMF-bin; and one without where we work directly on the raw data (as for NBMF), denoted by KL-NMF-raw.

All the three algorithms are run on 10 random splittings of the dataset, with 10 random initializations. For NBMF and KL-NMF-raw, we initialize the algorithms with KL-NMF-bin. We found out that this was the best initialization strategy as compared to using random initialization or the result of KL-NMF-raw. We fix the number of latent factors to K = 50. The algorithms are stopped when the relative decrement of the cost function is less than 10 -5 .

B. Recommendation Results

Table I displays the NDCG score obtained for each algorithm on the Taste Profile dataset. The size of the lists of recommendations is fixed to m = 20, and 5 different values of threshold are compared. First, we discuss the difference between KL-NMF algorithm performed on raw data or on binarized data (two last lines of the table). We can see that KL-NMF-bin achieves the best performances for small threshold (s = 0 or 1). This confirms the usefulness of the preprocessing stage up to a certain threshold. Then, we display on Table I, the results of NBMF algorithm for three different values of α ∈ {1, 10, 100}. We remind that, when α goes to infinity, the NBMF algorithm is equivalent to KL-NMF-raw. The NBMF algorithm seems to reach peak performance for α = 10. For this value, NBMF returns better results than KL-NMF-raw for all the values of threshold s. As for KL-NMFraw, NBMF returns the best NDCG scores for s ≥ 2. This confirms the loss of information caused by the pre-processing stage.

Fig. 1 .

 1 Fig. 1. Left: Probability mass function of the NB distribution: y ∼ NB(α, p), such that E(y) = 4.5. Right: The associated divergence for y = 1.

TABLE I RECOMMENDATION

 I PERFORMANCE OF THE THREE COMPARED ALGORITHMS ON THE TASTE PROFILE DATASET. IN BOLD, THE BEST NDCG SCORES.