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Abstract. Unmanned Aerial Vehicles (UAVs), such as tethered drones,
become increasingly popular for video acquisition, within video surveil-
lance or remote, scientific measurement contexts. However, UAV record-
ings often present an unstable, variable viewpoint that is detrimental to
the automatic exploitation of their content. This is often countered by
one amongst two strategies, video registration and video stabilization,
which are usually affected by distinct issues, namely jitter and drift-
ing. This paper proposes a hybrid solution between both techniques that
produces a jitter-free registration. A lightweight implementation enables
real time, automatic generation of videos with a constant viewpoint from
unstable video sequences acquired with stationary UAVs. Performance
evaluation is carried out using video recordings from traffic surveillance
scenes up to 15 minutes long, including multiple mobile objects.

Keywords: Motion Estimation, Video Registration, Video Stabiliza-
tion, Unmanned Aerial Vehicles

1 Introduction

Unmanned Aerial Vehicles (UAVs), are becoming increasingly popular for tasks
such as video surveillance or remote data acquisition [15]. Tethered drones [10]
can now fly during several hours up to 50 meters above ground in stationary
flight. Their video flux looks a lot like that of a classic surveillance camera.
However, their lack of stability makes tasks such as background subtraction or
objects tracking more complex than with a fixed viewpoint (Fig. 1.a and 1.b).
This paper proposes a real-time, online method to convert videos acquired from
a stationary drone into jitter-free, single viewpoint videos as much as possible.

Real-world applications for stationary UAVs such as traffic monitoring or
crowd surveillance often present a high density of mobile objects, which may
provoke drifting and jitter issues over time. Yet, prior works on UAVs image
stabilization techniques have been studied on datasets that include very few
mobile objects and rather short sequences [13,2].

We propose to tackle the problem of lengthy sequences with multiple mobile
objects. In order to leave room for further analysis processes, our solution needs
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Fig. 1. Images extracted from the M4 (left column) and the C2 (right column) se-
quences in our database. a: first frame, used as a reference image. b: current frame,
after approx. 15 seconds (resp. 45 seconds) on left M4 (resp. C2), which we want to
register to the first frame of the sequence. c: the output of StabNet [16]. d: the output
of CNN-Registration [18]. e: the output of the proposed method.
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to be online and computationally low-cost. For this purpose, we propose a generic
model which can be applied to 2D rigid motion estimation methods. We show
how to combine stabilization and registration techniques, and we apply this
method to a lightweight 2D-rigid transformation registration algorithm.

2 Prior work

Producing a constant viewpoint video from a mobile camera is quite equivalent
to determining the camera orientation. Determining the extrinsic parameters of
a monocular camera within a 3D environment is a problem typically studied by
Structure from Motion (SfM) [12] or Simultaneous Localization and Mapping
(SLAM) approaches, some of which can operate in real time [11]. However, the
latter are mostly designed to work on static environments and rely on parallax,
ie. when there is enough camera movements to infer the 3D structure of the
scene.

Video registration and video stabilization tackle this problem by searching
for an image transformation that optimally compensates for camera motion. In
the first case, this transformation is estimated between the current frame and
a reference image. In the stabilization case, we calculate a trajectory, defined
as a combination of consecutive inter-frame motion estimations. This trajectory
is then filtered and the image is reprojected so to follow the desired, smooth
trajectory.

In the UAV context, authors have stated that the direct application of a regis-
tration method to a reference frame leads to unsatisfying, jittery results [13,2,1].
Jitter is often linked to an unstable image source (handheld camera, mechanical
high frequency noise, etc.). However, it can also correspond to a high-frequency
noise caused by the image motion compensation itself. To our understanding,
this happens because most registration methods are based on a sparse feature
points matching solution, generally accompanied by a selection of inliers and
outliers technique such as RANSAC. The intermittent presence of points caused
by thresholds in the matching or the inliers selection processes may cause such
high-frequency noise.

Classic video stabilization methods such as [8] and [6] have been adapted
to the UAV context, sometimes associated with video stitching [7]. The motion
estimation is often performed with a very popular approach known as Kanade
Lukas Tracker (KLT) [14] but other techniques have been proposed, such as a
specific optical flow model which enforces spatial coherence [9]. Most methods
are able to handle mobile camera, and thus do not assume the existence of a
constant background, which however applies in our context. They eliminate jitter
very well, but they tend to imply drifting, which is the tendency to slowly change
viewpoint over time.

More recently, convolutional neural networks have been applied to both regis-
tration [18] and stabilization [16] domains. Both methods have proposed to use a
rich warping model based on Thin Plate Splines (TPS). While such approaches
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look promising, their direct application on our data proved problematic. We
may observe on Figs. 1.c (both columns) and 1.d (right column) that 3 out of
4 frames are misaligned relatively to the reference image (Fig. 1.a). Authors of
StabNet [16] based their approach on a siamese convolutional network that was
trained thanks to a stabilization database. This database was acquired with the
help of a single handling device to which 2 different cameras were attached, only
one of which was physically stabilized with a gimbal. Such ground-truth is not
available in our settings. Moreover, this method still does not assume the pres-
ence of a constant background to which it should register. CNN-Registration [18]
is able to handle large appearance changes and seems suitable to handle long-
term registration with important lighting variations and the presence of multiple
mobile objects. However, our experiments have shown that this approach is not
invariant to rotation (e.g., it is not able to handle a video rotated to some extent,
Fig. 1.d) or to very large displacement. In our context, applying it would thus
require some prior alignment step, which confirms the need for a simple and
robust registration method that takes temporal data into account.

3 Modelling the problem

The idea behind a video stabilization or registration algorithm is to compensate
for undesired camera motion, while preserving the image content variability over
time. At first, we need to define the degrees of freedom of our problem.

In first approximation, the effects of camera movements can be modeled and
compensated through 2D-rigid warping transforms. On stationary drones, the
camera is mostly affected by undesired, relatively low magnitude Yaw, Pitch
and Roll motion (following the Tait Bryan chained rotations convention). Since
the drone is never perfectly stationary, additional undesired 3D translational
motion of the camera in space as well as the 3D geometry of the scene add up
to the complexity of our problem.

Eventually, we estimate the camera motion between two images Imi and Imj

through a 2D linear transformation matrix M̃(i, j). It is defined by an unique
quartet of parameters (tx, ty, α, s) (resp. translation along the horizontal and
vertical axis, rotation of angle α, and a positive scale in the 2D plane) which are
used to approximate the effects on the image of a physical 3D motion performed
by the drone (resp. Yaw, Pitch, Roll and translation along the optical axis).
Warping Imi according to the transformation matrix M̃(i, j) aims at setting it
in the closest possible viewpoint to Imj . Conversely, warping Imj according to

M̃(j, i) = M̃(i, j)−1 sets it to the closest possible viewpoint to Imi.
In any case, we rely on the estimation of the motion between two images Imi

and Imj , for which we propose the following decomposition:

M̃(i, j) = EM̃(i, j)×Mcam(i, j) (1)

where:

– M̃(i, j) is the estimated camera motion between Imi and Imj
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– Mcam(i, j) corresponds to the motion associated to the actual, physical cam-
era movement, measured as background motion between Imi and Imj

– EM̃(i, j) corresponds to a motion estimation error.

EM̃(i, j), M̃(i, j) and Mcam(i, j) are all expressed as linear transformation
matrices.

A lot of motion estimation or registration methods are available in the lit-
erature, ranging from holistic [5] to sparse [14], with various properties and
advantages. Equation (1) can be used to characterize any movement estimation
algorithm that outputs a 2D linear transform.

Registering a video is the problem of canceling the term Mcam over the
course of a video. With a reference frame denoted as 0, the applied warping can
be expressed as

W(i) = M̃(0, i)−1 =Mcam(0, i)−1 × EM̃(0, i)−1 (2)

Stabilizing a video is the problem of smoothing Mcam over the course of a
video. This is performed by constructing a trajectory, which is defined as{

TM̃(0) = I
TM̃(i) = M̃(i− 1, i)× TM̃(i− 1) with i > 0

(3)

which we denote as:

TM̃(i) =

x
i∏

k=1

M̃(k − 1, k) (4)

The left arrow sign (x) means that we perform a left-hand product.
Then, we filter TM̃ over time: the warping applied to the original images

can be seen as the difference between the filtered trajectory and the original
trajectory.

W(i) = F
(
TM̃
)
(i)× TM̃(i)

−1
(5)

where F
(
TM̃
)
(i) is the output at frame i of a smoothing filter applied on the

set of trajectories TM̃. It is also expressed as a 2D linear transform matrix. Any
output of F should be a plausible approximation given the physical constraints
of the problem. In practice, one can filter independently tx, ty, α and s. For
real-time, online application, a Kalman Filter [17] can be used.

Given Eq. (1), we can reformulate Eq. (3) as follows:

TM̃(i) =

x
i∏

k=1

(
EM̃(k − 1, k)×Mcam(k − 1, k)

)
(6)

By definition,
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Mcam(0, i) =

x
i∏

k=1

Mcam(k − 1, k) (7)

In the general case, we cannot develop any further Eq. (6). However, we can
introduce an equivalent error term such as Eq. (3) becomes:

TM̃(i) = EequivM̃ (0, i)×Mcam(0, i) (8)

The more dissimilar Imi and Imj , the more significant EM̃(i, j) is likely to
be. Consecutive images being rather similar, they usually yield a EM̃ term of
low magnitude. However, in such cases, foreground objects often perform little
movement from Imi to Imj . When i and j are close in time, a part of the term
EM̃(i, j) may correspond to light foreground motion that was wrongly considered
as background motion by the motion estimator. Such error accumulates into
Eq. (6) to form a drifting trajectory (Eq. (8)). This drifting error term explains
why it is not recommended to simply use T −1M̃ as a registration solution.

Most of the literature in stabilization and registration topics is focused on
minimizing the term EM̃ within the motion estimation step. This minimization
is essential towards achieving good performance, but the existence of such error
is unavoidable. However, its nature tends to vary from jitter in a registration case
to drifting in a stabilization case. We show how to take advantage of both jittery
and drifting behaviors to propose an efficient and low-cost solution towards jitter-
free constant viewpoint generation.

4 Proposed method

In this section, we show how to efficiently combine registration and stabilization
approaches into a single hybrid method (Fig. 2). From now on, we will denote
by M̃s (resp. M̃r the specific motion estimator for the stabilization (resp. reg-
istration) part of the proposed method.

Fig. 2. Overview of the proposed method. Inv corresponds to a matrix inversion; LPF
stands for Low-Pass Filter.



Jitter-free registration for Unmanned Aerial Vehicle Videos 7

The idea is to calculate the product between the trajectory TM̃s of a stabi-

lization method, and the correction M̃r(0, i)−1 applied in a registration method.

D(i) = TM̃s(i)× M̃r(0, i)−1 (9)

Following the model proposed in Eq. (1), as reported in Eqs. (2) and (8), we
can reformulate Eq. (9) as:

D(i) = EequivM̃s
(0, i)×

(
EM̃r (0, i)

)−1
(10)

As suggested previously, this matrix is essentially a product of a smooth,
low frequency drifting error (EequivM̃s

(0, i)) and a jittery, high frequency error

(EM̃r (0, i)). Filtering D allows us to isolate the drifting component.

F (D(i)) ≈ EequivM̃s
(0, i) (11)

Combining the output of this filter to T −1M̃s
finally allows us to obtain a

jitter-free video registration on long sequences, without the need for particularly
elaborate motion estimation techniques. Finally, the applied correction is the
following:

W(i) = F (D(i))× TM̃s(i)−1 (12)

5 Evaluation

5.1 Dataset

Our evaluation dataset consists in 8 Full HD, 30 fps RGB video sequences, ac-
quired outdoor at daylight, which include multiple mobile vehicles except ‘C0’.
‘C0’, ‘C1’ ‘C2’ and ‘C4’ were acquired with a light drone on overhead view-
point, equipped with a GoPro camera. The 4 minutes long sequence ‘C1’ and
‘C4’ feature few vehicles and only light motion in overhead configuration; ‘C0’
is a 15 seconds long subset of ‘C1’ where all objects are static. To challenge the
robustness of our approach, the dataset includes the 4 minutes long sequence
‘C2’, where the human operator performs two fast clockwise 180 degrees rota-
tion around the vertical axis. ‘M1’, ‘M2’, ‘M3’ and ‘M4’ are successive 15 minutes
long videos which were acquired with a tethered drone equipped with a CMOS
camera, at approximately 50 meters above ground in stationary flight. The se-
quence ‘M4’ is subject to heavy motion, probably caused by windy conditions.
None of those videos displayed significant rolling shutter issues. Figures 1.a and
1.b provide examples from sequences ‘M4’ and ‘C2’.

5.2 Implementation

This approach was implemented using computationally lightweight algorithms
provided by the OpenCV library [4] and C++ language. Both M̃s and M̃r

were estimated on a sparse image representation basis using the KLT approach.
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The image is first resized to 576x324 (30% of a 1080p resolution) and set to
one-channel grayscale. The first frame was adopted as the reference frame for
the tested videos. M̃r(0, i) (resp. M̃s(i − 1, i)) was estimated by extracting
200 Shi-Tomasi corners [14] on Im0 (resp. Imi−1), further tracked on Imi using
the Lukas and Kanade Pyramidal Optical Flow (LKPOF) algorithm [3]. A Least
Square Regression (LSR) was used for the motion estimation matrix solving. We
used a Kalman Filter [17] on the four motion estimation parameters (tx, ty, α, s)
independently for the implementation of F in Eq. (12). The LKPOF algorithm
being sensitive to its initialization, we used the KF prediction as the initialization
for all of the tracked points locations on the registration part.

The experimentation was carried out on a 2.5 Ghz Intel Core i7 MacBook
Pro with 16 Go DDR3 of memory under High Sierra OS. Under these settings,
each frame is processed in less than 16 millisecond using CPU operation only,
enabling real time applications and leaving space for further processing analysis.

5.3 Evaluation protocol

To show the benefits of the proposed combination, we have compared it with
different combinations of its elementary components. The following settings were
tested:

– Raw: the original, unprocessed video.
– StabilizationKalman: the video stabilized by the algorithm described on

Eq. (5), using the same computation of M̃s and filter as described in section
5.2.

– RegistrationLastPos: the video registered by the algorithm described as M̃r

in section 5.2, with the registration proposed at frame i−1 as an initialization
for the registration of frame i.

– RegistrationKalman: the video registered by the algorithm described as M̃r

in section 5.2, with a KF set as described in section 5.2 for both the initial-
ization and the filtering.

– Ours: the proposed method.

Evaluating a stabilization and registration algorithm in our context is a del-
icate task, since we do not benefit from ground-truth data about the actual
camera movements or the image content on our dataset.

To quantify the registration performances of our approach, we propose to
track a set of feature points from the reference frame to the current frame, using
the same tracker setting as in section 5.2 for M̃r(0, i). The median displacement
of all tracked reference points was used as a measure of registration quality.
This measure, denoted as frame displacement (fd), was computed on each frame
independently.

To quantify the stabilization performances of our approach, we propose to
calculate the mean absolute difference of pixel grayscale values between two
consecutive frames, over the length of a video sequence. To avoid parts of the
image where we had no data, this measurement was performed on the overlapping
regions between both consecutive images (mpvd).
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5.4 Results

The first property that we wanted to quantify is whether our solution is capa-
ble of keeping registered to a constant viewpoint. We computed the proposed
mean fd over the whole course of tested sequences (Table 1). Results emphasize
the idea that a stabilization technique, such as StabilizationKalman, is not de-
signed to guarantee a constant viewpoint over the course of a video. On videos
‘C0’, ‘C1’ and ‘M2’, which are subject to little camera motion, all tested regis-
tration methods (RegistrationLastPos, RegistrationKalman) and the proposed
method perform very similarly. RegistrationKalman suffers from inertia, which
degrades its performance, eventually leading to being badly registered during
several hundreds of frames on ‘C2’. On all tested videos, the difference between
the proposed method and the better evaluated registration method is well within
subpixel range. This suggests that the proposed algorithm effectively preserves
the registration performances of its base component.

Settings M1 M2 M3 M4 C0 C1 C2 C4

Raw 17.43 17.91 14.81 27.1 11.19 11.79 20.04 9.15
StabilizationKalman 18.83 18.11 15.18 25.96 13.78 13.40 20.28 10.46
RegistrationLastPos 4.85 3.84 6.51 11.85 0.74 1.29 4.70 1.09
RegistrationKalman 6.21 3.83 7.33 12.49 0.96 1.40 14.07 1.19
Ours 4.86 3.85 6.55 11.87 0.75 1.30 4.70 1.12

Table 1. Mean frame displacement (fd) on our test sequences (pixels). In bold: the
best performance ; underlined: the second best performance.

The second evaluation focused on assessing the stability properties of the dif-
ferent methods based on the mpvd values (Table 2). The assumption here is that
on stable sequences, only mobile objects should cause pixel values to change sig-
nificantly from one frame to the next one. On the other hand, jitter would cause
pixel values to change suddenly over significant parts of the image, including the
background. Stability here is assessed by the lowest possible mpvd value. This
is verified in our experiment. In general, the poorest performance is visible on
the original image, which is unstable. RegistrationLastPos, where jitter occurs
despite the image being overall well registered, displays important values. Filter-
ing the output of the registration (RegistrationKalman) significantly improves
the results, which shows that this solution was able to tackle most of the jitter
issues. On all of the sequences, the better performances are observed with Stabi-
lizationKalman, and the proposed combination. The proposed method displays
the highest performances because of its ability to keep consistently registered to
the same viewpoint.
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Settings M1 M2 M3 M4 C0 C1 C2 C4

Raw 6.80 7.20 7.15 7.25 2.02 2.20 2.71 2.26
StabilizationKalman 3.24 3.32 3.38 3.30 1.49 1.60 2.09 1.65
RegistrationLastPos 6.46 4.96 6.54 7.88 2.22 2.39 3.92 2.11
RegistrationKalman 5.37 5.60 5.61 5.80 1.50 1.65 2.21 1.67
Ours 3.24 3.25 3.38 3.41 1.43 1.60 1.59 1.62

Table 2. Mean pixel value difference (mpvd) between consecutive frames (grayscale
value). In bold: the best performance ; underlined: the second best performance.

This quantitative outcome confirms the robustness of the proposed method
and the qualitative impression given by visual inspection of the videos 3 . Our
proposed approach can be effectively labeled as a jitter-free registration method.

6 Conclusion and perspectives

In this paper, we have addressed the problem of generating a constant viewpoint
from videos acquired by stationary UAVs. The camera being subjected to small
movements, the view is unstable and poses a problem for applying automatic
processing techniques, or long term analysis such as trajectory registration. In
this context, we have proposed a generic model to describe the inherent error
of motion estimation algorithms. We have used it as the foundation on how to
combine registration and stabilization techniques into one single hybrid method.
The method is real time and online. It prevents both jittery and drifting behavior,
even in the presence of multiple mobile objects. Results show that it retains the
better properties out of the tested stabilization and registration techniques.

Further work will focus on two main aspects. One of them is to investigate
how to handle situations where linear 2D-rigid warping is inappropriate, for
instance when significant parallax is observed. The second aspect is how to
update the reference image during the course of a day. This should enable us
to better cope with appearance changes on the background, such as lighting
conditions, which is a common problem during video surveillance applications.

Acknowledgements. This work was funded by AURA region (Pack Ambition
Recherche 2017). Station’air project, number 1701104601-40893.
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