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Abstract

We propose a totally functional view of geometric matrix completion problem.
Differently from existing work, we propose a novel regularization inspired from the
functional map literature that is more interpretable and theoretically sound. On syn-
thetic tasks with strong underlying geometric structure, our framework outperforms
state of the art by a huge margin (two order of magnitude) demonstrating the poten-
tial of our approach. On real datasets, we achieve state-of-the-art results at a fraction
of the computational effort of previous methods. Our code will be publicly available
athttps://github.com/Not-IITian/functional_matrix_completion

1 Introduction

Matrix completion deals with the recovery of missing values of a matrix of which we have only
measured a subset of the entries,

Find X st. X©S8S=MO0oS. (D

Here X stands for the unknown matrix, M € R™*" for the ground truth matrix, S is a binary
mask representing the input support, and ® denotes the Hadamard product. In general, without any
constraints, this problem (] is ill-posed and not solvable. However if the rank of underlying matrix
is small, the number of degrees of freedom decreases and thus, it is common to find the lowest rank
matrix that agrees with known measurements. Under this low rank assumption, the matrix completion
problem can be rewritten as,

min rank(X)—i—%H(X—M)@SHQF. 2)

Various problems in collaborative filtering can be posed as a matrix completion problem [Kalofolias
et al.[[2014], Rao et al.| [2015]], where for example the columns and rows represent users and items,
respectively, and matrix values represent a score determining whether a user would like an item or
not. This setting was particularly popularized by the Netflix challenge Koren et al.|[2009]]. Often,
additional structural information is available in the form of column and row graphs representing
similarity of users and items, respectively. Such geometric information is not exploited by rank based
prior work that only seeks a purely algebraic solution by optimizing for low rank Candes and Recht
[2009]. Prior work that incorporates geometric structure into matrix completion problemsMonti et al.
[2017] obtains state of the art results using powerful pattern extraction ability of graph CNN but falls
short of giving a principled framework to model such geometric information.

Boyarski et al.|[2020] makes an attempt to build a principled framework that is based on a functional
map representation (Ovsjanikov et al.| [2012]] and also compete empirically with highly engineered
models such as multi-graph CNNMonti et al.| [2017]]. One of the advantages of working with the
functional map representation is that its size is typically much smaller, and is only controlled by the
size of the basis, independent of the number of nodes in graphs, resulting in simpler optimization
problems Although Boyarski et al.|[2020] obtains state-of-the-art results on both synthetic and
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real datasets, it introduces several non-convex regularization terms thereby, making the overall
optimization harder to optimize. To address this challenge, we propose a simple formulation based
on functional map, consisting of a single regularizer, that mitigates the problems associated with
Boyarski et al.|[2020].

Contributions. Our contributions are threefold. First, we propose a novel functional view of
geometric matrix completion problem that is convex in formulation and theoretically grounded.
Second, our method, on synthetic tasks with strong underlying geometric model, sets new benchmarks
in modelling the geometric information that are 100 times superior over prior work. Third, our
proposed model obtains state-of-the-art results on various real world recommendation systems
datasets while being more intuitive and simpler to optimize and thereby, easier to analyze and
reproduce.

2 Related work

Matrix completion has been studied with many viewpoints and thus, exhaustive coverage of prior
work is beyond the scope of this paper. In this section, we mainly describe related work on geometric
matrix completion.

Geometric matrix completion. A prominent relaxation of the rank operator in Eq. () is to
constrain the space of solutions to be smooth w.r.t. some geometric structure of the matrix rows
and columns. There exist several prior work on geometric matrix completion problem that exploit
such geometric information [Berg et al.| [2017]], Kalofolias et al.[|[2014]], Rao et al.|[2015] such as
graphs encoding relation between rows and columns. More recent work leverages deep learning
on geometric domain [Berg et al.|[2017]], Monti et al.[[2017] to extract relevant information from
geometric data such as graphs. As argued in|Boyarski et al.|[2020], while these techniques achieve
state-of-the-art results, their design is highly engineered and thus, non-intuitive.

Functional Maps. Our work is mainly inspired from the functional map framework [[Ovsjanikov
et al.,[2012] used ubiquitously in non-rigid shape correspondence, and has been extended to handle
challenging partial matching cases, e.g. |[Litany et al.|[2017]]. This framework has recently been
adapted for geometric matrix completion in [Boyarski et al.|[2020], where the authors propose to
build a functional map between graphs of rows and columns. As noted in several works, isometry
between two spaces is a key to functional map representation. Assuming isometry between real world
graphs is however over optimistic. Thus, one way to work under relaxed isometry condition is to
instead align the eigen basis with additional transformation matrix to achieve diagonal functional map
matrixLitany et al.|[2017]. [Boyarski et al.| [2020] achieve this with a range of transformation on eigen
basis of graph Laplacian. However, they 1) impose several regularization terms each with a scaling
hyperparameter and some even with different initialization 2) explore a huge range of hyperparameter
space and question remains on why does it work so well.

3 Preliminaries
In this section, we cover some preliminaries about product graphs and functional maps.

Product graphs Let G = (V, E, W) be a (weighted) graph with its vertex set V' and edge set
E and adjacency matrix denoted by W. Graph Laplacian L is given by L = D — W, where
D = diag(W'1) is the degree matrix. L is symmetric and positive semi-definite and therefore admits
a spectral decomposition L = ®A® " . It is well-known that spectrum of the Laplacian contains the
structural information about the graph|Spielman|[2009]]. Let G = (V1, E1, W1), Go = (Va, Ea, Wa)
be two graphs, with L1 = ®A;® 7, Ly = WA, ¥ being their corresponding graph Laplacians. The
bases ®, ¥ can be used to represent functions on these graphs. We define the Cartesian product of Gy
and G, denoted by G100 Gs, as the graph with vertex set V4 x Va, on which two nodes (u, u’), (v, v’)
are adjacent if either u = v and (v/,v") € Ey orv’ = v and (u,v) € E}.

Functional maps. Let X be a function defined on G100 Gs. It can be encoded as a matrix of size
or |[V1| x |Va|. Then it can be represented using the bases ®, ¥ of the individual graph Laplacians,



C = ®" X . In the shape processing community, such C is called a functional map, as it it used
to map between the functional spaces of G; and G,. One of the advantages of working with the
functional map representation C' rather than the matrix X is that its size is typically much smaller,
and is only controlled by the size of the basis, independent of the number of nodes in G; and Ga,
resulting in simpler optimization problems. Moreover, the projection onto a basis also provides a
strong regularization, which can itself be beneficial for both shape matching, and, as we show below,
matrix completion. For example, given two functions, x = ®a on G; and y = ¥3 on G, one can
use C to map between their representations v and 3, ie, aa = ®'x = C¥ 'y = CB.

4 Functional Geometric Matrix Completion

We assume that we are given a set of samples from some unknown matrix M € R™*"_ along with
a binary indicator mask S that is 1 for measured samples and 0 for missing ones. In addition, we
are given two graphs G, G, encoding relations between the rows and the columns, respectively.
We represent the Laplacians of these graphs and their spectral decompositions by L, = ®A, & ',
L.= WA .¥". We minimize the objective function of the following form:

m)%n Edata(X) + MEreg (X) 3)
with Eqa, denoting a data term of the form
Eaaa(X) = (X — M) © S|[3, 4)

As observed in|Boyarski et al.| [2020]], we can decompose X = ®C T, Remarkably, the data term
itself, as we show in our experiments later, when expressed through the functional map i.e.X =
®CT T already recovers low-rank matrices and outperforms the approach of Boyarski et al.[[2020]
on synthetic geometric experiments. Before we explain the choice and motivation of our regularizer
E,cg, we explain next why the data term itself already works remarkably well on rank constrained
geometric problems.

4.1 Low Rank Geometric Matrix Completion

Our first observation is that by using a reduced basis to represent a function X on the product space
G100 G, already provides a strong regularization, which can be sufficient to recover a low rank matrix
approximation from a sparse signal.

Specifically, suppose that we constrain X to be a matrix such that X = ®C¥ " for some matrix C.
Note that if ® and ¥ have k& columns each then C must be a k& x k matrix. We would like to argue
that solving Eq. under the constraint that X = ®CW¥ " will recover the underlying ground truth
signal Y if it is low rank and satisfies an additional condition that we call basis consistency.

For this suppose that the ground truth hidden signal M has rank r. Consider its singular value
decomposition M = UXV ", If M has rank r, then 3 is a diagonal matrix with r non-zero entries.
We will call M basis-consistent with respect to ®, ¥ if the first r left singular vectors U, (i.e., those
corresponding to non-zero singular values) lie in the span of ®, and the first  right singular vectors
V.. lie in the span of W. In other words, there exist some matrices R, Q s.t. U, = ® R (note that this
implies k > r)and V, = ¥Q.

Given this definition, it is easy to see that all basis-consistent matrices with rank » < k can be
represented by some functional map C'. In other words, given Y that is basis-consistent, there is
some functional map C s.t. Y = ®CW¥”. Conversely any X = ®CW¥” has rank at most k and
must be basis-consistent by construction.

Second, suppose we are optimizing Eq (4) under the constraint X = ®C¥ " and that the optimum,
i.e., the ground truth matrix M, is basis-consistent. Then since the energy F/(C') is convex and there
are enough known samples to full constrain the corresponding linear system, then we are guaranteed
to recover the optimum low-rank basis-consistent matrix. We note briefly that the argument above
can also be made approximate, when the ground truth matrix is not exactly, but only approximately
basis consistent, by putting appropriate error bounds.

This simple observation suggests that by restricting X = ®C¥ " and optimizing over the matrices
C instead of X already provides a strong regularization that can help recover appropriate low-
rank signals even without any other regularization. In practice, we observe that a weak additional
regularization is often sufficient to obtain state-of-the-art results.



4.2 Functional Regularization

For clarity, we first describe the regularization terms introduced in|/Boyarski et al.|[2020] briefly

EYCE; = luT‘E(Gir + MCEcCiir + pCE((i:iag + pTEgiag (5)

EY,, is the Dirichlet energy of X on row graph, given by E, (X)) = tr (X TL.X ) Similar term
is used for column graph ES; (X)) = tr (X L. X T) In addition to Dirichlet energy, Boyarski et al.
[2020] also introduces two regularization on the transformation matrix P, (). As described earlier,
the purpose of these transformation is to rotate the original eigen basis ® W that will simplify the
structure of C'. Efy;,., (P) = [[off (PTA,P) %, where off (-) denotes the off-diagonal elements. A

similar treatment to the columns graph gives,Ef;,, (Q) = [|off (QTAcQ) ||%.. We briefly mention
that in addition to SGMC, Boyarski et al.|[2020] also proposes a multi-resolution spectral loss named
SGMC-Zoomout(SGMC-Z) with its own hyperparameters (step size between different resolutions)
besides the four hyperparameters in Eq. [5]

In contrast to SGMC or SGMC-Z, our F\, contains a single regularization term on the functional
map induced between row space and column space described next.

Laplacian Commutativity as a Regularizer Our main idea is to use the simplest possible regu-
larizer, which furthermore leads to a convex optimization problem and can achieve state-of-the-art
results. For this we borrow a condition that is prominent in the functional map literature|Ovsjanikov
et al.|[2016]. Namely, in the context of surfaces, the functional map is often expected to commute
with the Laplace-Beltrami operator:

2
Ereg = HCAr - ACCH ) (6)

where A, and A are diagonal matrices of Laplacian eigenvalues of the source and target.

For shape matching problems this constraint helps to find better mappings because functional maps

that commute with the Laplacian must arise from near isometric point-to-point correspondences

Rosenberg|[[1997]],|Ovsjanikov et al.|[2012]]. More broadly commutativity with the Laplacian imposes

a diagonal structure of the functional map, which intuitively promotes preservation of low frequency

eigenfunctions used in the basis. In the context of matrix completion this can be interpreted simply as
approximate preservation of global low frequency signals defined on the two graphs.

Given these above definitions, our problem defined in Eq. (3] reduces to
min [|(X — M) © S||7. + | CA. - AC|?, where X = CW¥T (7

In practice, however, we observe faster convergence if we replace C with PC QT and therefore, let
all three be free variables.

4.3 Implementation

The optimization is carried out using gradient descent in Tensorflow |Abadi et al.[[2015]].

Initialization Similar to/Boyarski et al.|[2020], we initialize the P and @ with an identity matrix
with size equal to that of underlying matrix M corresponding to respective dataset and C' by
projecting X © S on the first eigen vector of L. and L,.

Hyperparameters Our formulation contains two hyperparameters namely the size of C and the
weighing scalar p. We divide the number of available entries in the matrix randomly into training and
validation set in a 95 to 5 ratio respectively. We set 1 to be .00001 and learning rate to .000001 for
all the experiments. Size of C is different for different datasets and set according to the performance
on the validation set of each dataset.

5 Results

This section is divided into two subsections. The goal of first subsection is to extensively compare
between our approach and Spectral geometric matrix completion (SGMC)Boyarski et al.|[2020] on



Table 1: Comparative results to test the dependence of SGMC and our method on the rank of the
underlying random matrix of size 150 x 200

[ Rank [ Ours  Ours-FM  SGMC |

5 le-7 2e-5 le-4
10 2e-7 2e-5 2e-4
12 Se-7 4e-5 9e-4
15 6e-3 le-3 le-2

20 3e-2 le-2 Se-2

Table 2: Comparative results to test the dependence of SGMC and our method on the density of the
sampling set in % of the number of matrix elements, for a random rank 10 matrix of size 150 x 200.

| Density | Ours  Ours-FM  SGMC |

1 2e-2 2e-2 le-1
5 8e-7 le-3 Se-4
10 2e-7 5e-5 2e-4
20 le-7 2e-5 le-4

a synthetic example of a community structured graph. In the second subsection, we compare with
all approaches on various real world recommendation benchmarks. Note that we use SGMC and
Boyarski et al.| [2020] interchangeably in this section.

5.1 Experimental study on synthetic dataset

For a fair comparison with [Boyarski et al.| [2020], we use the graphs taken from the synthetic Netflix
dataset. Synthetic Netflix is a small synthetic dataset constructed by [Kalofolias et al.[[[2014] and
Monti et al.|[2017]], in which the user and item graphs have strong communities structure. It is useful
in conducting controlled experiments to understand the behavior of geometry-exploiting algorithms.
In all our tests, we use a randomly generated band-limited matrix on the product graph G.[ G, .

Baselines

e Ours-FM; This baseline only optimizes for C without any regularization. All results are
obtained with C of size 30 x 30.

e SGMC: All results are obtained with their open source code with their optimal parameters.

Test Error. To evaluate the performance of the algorithms in this section, we report the root mean
squared error,

X-M)o S|

Ei, j Si,j
computed on the complement of the training set. Here X is the recovered matrix and .S is the binary
mask representing the support of the set on which the RMSE is computed.

RMSE(X, §) — \/ i€ ®)

We compare the two approaches on different constraints as follows:

Rank of the underlying matrix. We explore the effect of the rank of the underlying matrix,
showing that as the rank increases upto 15 to 20, it becomes harder for both methods to recover the

Table 3: Comparative results to test the robustness of our method in the presence of noisy graphs.

[ Noise [ Ours  Ours-FM  SGMC |

5 le-3 2e-3 5e-3
10 4e-3 3e-3 le-2
20 6e-3 6e-3 le-2




Table 4: Test error on Synthetic Netflix [Monti et al., 2017, Flixster [Jamali and Ester, 2010}, and
Movielens-100K [Harper and Konstan, 2016]]

Model Syl\r;:};ie;ic Flixster ML-100K
MC|Candes and Recht|[2009] - 1.533 0.973
GMC Kalofolias et al.|[[2014]  0.3693 - 0.996
GRALS|Rao et al.|[2015]] 0.0114 1.245 0.945
RGCNN Monti et al.|[2017] 0.0053 0.926 0.929
GC-MC Berg et al.|[2017] - 0.917 0.910
Ours-FM 0.0064 1.02 1.12
DMF |Arora et al.| [2019] 0.0468 1.06 0.922
SGMC 0.0021 0.900 0.912
SGMC-Z 0.0036 0.888 0.913
Ours 0.0022 0.888 0.915

matrix. As the rank increases, the reconstruction error increases, but it increases slower for us than
for SGMC. For the training set we used 10% of the points chosen at random (same training set for all
experiments summarized in Table [T)). We remark that Ours-FM consistently outperforms SGMC for
all rank.

Sampling density. We investigate the effect of the number of samples on the reconstruction error.
We demonstrate that in the data-poor regime, our regularization is strong enough to recover matrix,
compared to performance achieved by incorporating geometric regularization through SGMC. These
experiments are summarized in Table 2] Note that gap between us and SGMC remains high even
when the sample density increases to 20%. Even when using 1% of the samples, we perform better
than SGMC. We also remark that Ours-FM outperforms SGMC only when density is sufficient.

Noisy graphs. We study the effect of noisy graphs on the performance. We follow the same
experimental setup as|Boyarski et al|[2020] and perturb the edges of the graphs by adding random
Gaussian noise with zero mean and tunable standard deviation to the adjacency matrix. Table
mentions the value of this tunable standard deviation. We discard the edges that became negative as a
result of the noise, and symmetrized the adjacency matrix. Table [3]demonstrates that our method is
robust to substantial amounts of noise in graphs. Surprisingly, Ours-FM demonstrates even stronger
resilience to noise.

5.2 Results on recommender systems datasets

In addition to synthetic Netflix, we also validate our method on two more recommender systems
datasets for which row and column graphs are available. Movielens-100K Harper and Konstan| [2016]]
contains ratings of 1682 items by 943 users whereas Flixter [Jamali and Ester,2010|] contains ratings
of 3000 items by 3000 users. All baseline numbers, except Ours-FM, are taken from Monti et al.
[2017] and |Boyarski et al.| [2020].

Baselines

e SGMC(Z): In addition to SGMC, Boyarski et al.|[2020] also proposed a multi resolution
spectral loss named SGMC-Zoomout.

o DMF: This is a matrix factorization approach that was adapted for matrix completion tasks
by Boyarski et al.| [2020]]. Note that this approach does not incorporate any geometric
information.

e Ours-FM: This method only optimizes the data term, over C, without any regularization.
All results are obtained with C' of size 30 x 30.

We explain several observations from Table[d} First, our baseline, Ours-FM, obtains surprisingly good
performance across datasets. This underscores the regularization brought in by the laplacian eigen
basis of row and column graphs. Second, non geometric model such as DMF shows competitive
performance with all the other methods on ML-100K. This suggests that the geometric information is
not very useful for this dataset. Third, our proposed algorithm is competitive with the other methods
while being simple and interpretable. On Synthetic Netflix, we obtain best results with randomization



on underlying graph structure. We explore its effect in detail in supplement. Furthermore, it should
be noted that non geometric models such as DMF performs poorly on both synthetic datasets
compared to ours and SGMC. Lastly, these experimental results validate the effectiveness of our
single regularization when compared to the combination of several regularizations introduced in
Boyarski et al.|[[2020].

Computation Issues Our method depends on the eigenvalue decomposition of graph Laplacian
matrix which is the main bottleneck to scale our approach for large scale deployment. We intend to
address this issue in our future work.

6 Conclusion

In this work, we propose a functional view for geometric matrix completion, building upon the recent
work of [Boyarski et al.| [2020]. We establish empirically and theoretically that using a reduced basis
to represent a function on the product space of two graphs already provides a strong regularization,
which is sufficient to recover a low rank matrix approximation from a sparse signal. Moreover, we
propose a novel regularization and show, through extensive experimentation on real and synthetic
datasets, that our single regularization is very competitive when compared to the combination of
several different regularizations proposed before.
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8 Broader Impact

In addition to collaborative filtering [Feng et al.|[2019], extracting geometric information from graph
structured data is a core task in several domains from few shot learning |Gidaris and Komodakis
[2019], zero shot learning [Wang et al.|[2018]] in computer vision, machine learning to knowledge
graph based problems in NLP to name a few since graphs appear everywhere. Graph CNN forms
backbone of all state-of-the-art solutions in such domains. Although it has recently been demonstrated
that some graph CNN architectures can be greatly simplified, and still perform competitively on
several graph analysis tasks Wu et al.| [2019]], our work takes a different approach and treats graphs
as functional spaces that can be easily manipulated and analyzed using functional maps and is
competitive with graph CNN in modelling geometric information. We believe this is a very promising
research direction and future work in this direction has the potential to alter the course in geometric
deep learning or graph signal processing in general.
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