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Abhishek Sharma

Maks Ovsjanikov

LIX, Ecole Polytechnique, Institute Polytechnique de Paris

Abstract

We propose a functional view of matrix de-
composition problems on graphs such as geo-
metric matrix completion and graph regular-
ized dimensionality reduction. Our unifying
framework is based on a key idea that using
reduced basis to represent a function on the
product space of graph is sufficient to recover
a low rank matrix approximation even from
a sparse signal. We validate our framework
on several real and synthetic benchmarks (for
both problems) where it either outperforms
state of the art or achieves competitive results
at a fraction of the computational effort of
prior work.

1 Introduction

The assumption that high-dimensional data samples
lie on or close to a smooth low-dimensional manifold
is exploited as a regularizer or prior in many machine
learning algorithms. Often, the low-dimensional man-
ifold information is exploited via a graph structure
between the data samples. As a result, graph is often
used as a regularizer in various machine learning prob-
lems such as Dimensionality reduction [I4], Hashing
[19] or Matrix completion [I6] to name a few. In this
article, we focus on Dimensionality reduction and ma-
trix completion and propose a principled framework
that gives a unified solution to both these problems by
modelling the extra geometric information available in
terms of graphs.

Dimensionality reduction: Given a data matrix
M € R™*" with n m-dimensional data vectors, most
prior work related to PCA [2] can be broadly cate-
gorised in two themes: 1) matrix factorization approach
of the classical PCA and its variants 2) matrix sub-
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traction approach of robust PCA [7] and its variants.
The former learns the projection Q@ € R4*™ of M in
a d-dimensional linear space characterized by an or-
thonormal basis U € R™*¢. Several followup works
[14, [34], 15 [30] have shown that the clustering quality
of PCA can be significantly improved by incorporating
the data manifold information in the form of some
underlying graph structure.

Instead of relying on matrix factorization, the second
line of work directly estimates clean low rank approxi-
mation X of data matrix M by separating noise with
a matrix additive model. Along these line, Fast Robust
PCA on graphs (FRPCAGJ27]) introduces a joint no-
tion of low rankness for the rows and columns of a data
matrix and proposes to jointly minimize the Dirichlet
energy on the row and column graphs:

min [ M — X[ +n tr(XL1 X ") + v tr(X T Ly X).
(1)

Here Lq, Ly are Laplacian matrices of graphs built,
respectively, from the rows and columns of the data
matrix M. Conceptually, minimizing the Dirichlet
energy, tr(XL; X "), promotes smoothness of X by
penalizing high frequency components of the signals
on corresponding graphs. The authors of FRPCAG
[27] demonstrate theoretically that under certain as-
sumptions this minimization is connected with the
spectrum of the underlying low rank matrix X. Build-
ing on this idea, we instead directly constrain the low
rank approximation by decomposing it using the first
few eigenvectors of row and column graph Laplacians
X = ®C¥ ' and optimizing over the coupling matrix
C only. Our approach, similar in spirit to the matrix
factorization approach [5] [3], leads to explicit control
over the resulting rank of the matrix, and thereby, supe-
rior performance and significantly simpler optimization
problems.

Matrix completion deals with the recovery of miss-
ing values of a matrix of which we have only mea-
sured a subset of the entries. In general, without any
constraints, this problem is ill-posed. However if the
rank of underlying matrix is small, the number of de-
grees of freedom decreases and thus, it is common to
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find the lowest rank matrix that agrees with known
measurements[8]. Under this low rank assumption, the
problem is very similar to dimensionality reduction and
can be rewritten as,

H}%Il rank(X)—i—%H(X—M)@SH%. (2)

Here X stands for the unknown matrix, M € R™*" for
the ground truth matrix, S is a binary mask represent-
ing the input support, and ® denotes the Hadamard
product. Various problems in collaborative filtering
can be posed as a matriz completion problem [16], [24],
where for example the columns and rows represent users
and items, respectively, and matrix values represent a
score determining the preference of user for that item.
Often, additional structural information is available
in the form of column and row graphs representing
similarity of users and items, respectively. Most of the
prior work that incorporates geometric structure into
matrix completion problems is either based on highly
engineered frameworks, e.g., [2I] or non convex formu-
lation with several hyperparameters [5] thereby making
the overall optimization harder to optimize. Instead,
our simple formulation based on the functional map
representation [22], consisting of a single regularizer,
mitigates the problems associated with [5].

Contributions. Our contributions are threefold.
First, we propose a novel unified view of geometric
matrix completion and graph regularized dimension-
ality reduction that is convex and smooth. Second,
conceptually, our matrix decomposition formulation
explicitly imposes and optimizes for a low rank approx-
imation and, as we demonstrate below, is empirically
more accurate in recovering a low rank matrix approxi-
mation than competitive baselines. Third, we propose
a novel regularization inspired from the functional map
literature that is shown to be competitive with a com-
bination of several regularizers on various real world
datasets.

2 Related work

Matrix completion and graph regularized PCA have
been studied with many viewpoints and thus, exhaus-
tive coverage of prior work is beyond the scope of this
paper. In this section, we first briefly cover related
work and then describe prior work that is directly re-
lated to our work. We refer to [27] for more details on
PCA and related formulations.

Geometric matrix completion. A prominent re-
laxation of the rank operator in Eq. is to constrain
the space of solutions to be smooth w.r.t. some geomet-
ric structure of the matrix rows and columns. There

exist several prior works on geometric matrix comple-
tion that exploit geometric information [4, [16] 24] such
as graphs encoding relation between rows and columns.
More recent work leverages deep learning on geometric
domain [4, 21] to extract relevant information from
geometric data such as graphs. As argued in [5], while
these techniques achieve state-of-the-art results, their
design is highly engineered and thus, non-intuitive.

Graph Regularized Dimensionality Reduction.
Jiang et. al. proposed Graph Laplacian PCA (GLPCA)
[14] which imposes the graph regularization of principal
components using the Dirichlet term for clustering
in the low dimensional space. Similarly, the models
proposed in [14] 34} [15], [30] leverage the graph structure
to learn enhanced class structures. All these methods
still suffer from non-convexity [14], 15, 30]. RPCAG
[26] is convex but uses the nuclear norm relaxation that
involves an expensive SVD step inhibiting its scalabilty
to large datasets.

The idea of using two graph regularization terms has
also been applied in co-clustering [I1], Non negative
matrix factorization [28] and more recently in the con-
text of low-rank representation [33]. The co-clustering
& NMF based models which use such a scheme [I1],
[28] suffer from non-convexity and the works of [33] use
a nuclear-norm formulation making it difficult to scale.
Note that there also exist methods that learn a union
of low dimensional subspaces where each class belongs
to a different subspace [9} [31] but they are not directly
related to our approach.

Functional Maps. Our work is mainly inspired from
the functional map framework [22], which is used ubig-
uitously in non-rigid shape correspondence, and has
been extended to handle challenging partial matching
cases, e.g. [I8]. This framework has recently been
adapted for geometric matrix completion in [5], where
the authors propose to build a functional map between
graphs of rows and columns. However, they 1) impose
several non convex regularization terms each with a
scaling hyperparameter and some even with different
initialization 2) explore a huge range of hyperparameter
space. Moreover, their framework is tailored towards
geometric matrix completion and does not target sepa-
rability of data in some lower dimensional space.

3 Preliminaries

In this section, we cover some preliminaries about prod-
uct graphs and functional maps.

Product graphs Let G = (V, E, W) be a (weighted)
graph with its vertex set V' and edge set E and ad-
jacency matrix denoted by W. Graph Laplacian L
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is given by L = D — W, where D = diag(W) is
the degree matriz. L is symmetric and positive semi-
definite and therefore admits a spectral decomposition
L = ®A®". It is well-known that spectrum of the
Laplacian contains the structural information about the
graph [29]. Let G, = (V4, E1,W1), Go = (Va, B, Wa)
be two graphs, with L; = ®A;® ", Ly = WA, ¥ T
being their corresponding graph Laplacians. The bases
& ¥ can be used to represent functions on these graphs.
We define the Cartesian product of G; and G5, denoted
by G10G,, as the graph with vertex set V7 x V5, on
which two nodes (u,u’), (v,v") are adjacent if either
u=wv and (v',v") € Ey or v/ =" and (u,v) € Ej.

Functional maps. Let X be a function defined on
Gi0G,. It can be encoded as a matrix of size or
|[V1| x |Va|. Then it can be represented using the bases
®, ¥ of the individual graph Laplacians, C = ® T X .
In the shape processing community, such C' is called
a functional map, as it it used to map between the
functional spaces of G; and Gs. One of the advantages
of working with the functional map representation C
rather than the matrix X is that its size is typically
much smaller, and is only controlled by the size of
the basis, independent of the number of nodes in G
and Go, resulting in simpler optimization problems.
Moreover, the projection onto a basis also provides
a strong regularization, which can itself be beneficial
for both shape matching, and, as we show below, ma-
trix completion. For example, given two functions,
x = ®Pa on G; and y = ¥B on Gy, one can use C
to map between their representations a and 3, i.e.,
a=®'z=C¥'y=C3

4 Low Rank Matrix Decomposition
on Graphs

We assume that we are given a set of samples in some
matrix M € R™*". In addition, we construct two
graphs G, G, encoding relations between the rows and
the columns, respectively. For matrix completion prob-
lem, this matrix M is not completely known so we are
also given a binary indicator mask S that indicates 1
for measured samples and 0 for missing ones. We rep-
resent the Laplacians of these graphs and their spectral
decompositions by L, = PAPT, L. =TATT. We
minimize the objective function of the following form:

m)i_n data(X) + p reg( ) (3)
with Eqats denoting a data term of the form

Equta(X) = (X = M) © 8|7, (4)

As observed in [5], we can decompose X = ®CW¥ .
Remarkably, the data term itself, as we show in our

experiments, when expressed through the functional
map i.e.X = ®CP¥ " already recovers low-rank ma-
trices and outperforms the recent approach of [5] on
synthetic geometric experiments for matrix comple-
tion and obtains competitive results on dimensionality
reduction tasks. Before we explain the choice and mo-
tivation of our regularizer E..,, we explain next why
the data term itself already works remarkably well on
rank constrained geometric problems.

4.1 Motivation and Analysis

Our first observation is that by using a reduced basis
to represent a function X on the product space G11G,
already provides a strong regularization, which can be
sufficient to recover a low rank matrix approximation
even from a sparse signal.

Specifically, suppose that we constrain X to be a matrix
such that X = ®C¥ " for some matrix C. Note that
if ® and ¥ have k columns each then C must be a
k x k matrix. We would like to argue that solving Eq.
under the constraint that X = ®C¥ " will recover
the underlying ground truth signal if it is low rank
and satisfies an additional condition that we call basis
consistency.

For this suppose that the ground truth hidden signal
M has rank r. Consider its singular value decompo-
sition M = UXVT. If M has rank r, then ¥ is a
diagonal matrix with r non-zero entries. We will call
M basis-consistent with respect to ®, ¥ if the first r
left singular vectors U, (i.e., those corresponding to
non-zero singular values) lie in the span of ®, and the
first r right singular vectors V,. lie in the span of W.
In other words, there exist some matrices R, Q s.t.
U, = ®R (note that this implies k > r) and V,, = ¥Q.

Given this definition, it is easy to see that all basis-
consistent matrices with rank r < k can be represented
by some functional map C. In other words, given Y
that is basis-consistent, there is some functional map
Cst. Y = ®CPT. Conversely any X = ®C¥7
has rank at most k£ and must be basis-consistent by
construction.

Second, suppose we are optimizing Eq under the
constraint X = ®C¥ " and that the optimum, i.e.,
the ground truth matrix M, is basis-consistent. Then
since the energy E(C) is convex, given enough known
samples to fully constrain the corresponding linear
system, we are guaranteed to recover the optimum
low-rank basis-consistent matrix. We note briefly that
the argument above can also be made approximate,
when the ground truth matrix is not exactly, but only
approximately basis consistent, by putting appropriate
error bounds.
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This simple observation suggests that by restricting
X = ®C¥ " and optimizing over the matrices C in-
stead of X already provides a strong regularization
that can help recover appropriate low-rank signals even
without any other regularization. Further, it avoids
solving complex optimization problems involving it-
erative SVD, since C' becomes the only free variable,
which can be optimized directly. For problems such as
geometric matrix completion, we observe that a weak
additional regularization is often sufficient to obtain
state-of-the-art results.

Connections and Differences to FRPCAG [27]
We do not target the Robust PCA problem [7] as done
in FRPCAG. FRPCAG obtains a low rank approx-
imation by minimizing Dirichlet energy on the two
graphs and thereby, implicitly obtains a low rank ap-
proximation. In contrast, we explicitly factorize the
data matrix. As shown in our experiments below, this
explicit control over the resulting low rank of matrix,

by optimizing over C yields superior clustering results
over FRPCAG.

4.2 Functional Regularization

Our FE\.e contains a single regularization term on the
functional map induced between row space and column
space described next.

Laplacian Commutativity as a Regularizer We
propose to use the simplest possible regularizer, which
furthermore leads to a convex optimization problem
and can achieve state-of-the-art results. For this we
borrow a condition that is prominent in the functional
map literature [23]. Namely, in the context of surfaces,
the functional map is often expected to commute with
the Laplace-Beltrami operator:

Ercg = HCAr - ACC||27 (5)

where A, and A, are diagonal matrices of Laplacian
eigenvalues of the source graph (row graph) and target
graph (column graph).

For shape matching problems, this constraint helps to
find better mappings because functional maps that com-
mute with the Laplacian must arise from near isometric
point-to-point correspondences [25, 22]. More broadly,
commutativity with the Laplacian imposes a diago-
nal structure of the functional map, which intuitively
promotes preservation of low frequency eigenfunctions
used in the basis. In the context of matrix completion
this can be interpreted simply as approximate preser-
vation of global low frequency signals defined on the
two graphs.

Given these above definitions, our problem defined in

Eq. reduces to

min [|(X — M) © S||7. + | CA. - AcC|?
where X = ®C¥ '

As noted in several works, isometry between two spaces
is a key to functional map representation. Assuming
isometry between real world graphs is however over
optimistic. Thus, one way to work under relaxed isom-
etry condition is to instead align the eigen basis with
additional transformation matrix to achieve diagonal
functional map matrix [I8, [5]. In practice, we observe
faster convergence if we replace C with PCQ" , and
let all three P, C and Q be free variables.

Differences from SGMC [5] In addition to Dirichlet
energy on the two graphs, [5] also introduces two regu-
larization on the transformation matrix P, (. More-
over, the authors of [5] also propose a multi-resolution
spectral loss named SGMC-Zoomout (SGMC-Z) [20]
with its own hyperparameters (step size between differ-
ent resolutions) besides several scalars to weigh different
regularizations.

4.3 Implementation

The optimization is carried out using gradient descent
in Tensorflow [I].

Graphs Construction Following [27], we use two
types of graphs G; and G2 in our proposed model. The
graph G is constructed between the data samples or
the columns of the data matrix and the graph G, is
constructed between the features or the rows of the data
matrix. The graphs are undirected and built using a
standard K-nearest neighbor strategy. We connect each
x; to its K nearest neighbors x; where K is 10. This is
followed by the graph weight matrix A computation as

P . 2 . .
exp ( — H(zo%)”ﬁ if z; is connected to z;

0 otherwise.

Initialization Similar to [5], we initialize the P and
Q with an identity matrix with size equal to that
of underlying matrix M corresponding to respective
dataset and C by projecting X ® S on the first eigen
vector of L. and L,.

Hyperparameters Our formulation contains two
hyperparameters namely the size of C and the weigh-
ing scalar pu. For geometric matrix completion, we
divide the number of available entries in the matrix
randomly into training and validation set in a 95 to
5 ratio respectively. We set p and learning rate to be
.00001 for all the experiments. Size of C' is our only
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Table 1: Clustering Results on Benchmark Datasets.

Dataset | Samples | PCA | LE | GLPCA | GRPCA | FGRPCA | Ours
ORL 400 57 56 68 74 7 79

COIL20 1404 67 56 66 65 68 71

MFEAT 400 82 90 71 80 85 90
BCI 400 52 52 52 53 52 53

tunable hyperparameter and we report it explicitly in
each experiment below.

5 Results

This section is divided into subsections. The goal of the
subsection 5.1l is to validate our dimension reduction
framework for the task of clustering and classification.
In the subsection [5.2] we evaluate our model perfor-
mance for matrix completion problem on both synthetic
and real world datasets.

5.1 Graph Regularized Dimensionality

Reduction

5.1.1 Datasets

We use 4 well-known benchmarks and perform our clus-
tering experiments on following databases: ORL, BCI,
COIL20, and MFEAT. ORL! is a face database with
small pose variations. COIL20 2 is a dataset of objects
with significant pose changes. MFeat® consists of fea-
tures extracted from handwritten numerals whereas
BCI database comprises of features extracted from a
Brain Computer Interface setup .

5.1.2 Baselines

We compare the clustering performance of our model
with 5 other dimensionality reduction models. Apart
from classical PCA, the rest of the models exploit graph
information.

Models using graph structure: We compare 1)
Graph Laplacian PCA (GLPCA)[I4] 2) Laplacian
Eigenmaps (LE) 3) Robust PCA on graphs RPCAG
[26] 4) Fast Robust PCA on graphs FRPCAG [27] 5)
Our proposed model. Note that RPCAG and FRPCAG
are closest to our approach and known to outperform
other graph regularized models such as Manifold Regu-
larized Matrix Factorization (MMF) [34], Non-negative
Matrix Factorization (NMF)[I7], Graph Regularized
Non-negative Matrix Factorization (GNMF) [6]. We

Lcl.cam.ac.uk/research /dtg /attarchive/facedatabase.html
2¢s.columbia.edu/CAVE /software /softlib/coil-20.ph
Jarchive.ics.uci.edu/ml/datasets/Multiple--Features
4olivier.chapelle.cc/ssl-book /benchmarks.html

obtain FRPCAG and RPCAG results by running the
open source implementation provided by the authors
on the four datasets. Note that we run the clustering
on all the samples of COIL20 and all the features of
MFEAT whereas FRPCAG only use a subset of them in
their paper. FRPCAG contains two hyperparameters,
namely weighing scalars for Dirichlet energy. For these
scalars, we pick the best value from the set (1,10,50,100)
based on empirical performance. For PCA, we use the
first 40 principal components. For our method, the
only hyper-parameter is the dimensionality of matrix
C. We pick the best value out of (50, 100).We pre-
process the datasets to zero mean and unit standard
deviation along the features.

5.1.3 Clustering Metric

We follow the standard evaluation protocol and use
clustering purity to evaluate our method. To compute
purity, each cluster is assigned to the class which is
most frequent in the cluster, and then the accuracy of
this assignment is measured by counting the number
of correctly assigned and dividing by the total no. of
samples. We report the maximum clustering error from
10 runs of k-means and summarize our findings in Table

@

Table 2: Classification Results on Benchmark Datasets.

Dataset | PCA | LE | FGRPCA | Ours
ORL 63 56 66 68

COIL20 88 78 88 89

MFEAT 97 94 97 97
BCI 52 48 53 55

As shown in Table [I| our model obtains superior or
competitive performance over all other baselines. We
provide the runtime comparison in the supplement.

5.1.4 Classification

We further evaluate our framework on the classification
task on the same 4 datasets. We perform classification
with PCA, LE and our data representations using a
KNN classifier. We randomly select 30% of labeled
data, and use the rest to evaluate . We repeat this 5
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Table 3: Comparative results to test the dependence
on the rank of the underlying random matrix of size
150 x 200

’ Rank \ Ours Owurs-FM SGMC ‘
5 le-7 2e-5 le-4
10 2e-7 2e-5 2e-4
12 5e-7 4e-5 9e-4
15 6e-3 le-3 le-2
20 3e-2 le-2 He-2

times and summarize the average classification accuracy
in Table[2 Our method obtains competitive accuracy
compared to other baselines. PCA representation with
first 40 components already provides very competitive
classification results on several datasets.

5.2 Geometric Matrix Completion
experiments

This section is divided into two subsections. The goal
of first subsection [5.2.1] is to extensively compare be-
tween our approach and Spectral Geometric Matrix
Completion (SGMC)[5] on a synthetic example of a
community structured graphs. In the second subsection
we compare with all approaches on various real
world recommendation benchmarks. Note that we use
SGMC and [5] interchangeably in this section.

5.2.1 Experiments on synthetic datasets

For a fair comparison with [5], we use graphs taken from
the synthetic Netflix dataset. Synthetic Netflix is a
small synthetic dataset constructed by [16] and [21], in
which the user and item graphs have strong community
structure. Similar to [5], we use a randomly generated
low rank matrix on the product graph G.[1 G, to test the
matrix completion accuracy. Synthetic Netflix is useful
in conducting controlled experiments to understand
the behavior of geometry-exploiting algorithms.

Baselines

e Ours-FM; This baseline only optimizes for C
without any regularization. All results are ob-
tained with C' of size 30 x 30.

e SGMC: All results are obtained with their open

source code with their optimal parameters.

Test Error. To evaluate the performance of the algo-
rithms in this section, we report the root mean squared

Table 4: Comparative results to test the dependence
on the density of the sampling set for a random rank
10 matrix of size 150 x 200.

| Density in % | Ours

Ours-FM SGMC ‘

1 2e-2 2e-2 le-1
5} 8e-T7 le-3 5e-4
10 2e-7 5e-5 2e-4
20 le-7 2e-5 le-4

Table 5: Comparative results to test the robustness in
the presence of noisy graphs.

Ours-FM SGMC ‘

’ Noise \ Ours

5 le-3 2e-3 5e-3
10 4e-3 3e-3 le-2
20 6e-3 6e-3 le-2
error,
X -M)o S|

RMSE(X, S) = \/ I (7)

Zi, j Si,j
computed on the complement of the training set. Here
X is the recovered matrix and S is the binary mask
representing the support of the set on which the RMSE
is computed.

We compare the two approaches on different constraints
as follows:

Rank of the underlying matrix. We explore the
effect of the rank of the underlying matrix, showing
that as the rank increases up to 15 to 20, it becomes
harder for both methods to recover the matrix. As
the rank increases, the reconstruction error increases,
but it increases slower for our method than for SGMC.
For the training set we used 10% of the points cho-
sen at random (same training set for all experiments
summarized in Table . We remark that Ours-FM
consistently outperforms SGMC for all rank values.

Sampling density. We investigate the effect of the
number of samples on the reconstruction error. We
demonstrate that in the data-poor regime, our reg-
ularization is strong enough to recover the matrix,
compared to performance achieved by incorporating
geometric regularization through SGMC. These exper-
iments are summarized in Table [ Note that gap
between us and SGMC remains high even when the
sample density increases to 20%. Even when using 1%
of the samples, we perform better than SGMC.

Noisy graphs. We study the effect of noisy graphs
on the performance. We follow the same experimental
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Table 6: Test error on Flixster and Movielens-100K

Model Flixster ML-100K
MC [§] 1.533 0.973
GMC [16] - 0.996
GRALS [24] 1.245 0.945
RGCNN [21] 0.926 0.929
GC-MC [4] 0.917 0.910
Ours-FM 1.02 1.12
DMF[3] 1.06 0.922
SGMC 0.900 0.912
SGMC-Z 0.888 0.913
Ours 0.888 0.915

setup as [5] and perturb the edges of the graphs by
adding random Gaussian noise with zero mean and
tunable standard deviation to the adjacency matrix.
We discard the edges that became negative as a result
of the noise, and symmetrize the adjacency matrix.
Table [5l demonstrates that our method is robust to
substantial amounts of noise in graphs. Surprisingly,
Ours-FM demonstrates even stronger resilience to noise.

5.2.2 Results on recommender systems
datasets

In addition to synthetic Netflix, we also validate our
method on two more recommender systems datasets for
which row and column graphs are available. Movielens-
100K [12] contains ratings of 1682 items by 943 users
whereas Flixter [I3] contains ratings of 3000 items by
3000 users. All baseline numbers, except Ours-FM, are
taken from [2I] and [5].

Baselines In addition to SGMC and SGMC(Z),
we also compare with DMF[3]. This is a matrix fac-
torization approach that was adapted for matrix com-
pletion tasks by [5]. Note that this approach does not
incorporate any geometric information. We explain
some observations from Table [6} First, our baseline,
Ours-FM, obtains surprisingly good performance across
datasets. This underscores the regularization brought
in by the Laplacian eigen-basis of row and column
graphs. Second, non geometric model such as DMF
shows competitive performance with all the other meth-
ods on ML-100K. This suggests that the geometric
information is not very useful for this dataset. Third,
our proposed algorithm is competitive with the other
methods while being simple and interpretable. Lastly,
these experimental results validate the effectiveness of
our single regularization when compared to the combi-
nation of several non-convex regularizations introduced
in [5].

6 Conclusion and Future Work

In this work, we provide a novel unified view of ge-
ometric matrix completion and graph regularized di-
mensionality reduction and establish empirically and
theoretically that using a reduced basis to represent a
function on the product space of two graphs already
provides a strong regularization, that is sufficient to
recover a low rank matrix approximation. Moreover,
we propose a novel regularization and show, through ex-
tensive experimentation on real and synthetic datasets,
that our single regularization is very competitive when
compared to the combination of several different regu-
larizations proposed before for geometric matrix com-
pletion problem.

Extracting geometric information from graph struc-
tured data is a core task in several domains from few
shot learning [10], zero shot learning [32] in computer
vision, machine learning to knowledge graph based
problems in natural language processing since graphs
appear everywhere. For future work, we plan to extend
our framework to several such large scale problems
and also test its robustness to noise and corruptions in
input data.
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