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CONTINUITY WITH RESPECT TO THE SPEED FOR OPTIMAL

SHIP FORMS BASED ON MICHELL’S FORMULA

JULIEN DAMBRINE AND MORGAN PIERRE

Abstract. We consider a ship hull design problem based on Michell’s wave re-
sistance. The half hull is represented by a nonnegative function and we seek the
function whose support has a given area and which minimizes the total resistance
for a given speed and a given displacement. We show that the optimal domain
depends only on two parameters without dimension, the viscous drag coefficient
and the Froude number of the area of the support. We prove that the optimal
hull depends continuously on the Froude number and that the contribution of
Michell’s wave resistance vanishes as the Froude number tends to infinity. Nu-
merical simulations confirm the theoretical results for large Froude numbers. For
Froude numbers typically smaller than 1, the famous bulbous bow is numerically
recovered. For intermediate Froude numbers, a “sinking” phenomenon occurs. It
can be related to the nonexistence of a minimizer.

1. Introduction

In this paper, we are interested in finding ship hulls which minimize the resistance
of water to the motion of a ship. We focus on a model which involves Michell’s wave
resistance formula [30], in which the ship moves at constant speed in calm water.
The total resistance is the sum of the wave resistance and of the viscous resistance.
The viscous resistance is computed in a standard way: it is proportionnal to the
square of the speed of the ship and to the area of the wetted hull (see, e.g., [3,
(2.19)-(2.21)]).

Finding a hull which minimizes this total resistance, for a given displacement and a
given velocity of the ship, is a problem which has been extensively studied. Michell’s
theory is a first order model in which the hull is assumed to be similar to a vertical
plate: this is known as the thin ship assumption [25, 30, 31]. A similar expansion
on the area functional yields the Dirichlet energy. Thus, the optimal design problem
consists in minimizing a quadratic functional (the total resistance) under a linear
constraint (the given displacement).

Krein and Sisov [26, 32] proved that this problem is well-posed. By solving a
linear integro-differential equation, they showed that a unique solution exists in the
class of continuous functions. Closely related problems involving Michell’s formula
were also studied numerically, theoretically and experimentally by several authors
(see [14, 17, 24, 27, 28, 29] and [36, p. 209]). It is also natural to require for the
hull to be represented by a nonnegative function [26], in order to avoid self-crossing.
In such a case, the constraint is no longer a linear equality, but a set of linear
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2 CONTINUITY WITH RESPECT TO THE SPEED FOR OPTIMAL SHIP FORMS

inequalities. The problem which was previously linear falls now into the range of
quadratic programming [14, 17, 24, 27].

The numerical simulations in [14, 24, 27] showed that the famous bulbous bow [15,
20] can be very efficient in minimizing the total resistance, for some values of the
parameters. In some cases, a midship bulb was also found to be interesting [11, 17,
23, 24].

In the discussion above, the domain of arguments was fixed. Mathematically
speaking, the domain of arguments is the support of the hull function. Physically,
it is the longitudinal cross-section of the wetted hull. In [13], the authors proposed
to consider the domain of arguments as the unknown of the problem. The area of
the support was kept fixed in order to be consistent with the thin ship assumption.
This geometric shape optimization approach [1, 8, 22] allows to minimize even more
the total resistance. In [13], an optimal domain was proved to exist and a bulbous
bow was numerically obtained. It was also proved that Michell’s wave resistance
kernal belongs to L5/4−ε and that consequently, the optimal hull was locally Hölder
continuous.

Our purpose in this paper is to understand how the optimal domain depends on the
speed of the ship, whithin the framework of [13]. We first introduce a nondimensional
version of the problem, which shows that the optimal domain depends only on a area
Froude number, once the viscous drag coefficient is set (Section 2). The behaviour
of the Dirichlet energy and of the wave resistance functional are analyzed separately
in Section 3.

In Section 4, we show that the optimal hull depends continuously on the Froude
number. For this result, the Γ-convergence of the functionals in H1 is first estab-
lished. We note that the Sobolev space H1 is associated to the Dirichlet energy in a
natural way. Similarly, we show by means of Γ-convergence that the contribution of
Michell’s wave resistance becomes negligeable as the Froude number tends to +∞.

We explain our numerical approach in Section 5. In particular, we use the Froude
invariance to recover normalized domains. In Section 6, we present the optimal
domains obtained numerically for a large variety of Froude numbers. Three types
of regimes are identified. For small to moderate (area) Froude numbers, typically
between 0.5 and 1, the optimal domain exhibits a bulbous bow. For large Froude
numbers, the viscous resistance is dominant in the model and the domain ressem-
bles a half disc, as predicted by the theory. For intermediate Froude numbers, the
domain is driven far beneath the free surface by the minimization algorithm. This
“sinking” process can be related to the non-existence of a minimizer in the case
where no bounding box is added to the formulation of the problem. It gives a new
interpretation to the midship bulbs obtained by some authors in the case of a fixed
domain [18, 23, 24].

Our results for a variable domain give a new insight into the past approaches of the
problem for a fixed domain. The total resistance of a ship based on Michell’s formula
and on the Dirichlet energy is a model which appears frequently in the literature.
We confirm that it can be used as a toy model in the spririt of the Newton problem
of optimal profiles [9, 10]. Michell’s wave resistance alone has an importance which
has been underlined in the past decades [19, 33, 34, 35]. Contemporary studies show
that it can still prove fruitful in ship hull optimization [2, 4, 17].
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2. Formulation of the shape optimization problem

2.1. Functional setting. Let D be a nonempty open subset of R2. The stan-
dard Sobolev space H1(D) is equipped with the Hilbertian norm ∥u∥2H1 =

∫
D u2 +∫

D |∇u|2. We denote H1
0 (D) the closure for the H1-norm of C∞

c (D). Recall that

H1
0 (R2) = H1(R2). We will use that H1

0 (D) ⊂ H1(R2), which is a consequence of
the inclusion C∞

c (D) ⊂ C∞
c (R2).

For a function u ∈ H1
0 (D), we denote

Ωu = {x ∈ D : u(x) ̸= 0}.
Let |E| denote the Lebesgue measure of any measurable subset E of R2. The value
|Ωu| does not depend on the choice of the representation of u.

We recall the following Poincaré inequality (see, e.g. [22, Lemme 4.5.3]): there
exists a constant CP such for all u ∈ H1(R2) satisfying |Ωu| ≤ a, we have∫

R2

u2 ≤ aCP

∫
R2

|∇u|2. (2.1)

In particular, if D is a bounded domain, the Poincaré inequality shows that the
Hilbertian norm ∥u∥2

H1
0
=

∫
D |∇u|2 is equivalent to the H1-norm on H1

0 (D).

We denote (x, z) the cartesian coordinates in the plane R2. An open set D ⊂ R2

is symmetric (with respect to the x-axis) if for all (x, z) ∈ D, we have (x,−z) ∈ D.
For a function u defined on a symmetric open set D, we will denote ǔ the function
such that ǔ(x, z) = u(x,−z) for all (x, z) ∈ D. If D is a nonempty symmetric open
subset of R2, we denote Ȟ(D) the following closed subspace of H1

0 (D),

Ȟ(D) = {u ∈ H1
0 (D), ǔ = u a.e. in D}.

From now on and throughout the paper, D denotes a (nonempty) symmetric
bounded open subset of R2.

2.2. The normalized total resistance functional. For any u ∈ Ȟ(R2) such that
|Ωu| has finite measure, we consider the functional

J(u) = J0(u) + Jwave(u), (2.2)

where

J0(u) =

∫
R2

|∇u(x, z)|2dxdz (2.3)

and

Jwave(u) =
4α4

πCF (α)

∫ ∞

1
|Tu(λ)|2

λ4

√
λ2 − 1

dλ, (2.4)

with

Tu(λ) =

∫
R2

u(x, z)e−iλαxe−λ2α|z|dxdz. (2.5)

Note that for all λ > 0, Tu(λ) is well-defined by the Cauchy-Schwarz inequality and
the Poincaré inequality (2.1). Moreover, the function λ 7→ Tu(λ) depends continu-
ously on λ by Lebesgue’s dominated convergence theorem.

The functional J(u) represents a normalized version of the resistance of water to
the motion of a ship [13]. The Dirichlet energy J0(u) is obtained by linearization of
the area of the hull and it is related to the viscous resistance. The term Jwave(u) is
a normalization of Michell’s wave resistance of the hull [30]. In (2.4)-(2.5), α is the
Kelvin wave number (in m−1) and CF is assumed to be a positive and continuous
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function defined on (0,+∞) (CF (α) is the viscous drag coefficient and it has no
dimension). The integration parameter λ has no dimension: it can be interpreted as
λ = 1/ cos θ, where θ is an angle at which the wave energy is propagating [25]. The
variables x, z and u(x, z) are expressed in meters.

2.3. Some details on the model. In Michell’s theory [25, 30, 31], it is assumed
that the fluid is incompressible, inviscid and that the flow is irrotational. The motion
has persisted long enough so that a steady state has been reached. The hull also
satisfies the “thin ship” assumptions.

The ship is moving at constant velocity on the surface of an unbounded fluid.
A coordinate system fixed with respect to the ship is used. The xy plane is the
undisturbed water surface, the positive x axis is in direction of the motion and the
z axis is vertically upward. It is assumed that the hull is symmetric with respect
to the vertical xz-plane. The immerged half hull is represented by the nonnegative
function y = u(x, z) with x ∈ R and z ≤ 0.

Michell’s wave resistance of the hull represented by u is given by

RMichell =
ρg

4α
CF (α)Jwave(u),

where ρ (in kg ·m−3) is the constant density of the fluid, g (in m ·s−2) is the standard
gravity, and α is related to the speed U of the ship (in m · s−1) through α = g/U2.

In our model, the viscous resistance is equal to

Rviscous =
1

2

ρg

α
CF (α)

(
|a|+ 1

2
J0(u)

)
where |a| = |Ωu| (in m2) is (twice) the area of the support of the hull. The total
resistance of water to the motion of the ship (expressed in Newtons) reads

Rtotal = Rviscous +RMichell.

We refer the reader to [13] for more details on the model.

2.4. The nondimensional optimization problem. Let V > 0 (the volume of the
hull in m3) and a > 0 (the area of the support of the hull in m2). We define

Ca,+
V =

{
v ∈ Ȟ(R2) : v ≥ 0 a.e. in R2,

∫
R2

v(x, z)dxdz = V, and |Ωv| ≤ a

}
.

We consider the following optimal design problem:

(Pa,+
V ) Find u ∈ Ca,+

V such that J(u) ≤ J(v), ∀v ∈ Ca,+
V .

This problem can be simplified by using two scalings. Firstly, we can use that the
energy functional is quadratic with respect to u. Thus, we may set the value of V
without loss of generality. Roughly speaking, “the” optimal hull u depends linearly
on V and the corresponding optimal domain Ωu is independent of V [13, Remark
3.5].

Secondly, we can use the Froude invariance of the problem. The Froude scaling
is well-known for Michell’s wave resistance Jwave(u) and it turns out that J0(u) has
the same scaling. For our problem, the relevant Froude number Fr is related to the
area a through

Fr2 =
1

α
√
a
=

U2

g
√
a
. (2.6)
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In J(u) defined by (2.2), we set

x =
√
ax̃, z =

√
az̃, u(x, z) =

√
aũ(x̃, z̃), α = α̃/

√
a and CF (α) = C̃F (α̃). (2.7)

This yields J(u) = a
(
J̃0(ũ) + J̃wave(ũ)

)
, where J̃0(ũ) and J̃wave(ũ) have the same

expression as J0(u) (see (2.3)) and Jwave(u) (see (2.4)-(2.5)) except that all the

variables are replaced by their dimensionless version x̃, z̃, ũ(x̃, z̃), α̃ and C̃F (α̃).

By choosing V = a3/2, we see that problem (Pa,+
V ) is equivalent to problem

(P+) Find ũ ∈ C+ such that J̃(ũ) ≤ J̃(ṽ), ∀ṽ ∈ C+,

where J̃(ũ) = J̃0(ũ) + J̃wave(ũ) and

C+ =

{
ṽ ∈ Ȟ(R2) : ṽ ≥ 0 a.e. in R2,

∫
R2

ṽ(x̃, z̃)dx̃dz̃ = 1, and |Ωṽ| ≤ 1

}
. (2.8)

If ũ is a solution to problem (P+), a solution uaV to problem (Pa,+
V ) is recovered by

setting uaV (x, z) = V a−1ũ(x/
√
a, z/

√
a). In this case, we have

J(uaV ) =
V 2

a2
J̃(ũ). (2.9)

Thus, we may set a = 1 and V = 1 in problem (Pa,+
V ), without loss of generality.

Alternatively, we may think of the nondimensional problem (P+) as problem (Pa,+
V )

in which a = 1 and V = 1, so in the remainder of the paper, we omit the˜symbol in
problem (P+). The optimal domain Ωu, if it exists, depends only on two parameters
without units, namely Fr and CF .

Using (2.4)-(2.5), it is easy to see that Jwave is invariant by translation along the
x-axis. Thus, if u is a solution to problem (P+), any translate of u along the x-axis
is also a solution.

Remark 2.1. Problem (Pa,+
V ) is related to the following shape optimization prob-

lem [13, Remark 3.2]: find an open and symmetric set Ω⋆ such that

J(uΩ⋆) = inf
{
J(uΩ), Ω ⊂ R2 open and symmetric, |Ω| = a

}
, (2.10)

where uΩ is uniquely defined by

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω), v̌ = v and v ≥ 0 a.e. in Ω,

∫
Ω
v = V

}
. (2.11)

2.5. Introduction of a bounding box. The analysis and the numerical simula-
tions which follow indicate that problem (P+) may have a solution or not, depending
on the values of the parameters. In order to simplify the analysis and to have some
compactness, we introduce a “bounding box”, namely a symmetric bounded open
subset D of R2 such that |D| > 1. We replace problem (P+) by the simpler problem

(P+
D) Find u ∈ C+(D) such that J(u) ≤ J(v), ∀v ∈ C+(D),

where

C+(D) =

{
v ∈ Ȟ(D) : v ≥ 0 a.e. in D,

∫
D
v(x, z)dxdz = 1, and |Ωv| ≤ 1

}
.

By considering a minimizing sequence, it is easy to see that problem (P+
D) has at

least one solution u [13, Theorem 3.3].
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3. Special situations

3.1. The problem without wave resistance. We first consider the case where
J(u) is replaced by J0(u) in our optimization problem. We recall a well-known result
concerning the following problem:

(P0) Find u0 ∈ C0 such that J0(u0) ≤ J0(v), ∀v ∈ C0,

where

C0 =

{
v ∈ H1(R2) :

∫
R2

v(x, z)dxdz = 1 and |Ωv| ≤ 1

}
. (3.1)

Theorem 3.1. Problem (P0) has a radial solution u0, which is unique up to trans-
lation in R2, namely

u0(x, z) =

{
2− 2πr2 if r2 = x2 + z2 < 1/π

0 if r2 ≥ 1/π.
(3.2)

In particular, J0(u0) = 8π.

Proof. Problem (P0) is known as the Saint-Venant problem. We refer the reader
to [6] and references therein. A radial solution can be obtain by means of a Schwarz
symmetrization. �

Next, we consider problem

(P0
D) Find u0D ∈ C0

D such that J0(u
0
D) ≤ J0(v), ∀v ∈ C0

D,

where

C0
D =

{
v ∈ Ȟ(D) :

∫
D
v(x, z)dxdz = 1 and |Ωv| ≤ 1

}
.

By considering a minimizing sequence, this problem has at least one solution u0D [13,
Theorem 3.3]. Moreover, any solution u0D is nonnegative, otherwise the function

u⋆ = |u0D|/
∫
D
|u0D(x, z)|dxdz

would belong to C0
D and it would satisfy J0(u

⋆) < J0(u
0
D). The set C

0
D can therefore

be replaced by the set C+(D) in problem (P0
D).

The minimizer u0D can be determined in the following generic situation, which is
an immediate consequence of Theorem 3.1 and of the symmetry condition which is
imposed in the space Ȟ(D).

Corollary 3.2. Assume that D contains a disc of area 1 centered at (x0, 0) (up to
a set of zero capacity). Then a solution of (P0

D) is given by u0D(x, z) = u0(x− x0, z)
(see (3.2)) and we have J0(u

0
D) = 8π. Moreover, u0D is unique up to any translation

along the x-axis such that the translate of u0D belongs to Ȟ(D).

3.2. Behaviour of the wave resistance functional. We focus now on the wave
resistance functional Jwave (2.4). A result of Krein [25] adapted to our context reads:

Theorem 3.3. The infimum infv∈C+(D) Jwave(v) is strictly positive.
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Proof. Assume by contradiction that infv∈C+(D) Jwave(v) = 0, and let (vn) denote a

minimizing sequence in C+(D). Then (vn) is a sequence of nonnegative functions
such that

∫
D vn = V , so that, up to a subsequence, (vn) converges in the sense of

measures (i.e. weakly-⋆ in C0(D)′) to a nonnegative measure µ⋆ on D such that
⟨µ⋆, 1⟩ = V . In particular, for all λ ∈ R (see (2.5)),

Tvn(λ) → Tµ⋆(λ) := ⟨µ⋆, e−iλαxe−λ2α|z|⟩.
By Fatou’s lemma,

0 ≤ 4α4

πCF (α)

∫ ∞

1
|Tµ⋆(λ)|2 λ4

√
λ2 − 1

dλ ≤ lim inf
n

Jwave(vn) = 0,

so that Tµ⋆(λ) = 0 for all λ ∈ (1,∞). By analycity (since D is bounded), Tµ⋆(λ) = 0
for all λ ∈ R. Next, we use that the Fourier transform of a Gaussian density is
known: ∫

R
e−λ2αz′e−iλαxdλ =

√
π

αz′
e−αx2/(4z′) (z′ > 0).

We multiply Tµ⋆(λ) by e−λ2α and we integrate on R (this is possible thanks to the
new term). By changing the order of integration, we find

0 = ⟨µ⋆,
∫
R e−λ2α(|z|+1)e−iλαxdλ⟩ = ⟨µ⋆,

√
π

α(1+|z|)e
−αx2/(4(1+|z|))⟩.

This contradicts ⟨µ⋆, 1⟩ = V > 0 and concludes the proof. �
Theorem 3.3 shows that a function v ∈ C+ with compact support has a strictly

positive wave resistance Jwave(v). There are schematically two ways of letting
Jwave(v) tend to 0 while v stays in C+. One way is to let the support of v get
away from the x-axis, as in Theorem 3.5. Physically, this means that the influence
of the free surface becomes negligeable as the depth increases. Another possibility
is to let the length of the support of v tend to +∞. In this regard, it is instructive
to see what happens for a Wigley hull (see, e.g. [31]).

For every L > 0 (the length), T > 0 (the draft) and B > 0 (the beam), we consider
the Wigley hull

wL,T,B(x, z) =


B

2

(
1−

|z|
T

)(
1−

4x2

L2

)
if |x| ≤ L/2 and |z| ≤ T,

0 otherwise

Proposition 3.4. For each L > 0, we set TL = 1/(2L) and BL = 6. Then we have∫
R2

wL,TL,6(x, z)dxdz = 1, ΩwL,TL,6 = 1 and Jwave(wL,TL,6) → 0 as L → +∞.

Proof. The Wigley hull wL,T,B has a rectangular support with area 2LT and its
volume is ∫

R2

wL,T,B(x, z)dxdz = BLT/3.

A computation yields
TwL,T,B (λ) = B I1(λ) I2(λ)

with

0 ≤ I2(λ) =

∫ T

0
e−λ2αz(1− z/T )dz ≤

∫ T

0
e−λ2αzdz =

1− e−λ2αT

αλ2
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and

I1(λ) =

∫ L/2

−L/2

(
1− 4x2

L2

)
e−iλαxdx = − 8

λ2α2L

[
cos

(
λαL

2

)
− 2

λαL
sin

(
λαL

2

)]
.

For λ ≥ 1 we have

|I1(λ)| ≤
8

λ2α2L

(
1 +

2

αL

)
and |I2(λ)| ≤

1

αλ2
,

and from (2.4), we deduce that

Jwave(wL,T,B) ≤
256B2

πCF (α)α2L2

(
1 +

2

αL

)2 ∫ ∞

1

dλ

λ4
√
λ2 − 1

.

The claim follows by choosing T = 1/2L, B = 6 and by letting L tend to +∞. �

Figure 1 shows the behaviour of Jwave(wL,TL,6) as a function of L for area Froude
numbers Fr = 0.3, 0.4 and 0.5 (cf. (2.6)). In this numerical computation, the
coefficient CF was set equal to 0.01. It confirms that it can be very interesting to
increase the length of the domain.
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Figure 1. Jwave(wL,TL,6) vs. L

3.3. A nonexistence result. If D is unbounded, problem (P+
D) may have no solu-

tion, as shown by the following result. We denote R⋆ = R \ {0} and

C+(R× R⋆) =

{
v ∈ Ȟ(R× R⋆) : v ≥ 0 a.e.,

∫
R×R⋆

v = 1 and |Ωv| ≤ 1

}
.
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Theorem 3.5. We have infv∈C+(R×R⋆) J(v) = 16π and this infimum is not attained.
A minimizing sequence is obtained by setting

vn(x, z) =


2− 4π((x2 + (z − zn)

2) if x2 + (z − zn)
2 < 1/(2π)

2− 4π((x2 + (z + zn)
2) if x2 + (z + zn)

2 < 1/(2π)

0 otherwise

(3.3)

and by letting zn tend to +∞.

Proof. By symmetry, a function u⋆ is a minimizer of J0 in the set C+(R×R⋆) if and
only if its restriction u⋆|R×(0,+∞) to the open set R× (0,+∞) is a minimizer of J0 in

the set

{v ∈ H1
0 (R× (0,+∞)) : v ≥ 0 a.e. , |Ωv| ≤ 1/2,

∫
R×(0,+∞)

v = 1/2}.

By Theorem 3.1 and scaling arguments, for any zn ≥
√

1/(2π) the function vn
defined by (3.3) is such a minimizer and J0(vn) = 16π. By construction,

J(v) = J0(v) + Jwave(v) ≥ J0(v), (3.4)

for all v ∈ Ȟ(R× R⋆), so that

inf
v∈C+(R×R⋆)

J(v) ≥ inf
v∈C+(R×R⋆)

J0(v) = 16π.

For zn >
√

1/(2π), we have

|Tvn(λ)| ≤
∫
R×R⋆

|vn(x, z)|e−λ2α|z|dxdz ≤ V e−λ2α(zn−
√

1/(2π)),

so that Jwave(vn) → 0 as zn → +∞. This shows that

inf
v∈C+(R×R⋆)

J(v) = J0(vn) = 16π.

Now we assume by contradiction that J(u⋆) = 16π for some u⋆ ∈ C+(R × R⋆).
Then by (3.4) we have J0(u

⋆) = 16π and Jwave(u
⋆) = 0. In particular, u⋆ is a

minimizer of J0 in C+(R × R⋆). The uniqueness result in Theorem 3.1 and the
symmetry argument above imply that u⋆ is either a function vn or the translate
of a function vn in the x direction, for some zn ≥

√
1/(2π). In particular, u⋆ has

a compact support. For such a function, Theorem 3.3 shows that Jwave(u
⋆) > 0,

yielding a contradiction. The proof is complete. �
Theorem 3.5 and Theorem 3.1 imply that

inf
v∈C+

J(v) ∈ [8π, 16π]. (3.5)

4. Continuity with respect to the speed

4.1. Michell’s wave resistance kernel. By formally switching the integrals in
the expression (2.4)-(2.5), we see that Michell’s normalized wave resistance can be
written

Jwave(u) =

∫
R2×R2

kα(x, z, x
′, z′)u(x, z)u(x′, z′)dxdzdx′dz′ (4.1)

where

kα(x, z, x
′, z′) =

4α4

πCF (α)
k(α(x− x′), α(|z|+ |z′|)) (4.2)
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and

k(X,Z) =

∫ ∞

1
e−λ2Z cos(λX)

λ4

√
λ2 − 1

dλ. (4.3)

This formal calculation was rigorously proved in [13, Appendix A]. It was shown

that Michell’s kernel belongs to L5/4−ε(D ×D) and that this estimate is optimal if
D contains an open disc centered on the x-axis.

The results from [13, Appendix A] are summarized in the proposition below. We
first note that k is defined and continuous on R× (0,+∞), thanks to the exponential
term, so that kα is continuous on (R× R⋆)2.

Proposition 4.1. Michell’s normalized wave resistance kernel kα (4.2) belongs to

Lq(D × D) for all 1 ≤ q < 5/4. For each q′ > 5 and for each u ∈ Lq′(D), the
formulations for Jwave(u) given by (2.4)-(2.5) and (4.1)-(4.2)-(4.3) are equal.

Let q ∈ (1, 5/4) and let q′ = q/(q − 1) ∈ (5,+∞) be the conjugate exponent of q.
By Hölder’s inequality, we have∫

D

∫
D
|kα(x, z, x′, z′)u(x, z)v(x′, z′)|dxdzdx′dz′ ≤ ∥kα∥Lq(D×D)∥u∥Lq′ (D)∥v∥Lq′ (D),

(4.4)

for all u, v ∈ Lq′(D). Since H1
0 (D) is continuously imbedded in Lq′(D) for all q′ ∈

[1 +∞) [16], this shows that for all u ∈ Ȟ(D), Jwave(u) < +∞.

4.2. Continuity of the optimal hull with respect to the speed. In this sec-
tion, we show that “the” solution u of problem (P+

D) depends continuously (up to
uniqueness) on the Froude number Fr through α = 1/Fr2 (i.e. on the speed U of
the ship, since Fr2 = U2/g

√
a, cf. Section 2.4). For this purpose, a good approach

is the Γ-convergence of the functionals in H1 [5, 22].

In order to stress the dependence on α, we denote Jα
wave Michell’s normalized

wave resistance (2.4); Tα
u is the corresponding operator (2.5), the normalized total

resistance is Jα = J0 + Jα
wave, and problem (P+

D) is denoted (P+
D,α). We recall that

CF : (0,+∞) → (0,+∞) is a positive function which depends continuously on α.
The following lemma provides a Γ-convergence result for the weak H1-topology

(in any bounded subset of Ȟ(D) which is weakly closed).

Lemma 4.2. Let α, αn be positive real numbers such that αn → α. Then,

(i) For every sequence (un) in Ȟ(D) which converges weakly in H1
0 (D) to some

u, Jα
wave(u) ≤ lim infn J

αn
wave(un), and

(ii) For every u ∈ Ȟ(D), Jαn
wave(u) → Jα

wave(u).

Proof. Let (un) be a sequence in Ȟ(D) which converges weakly in H1
0 (D) to some u.

Then (un) converges weakly in L2(D) to u and the functions (x, z) 7→ e−iλαnxe−λ2αn|z|

converge uniformly in D to the function (x, z) 7→ e−iλαxe−λ2α|z|, so that Tαn
un

(λ) →
Tα
u (λ), for every λ ∈ (1,+∞). By Fatou’s lemma,∫ ∞

1
|Tα

u (λ)|
2 λ4

√
λ2 − 1

dλ ≤ lim inf
n

∫ ∞

1

∣∣Tαn
un

(λ)
∣∣2 λ4

√
λ2 − 1

dλ.

Since CF is a positive and continuous function, this proves point (i).
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Let now u ∈ Ȟ(D). In order to prove point (ii), we use that Jα
wave can be

expressed in terms of the kernel kα, cf. Proposition 4.1. Performing the change of
variable (x̃, z̃, x̃′, z̃′) = α(x, z, x′, z′) in (4.1), we find that

Jα
wave(u) =

4

πCF (α)

∫
αD×αD

k(x− x′, |z|+ |z′|)u(x
α
,
z

α
)u(

x′

α
,
z′

α
)dxdzdx′dz′. (4.5)

Since αn → α > 0, the domains αnD, αD are all contained in an open disc Bl of
radius l > 0 large enough and centered at (0, 0). Thus, since u ∈ H1

0 (D),

Jαn
wave(u) =

4

πCF (αn)

∫
Bl

k(x− x′, |z|+ |z′|)u( x

αn
,
z

αn
)u(

x′

αn
,
z′

αn
)dxdzdx′dz′. (4.6)

By Proposition 4.1, k1 belongs to Lq(Bl ×Bl) for some 1 < q < 5/4. Moreover, the

sequence of functions un(x, z) = u( x
αn

, z
αn

) converges strongly in Lq′(Bl) to u( xα ,
z
α).

By (4.4) and the continuity of CF , the right-hand side of (4.6) converges to the
right-hand side of (4.5), i.e. Jαn

wave(u) → Jα
wave(u), as claimed. �

From this, we deduce:

Theorem 4.3. Let α, αn be positive real numbers such that αn → α and for every
n, let un denote a solution of problem (P+

D,αn
). Then, up to a subsequence, (un)

converges strongly in H1
0 (D) to a solution u of problem (P+

D,α).

Proof. Let uα denote a solution of problem (P+
D,α). Then

Jαn(un) = J0(un) + Jαn
wave(un) ≤ Jαn(uα), (4.7)

and Jαn(uα) is bounded by a constant independent of n, by point (ii) of Lemma 4.2.
This shows that (un) is bounded in H1

0 (D) so, up to a subsequence, (un) converges
weakly in H1

0 (D) to some u, which belongs to Ȟ(D). By Rellich’s theorem, (un)
converges to u strongly in L2(D) and (up to a subsequence) a.e. in D. Thus, u ≥ 0
a.e. in D and

∫
D u = V . We have χΩu ≤ lim infn χΩun

a.e. in D, so by Fatou’s
lemma,

|Ωu| =
∫
D
χΩu ≤ lim inf

n

∫
D
χΩun

= lim inf
n

|Ωun | ≤ 1.

This shows that u belongs to C+(D). By semi-continuity of J0, and by point (i) of
Lemma 4.2,

Jα(u) = J0(u) + Jα
wave(u) ≤ lim inf

n
J0(un) + lim inf

n
Jαn
wave(un) ≤ lim inf

n
Jαn(un).

Using (4.7) and point (ii) of Lemma 4.2, we also have

lim inf
n

Jαn(un) ≤ Jα(uα).

Thus, Jα(u) ≤ Jα(uα), and so u is a solution of problem (P+
D,α). By (4.7) and

Lemma 4.2 again, we have

lim sup
n

J0(un) ≤ lim
n

Jαn(uα)− lim inf
n

Jαn
wave(un) ≤ Jα(uα)− Jα

wave(u) = J0(u),

and so J0(un) → J0(u). Thus, (un) converges to u strongly in H1
0 (D) and the proof

is complete. �
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4.3. Behaviour for large speeds. The following Γ-convergence result implies that
when α → 0, the contribution of the wave resistance disappears if CF is constant
or if 1/CF (α) has a logarithmic growth, as in the ITTC 1957 model-ship correlation
line [3, Equation (2.18)].

Lemma 4.4. Assume that α/CF (α) → 0 as α → 0+. Then for every u ∈ Ȟ(D),
Jα
wave(u) → 0 as α → 0+.

Proof. We let l > 0 be large enough so that D ⊂ (−l, l)2. The space Ȟ(D) can be
seen as a subspace of H1

0 ((−l, l)2). Let u ∈ Ȟ(D). Then u, being an element of
H1

0 ((−l, l)2), has a trace on (−l, l) × {0} which belongs to L2(−l, l) [7]. Using the
symmetry of u and integrating by parts with respect to z in (2.5), we find

Tα
u (λ) =

1

λ2α
[Aα

u(λ) +Bα
u (λ)] , (4.8)

with

Aα
u(λ) = 2

∫ l

−l
u(x, 0)e−iλαxdx and Bα

u (λ) = 2

∫
D+

uz(x, z)e
−iλαxe−λ2αzdxdz.

(4.9)
Here, we denote D+ = D ∩ {(x, z) ∈ R2 : z > 0}. From (2.4) and (4.8), we deduce

Jα
wave(u) =

4α4

πCF (α)

∫ 2

1
|Tα

u (λ)|
2 λ4

√
λ2 − 1

dλ

+
4α2

πCF (α)

∫ ∞

2
|Aα

u(λ) +Bα
u (λ)|

2 1√
λ2 − 1

dλ. (4.10)

We have |Tα
u (λ)| ≤ ∥u∥L1(D) ≤ |D|1/2∥u∥L2(D) for all λ ∈ (1, 2), so that by the

assumption on CF , the first term in the right-hand side of (4.10) tends to 0 as
α → 0+. For the second term, we use that

4α2

πCF (α)

∫ ∞

2
|Aα

u(λ) +Bα
u (λ)|

2 1√
λ2 − 1

dλ

≤ 8α

πCF (α)

∫ ∞

2

∣∣√αAα
u(λ)

∣∣2 1√
λ2 − 1

dλ

+
8α

πCF (α)

∫ ∞

2

∣∣√αBα
u (λ)

∣∣2 1√
λ2 − 1

dλ. (4.11)

We will prove that
√
αAα

u and
√
αBα

u are bounded in

L2((2,+∞), dλ/
√

λ2 − 1),

i.e. the space of complex-valued square integrable functions with respect to the
measure dλ/

√
λ2 − 1 on (2,+∞). The assumption on CF implies then that every

term in (4.11) tends to 0 as α tends to 0+, and the proof will be complete.
Letting x′ = αx in the definition of Aα

u , we find

√
αAα

u(λ) =
2√
α

∫ αl

−αl
u(x′/α, 0)e−iλx′

dx′ = F
(

2√
α
vu(

·
α
)

)
, (4.12)

where vu : R → R is the trace of u on (−l, l) and 0 on R \ (−l, l), and F :
L2(R;C) → L2(R;C) is the Fourier transform (a linear bounded operator). But
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∥ 2√
α
vu(

·
α)∥L2(R) = ∥2vu(·)∥L2(R), so the family 2√

α
vu(

·
α) is bounded in L2(R), and

√
αAα

u as well. Finally, since
√
λ2 − 1 ≥ 1 for all λ ≥ 2, we have

∥
√
αAα

u∥L2((2,+∞),dλ/
√
λ2−1) ≤ ∥

√
αAα

u∥L2((2,+∞),dλ) ≤ ∥
√
αAα

u∥L2(R),

and so
√
αAα

u is bounded in L2((2,+∞), dλ/
√
λ2 − 1), as claimed.

By the Cauchy-Schwarz inequality, we have

|
√
αBα

u (λ)| ≤ 2
√
α∥uz∥L2(D+)∥e−λ2αz∥L2(D+),

≤ 2∥uz∥L2(D)

√
l

λ
. (4.13)

Thus,
√
αBα

u is bounded in L2((2,+∞), dλ/
√
λ2 − 1), as claimed. The lemma is

proved. �

Arguing as in the proof of Theorem 4.3, from Lemma 4.4 we deduce:

Theorem 4.5. Assume that α/CF (α) → 0 as α → 0+, let (αn) be a sequence of
positive real numbers such that αn → 0, and for every n, let un denote a solution of
problem (P+

D,αn
). Then, up to a subsequence, (un) converges strongly in H1

0 (D) to a

solution u0D of problem (P0
D).

Remark 4.6. The minimizers u0D have been determined when D contains a disc of
area 1 centered on the x-axis (Corollary 3.2).

Remark 4.7. Assume that CF is constant. Then it is easy to see that for all
u ∈ C∞

c (D) ∩ Ȟ(D), Jα
wave(u) → 0 as α → +∞. However, we have not been able to

prove that a sequence (un) of solutions to problem (P+
D,αn

) converges to a solution

u0D when αn → +∞.

5. Numerical methods

In order to study numerically how the optimal shape depends on the Froude
number, we have computed solutions to problem (P+). We describe here the shape
optimization gradient algorithm that was used (see also [13, Section 8] and [1, Section
6.5]).

We stress that we used the dimensional form of the problem for the algorithm.
Our computation first provides a numerical solution to a problem (Pa,+

V ). Then,
we apply the scalings described in Section 2.4 and we recover a solution to the
nondimensional problem (P+). In particular, the Froude invariance ensures that the
area of the computed optimal domain is equal to 1.

Figure 2. Optimal domain for Fr = 0.46
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Figure 3. Optimal domain for Fr = 0.67 (top), 0.81 (middle) and
0.98 (bottom)

Figure 4. Optimal hull for Fr = 0.67

5.1. Shape derivative. For the numerical resolution of problem (Pa,+
V ), we use the

formulation (2.10), where uΩ is the unique solution of

J(uΩ) = min

{
J(v), v ∈ H1

0 (Ω), v̌ = v a.e. in Ω and

∫
Ω
v = V

}
. (5.1)

Note that if the solution uΩ of (5.1) is nonnegative, then uΩ also solves (2.11). In
all the numerical simulations presented below, the nonnegativity of uΩ was checked
numerically.

Using Michell’s kernel kα (4.2), a standard argument [13] shows that the solution
uΩ ∈ Ȟ(Ω) to (5.1) is the unique solution to the linear boundary value problem{

−∆uΩ(x, z) +
∫
Ω kα(x, z, x

′, z′)uΩ(x
′, z′)dx′dz′ = C, (x, z) ∈ Ω,∫

Ω uΩ(x, z)dxdz = V.
(5.2)

The constant C ∈ R is the Lagrange multiplier associated to the volume constraint.
As a shortcut, we denote J (Ω) = J(uΩ) the shape functional. Assume that Ω is

a symmetric bounded subset of R2 with smooth boundary ∂Ω. The shape derivative
J ′(Ω) of J at Ω is the differential in W 1,∞(R2,R2) of the functional

θ 7→ J
(
(Id+ θ)(Ω)

)
.

A standard computation [1, 22] shows that

J ′(Ω)(θ) = −
∫
∂Ω

θ · n
(
∂uΩ
∂n

)2

dσ,

where n is the exterior normal to ∂Ω.
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We only allow variations θ for which the domain (Id + θ)(Ω) is symmetric, i.e.
such that θ = (θ1, θ2) satisfies

θ1(x,−z) = θ1(x, z) and θ2(x,−z) = −θ2(x, z) for a.e. (x, z) ∈ R2. (5.3)

We denote W̌ the subspace of variations θ ∈ W 1,∞(R2,R2) which fulfill the symmetry
conditions (5.3).

Figure 5. A minimizing sequence for Fr = 1.75 (sinking case)

5.2. Shape optimization gradient algorithm. The algorithm starts with an ini-
tial domain Ω0. For k = 0, 1, 2, . . . until convergence, the domain Ωk+1 is computed
as follows:

(1) Compute the solution uΩk
to (5.2) on Ωk.
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Figure 6. Optimal hull built on a half disc for Fr = 1.75 (3D view
of Figure 5-top)

(2) Compute the descent direction θk ∈ W̌ which solves0.1θk −∆θk = 0 in Ωk

∂θk
∂n =

((
∂uΩk
∂nk

)2
− λk

)
nk on ∂Ωk.

(5.4)

where nk is the outward normal to Ωk and

λk =
1

2
λk−1 +

1

2

1∫
∂Ωk

dσ

∫
∂Ωk

(
∂uΩk

∂nk

)2

dσ + 2
|Ωk| − |Ω0|

|Ω0|
.

(3) Set Ωk+1 = (Id+ µkθk)(Ωk), where µk = 0.05 is the constant step size.

Due to the Neumann boundary condition in (5.4), θk is a regularization of the shape
gradient. Moreover, θk is a descent direction of J associated to the area constraint [1,
p. 159]. The area constraint |Ωk| = a is dealt with thanks to the Lagrange multiplier
λk. It is only satisfied at convergence.

No bounding box D is used. The algorithm is stopped when two successive values
of the resistance J(uΩk

) are close enough and when the shape gradient is small
enough. The optimal domain usually depends on the choice of the initial domain.
In some cases, the algorithm did not converge and it was stopped after a maximal
number of steps.

In order to take advantage of the symmetry of the domain about the x-axis, the
gradient algorithm is only performed on the lower half of the domain Ωk. This
corresponds to the initial optimization problem of finding an optimal ship hull [13].
It divides by two the number of unknowns. For the space discretization, we used
at every step k the same mesh for the computation of uΩk

and θk, because the
computation of the full matrix associated to Michell’s kernel is costly. A remeshing
is performed for Ωk+1.

We validated our algorithm by solving problem (P0) numerically. The optimal
domain that we obtained was a half disc, in agreement with Theorem 3.1. The
relative error between the numerical value of the infimum of J0 and its theoretical
value was less than 0.001. The computation of the wave-resistance Jwave was tested
on Wigley hulls and compared with values in the literature [14].

6. Numerical results
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Figure 7. Optimal domain for Fr = 2.45 (top), 3.15 (middle) and
4.90 (bottom)

Figure 8. Optimal hull for Fr = 4.90

6.1. Optimal domains. We have computed numerically the optimal solution u to
problem (P+) for different values of the area Froude number Fr (2.6). The viscous
drag coefficient CF was set to 0.01, except in Figure 10 and Section 6.3.

In Figures 2-7, the optimal domain is represented in variables
√
πx̃,

√
πz̃ where

x̃, z̃ are defined in (2.7). In these figures, the level sets of the optimal hull are also
represented for a same normalized volume V . If we use units, these figures represent
the solution to problem (Pa,+

V ) for a = π (m2) and V = π/3 (m3). The choice a = π
allows an easy comparison with a disc of radius one, as computed in Figure 5 (top).
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6.1.1. Froude numbers smaller than 1. We first computed the optimal solution for
Fr = 0.67 in Figure 3 (top) and Figure 4. We see that the optimal hull in this case has
a bulbous bow. It is also even with respect to the z-axis. This can easily be related
to the symmetry of the functional J if the domain is assumed to be symmetric [14],
but proving the symmetry of the optimal domain seems out of reach.

The optimal domains for Froude numbers between 0.5 and 1 have a similar shape,
as can be seen in Figure 3. We recover here that these values of the Froude number
correspond to the situation where the contribution of the wave-resistance is most
important [2, 34] and where a bulbous bow is most interesting.

For Froude numbers smaller than 0.5, the contribution of the wave resistance
becomes small (Figure 2), as partially predicted, cf. Remark 4.7.

In Table 1, we have computed the length L of the optimal domain with area 1 for
several Froude numbers in [0.34, 0.98]. We have also computed the length Froude
number FrL of the optimal domain defined by

Fr2L =
U2

gL
=

√
a

L
Fr2.

We see that the length of the optimal domain increases as the Froude number in-
creases. This agrees with the importance of the length in ship hull design [25].

In a simplified model where only the ship’s bow and stern are sources of wave
formation, the optimal length Froude number has a typical value corresponding to
a favorable interference of the transverse waves generated by the ship [25, pp. 325–
326] (cf. also [12]). The model here is more complex regarding the geometry, so that
the length Froude number FrL is not exactly constant. The situation is even more
complicated in reality, but statistical observations can be gathered concerning the
main characteristics of ship hulls. In [4], a simple model involving Michell’s wave
resistance explains these observations.

Fr 0.34 0.46 0.58 0.67 0.74 0.81 0.89 0.98√
πL 2.82 3.69 4.73 5.12 5.81 6.19 6.43 6.50

FrL 0.27 0.32 0.35 0.39 0.41 0.43 0.47 0.51

Table 1. Comparison of the area Froude number Fr, the length L
of the optimal domain and the length Froude number FrL (a = 1)

6.1.2. Large Froude numbers. For large Froude numbers, the contibution of the wave
resistance vanishes and the optimal domain ressembles a half disc, in agreement with
Theorem 4.5. This can be seen for Fr = 4.90 in Figure 7 (bottom) and Figure 8.

As the Froude number decreases from 4.90, the contribution of the wave resistance
becomes more important. The center of gravity of the optimal domain decreases
along with the Froude number, as shown in Figure 7 for Fr = 4.90, Fr = 3.15 and
Fr = 2.45. Here, the wave resistance decreases by increasing the typical depth of
the optimal domain. This is very different from the bulbous bow which is related to
the length, as seen previously.

6.1.3. Intermediate Froude numbers. For Fr ∈ [1.1, 2.1], we did not find any stable
minimizer to the problem. Instead, starting with a half disc, the algorithm produced
a minimization sequence similar to the one built in Theorem 3.5. This is shown
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in Figure 5 for Fr = 1.75. For these values of the Froude number, problem (P+)
does not seem to have a solution. The wave resistance functional goes to zero as the
domain “sinks”.

We think that this “sinking” phenomenon can be related to the midship bulbs
obtained by some authors such as Hsiung [23, 24] and Gotman [18]. They used
a similar model based on Michell’s wave resistance in the case of a fixed domain.
The midship bulb is clearly observed in Figure 6 where we see the optimal hull for
Fr = 1.75 when the domain is a half disc (the half disc is not optimal in this case).
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Figure 9. J⋆ vs Fr (CF = 0.01)

6.2. Value of the infimum. The three different possibilities for the optimal domain
are obvious in Figure 9. Let us consider the infimum for problem (P+),

J⋆ =
1

8π
inf

v∈C+
J(v).

We denote J⋆
num the corresponding value which was obtained numerically in the

simulations above. The value J⋆
num is represented as a function of Fr in Figure 9.

Estimate (3.5) shows that the theoretical value J⋆ must belong to the interval
[1, 2]. This is verified numerically with J⋆

num for Fr ≥ 3 in Figure 9 (hence the term
“global minimizer” for the points on the blue curve). In agreement with Theorem 4.5,
the value J⋆

num tends to 1 as Fr becomes large.
For Fr = 2.45, an optimal domain was also numerically obtained (Figure 7, top),

but with the value J⋆
num = 2.25 which is clearly greater than 2. This case cannot

correspond to a global minimizer and it is most likely a local minimizer of the
problem.

The points on the blue curve were obtained as follows. We first computed the
optimal domain for Fr = 3.50 by choosing a half disc as an initial guess for the
minimization algorithm. We obtained the value J⋆

num = 1.64. The converged domain
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was then used as an initial guess for the nearest Froude numbers on the blue curve
(Fr = 2.80 and Fr = 3.85), and so on. For Fr = 2.09, the algorithm did not
converge and a sinking phenomen was observed. Accordingly, we set J⋆

num = 2 for
Fr = 2.09 in the Figure.

The sinking phenomenon was also numerically confirmed for the values Fr = 1,
1.25, 1.5 and 1.75 with a half disc as initial guess.

For Fr ∈ (0.5, 1), the situation is completely different. We obtain an optimal
domain which cannot be a global minimizer since the value J⋆

num is a lot greater
than 2. This value increases up to 10 for Fr close to 1. We obtain a domain which
is numerically stable, so that it is likely to be a local minimizer for the problem.
This reminds what happens for the Dirichlet energy with source term in a exterior
domain in [21]: the global infimum is reached by a sequence of domains which “goes
to infinity”, whereas the most interesting cases are the local minimizers.

The points on the red curve were obtained as follows. We first computed the
optimal domain for Fr = 0.67 with a half ellipse as initial guess for the minimization
algorithm, namely {(x, z) ∈ R × (−∞, 0], (x/1.1)2 + (z/0.3)2 ≤ 1}. Then, the
converged domain for Fr = 0.67 was used as initial guess for the closest Froude
numbers on the red curve, and so on. The last point on the right of the red curve
corresponds to a domain for which the algorithm did not clearly converge due to
oscillations (hence the term “unstable” for this value).
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Figure 10. J⋆ vs Fr for three different drag coefficients

6.3. Influence of the drag coefficient. In all the previous simulations, the drag
coefficient was equal to CF = 0.01. We performed similar numerical simulations for
CF = 0.1 and CF = 0.001, and we obtained comparable results. They are presented
in Figure 10, where the value J⋆

num is represented as a function of Fr.
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The red curve in Figure 10 is the case CF = 0.01 (cf. Figure 9). The horizontal line
at the energy level 2 is the sinking phenomenon. For CF = 0.001 (green curve) the
importance of the normalized wave resistance functional Jwave is ten times greater
than in the case CF = 0.01. We recover the three previous situations, but the total
resistance is higher. The sinking phenomenon happens on a larger interval of Froude
numbers, typically between 1 and 3.

For CF = 0.1 (blue curve) the normalized wave resistance is ten times smaller
than in the model case CF = 0.01. There is no sinking case here, but we still have
the local minimizer for Fr < 1. The global minimizer happens for smaller Froude
numbers, namely Fr > 1.7.
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