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Abstract: The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault 

system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km 

long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta 

de Bravo fault and provide new paleoseismological information, evaluate its earthquake history, and 

assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in 
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which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial 

deposits. Despite the lack of known historical destructive earthquakes along this fault, we found 

evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one 

of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes 

with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr
-1

 and a recurrence interval 

between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo fault 

together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new 

slip rates, earthquake recurrence rates, and estimation of slips per event help advance our 

understanding of the seismic hazard posed by the Venta de Bravo fault and provide new parameters 

for further hazard assessment. 

 

Key words: Active faults, Sedimentary recording, Paleoearthquakes, Seismic hazard, Acambay 

Graben, Central Mexico 
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1. Introduction 

 

Crustal active faults located in mid-continent plate interiors have significantly lower slip rates 

(fractions of mm yr
-1

) than those situated at plate boundaries, where rates can reach tens of mm yr
-1

. 

However, those slow faults can produce moderate to large earthquakes that may cause major 

damage and casualties (e.g., Urbina and Camacho, 1913; Meghraoui et al., 2001; Perea, 2009). 

Given the expected low slip rates, the instrumental and historical earthquake records are insufficient 

to estimate the recurrence intervals of the large and damaging seismic events, which are typically 

thousands of years (e.g., Lacan et al., 2012; Perea et al., 2012; Nivière et al., 2016). Thus, it is 

necessary to investigate the evidence left by fault activity in the geological and geomorphological 

records (e.g., Messager et al., 2010; Audemard and Michetti, 2011; Benavente et al., 2017). 

Typically, paleoseismological investigations across a fault imply digging a trench to expose the 

faulted geological record in order to analyze and correlate the different stratigraphic units, based on 

their rock or sediment type, their geometry and relative arrangement. The main objectives are to 

determine the timing of large earthquakes which ruptured along a specific fault, to estimate their 

magnitude(s) by measuring the amount of slip per event, and to evaluate the slip-rate of the 

seismotectonic structure.  

 

Here, we describe, analyze, and interpret the sedimentary record along a specific fault system: the 

Venta de Bravo Fault. It is located within the Trans-Mexican Volcanic Belt tectonic region, a mid-

continent plate interior volcanic arc characterized by the presence of low slip-rate active crustal 

faults that have produced large and destructive historical or early instrumental seismic events such 

as the 1567 Ameca (M 7.2; Suter, 2015), 1875 San Cristóbal de la Barranca (MS 7.0; Suárez and 

Caballero-Jiménez, 2012), and 1912 Acambay earthquakes (MS 6.7; Suter et al., 1996) (Fig. 1). 

Such a study is fundamental as most of the population of Mexico lives within this region, in mega 

cities such as Mexico City (22 million inhabitants) and Guadalajara (5 million inhabitants), and is 
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directly exposed to the potential seismic hazards related to this fault. Many of these large cities are 

located within active tectonic basins on lacustrine sediments and, thus, are likely to be affected by 

near or distant earthquakes, in particular if the resulting ground-shaking is being amplified by site 

effects (Campillo et al., 1989; Bayona Viveros et al., 2017).  

 

Our objective in this study is to describe the seismic behavior of the fault zone to infer its 

parameters in order to improve, in further steps, the seismic hazard models of the region and 

enhance the awareness and preparedness of the Mexican population to the risks to which it is 

exposed. 

 

2. Geological setting  

2.1 Neotectonic setting and seismicity 

 

The Trans-Mexican Volcanic Belt (TMVB) is a 900 km long and 200 km wide middle Miocene-

Holocene volcanic arc related to subduction along the Middle America trench and characterized by 

extensional arc-parallel faulting and related crustal seismicity (Ferrari et al., 2012). It crosses central 

Mexico from the Gulf of Mexico, on the east, to the Pacific coast, on the west (Fig. 1). In the central 

part of the belt, < 1 km of N-S to NNW−SSE oriented extension is distributed over a 30 to 50 km 

wide fault zone (Fig. 1). The bulk extension rate of the system is estimated to be 0.2 ± 0.05 mm yr
-1

 

and the Quaternary vertical slip rates for individual fault average 0.07 mm yr
-1

 (Suter et al., 2001). 

 

The Acambay Graben is located in the central part of the TMVB and is defined by three main fault 

systems. The Acambay-Tixmadejé and the Epitacio-Huerta faults bound the graben to the north, 

while the Pastores fault and Venta de Bravo Fault (VBF) limit it to the south. Finally, the 

Temascalcingo and Acambaro fault systems dissect the central part of the graben (Figs. 1, 2).  
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The 1912, MS 6.7 Acambay earthquake pointed to this graben as the closest crustal seismic source 

affecting Mexico City (Urbina and Camacho, 1913). Consequently, various studies were carried out 

to map the 1912 surface rupture and the main active faults in the graben (e.g., Urbina and Camacho, 

1913; Mooser, 1972; Martínez-Reyes and Nieto-Samaniego, 1990; Suter et al., 1992, 1996, 2001; 

Rodríguez-Pascua et al., 2017). Pioneer paleoseismological studies in or near the epicentral area 

identified prehistoric large earthquakes and characterized the seismogenic potential of the two main 

bounding faults of the eastern part of the graben, the Acambay-Tixmadejé and the Pastores faults 

(Langridge et al., 2000, 2013; Ortuño et al., 2015), while other studies dealt with the paleoseismic 

history of the San Mateo and the Temascalcingo faults within the intragraben fault system (Sunyé-

Puchol et al., 2015; Ortuño et al., 2018) (Figs. 1, 2). 

 

Apart from the 1912 and the 1979, MW 5.3 Maravatio earthquakes, the Acambay Graben is 

characterized by a low background seismicity level (Fig. 1). The 1956–2016 instrumental locations 

in the central TMVB show that most of the microseismicity is concentrated in the western Acambay 

Graben with a maximum depth of 15 km, illustrating the thickness of the seismogenic layer (Fig. 1)  

(Rodríguez-Pérez and Zúñiga, 2017). The low magnitudes as well as the low density of 

seismological stations in the area make it impossible to calculate any focal mechanism of recent 

events. 

 

The targeted fault in this work is the Venta de Bravo Fault. It is the longest fault bounding the 

Acambay Graben to the SW (Figs. 1, 2). Historical crustal earthquakes in 1734-35 and 1853-54 and 

instrumentally recorded seismicity including the February 22, 1979, MW 5.3 Maravatio earthquake 

are probably associated with this fault (Orozco y Berra, 1887; Astiz-Delgado, 1980). The first event 

occurred in November 1734 and between November 1734 and March 1735, more than 30 strong 

and light earth tremors were felt in Tlalpujahua. The other event happened on January 13, 1854. A 

strong earthquake was felt in Tlalpujahua, Maravatío and San Juan del Río (68 km northeast of 
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Maravatío), and in February and March of the same year many aftershocks were felt in the region 

(Suter et al., 1992). Based on these reports, these earthquakes could have been similar in size to the 

1979 Maravatío earthquake and did not rupture the surface. Indeed, there is no surface rupture 

associated with the 1979 event, but its epicentral location north of the trace of the VBF, and its focal 

mechanism (normal faulting with a minor lateral component along the E-W oriented nodal plane) 

indicate that it is certainly associated with this fault (Astiz-Delgado, 1980; Suter et al., 1992) (Fig. 

1).   

 

2.2. Structure, morphology and segmentation of the Venta de Bravo Fault  

 

Structural studies from Suter et al. (1992, 1995) indicate at least two stages of deformation along 

the southern graben border faults; a Miocene early-stage of oblique right-lateral extension results in 

a left-stepping en echelon array of NW-SE striking normal fault segments and a later Pliocene stage, 

which continues to the present, corresponds to a dominant normal dip slip movement with a minor 

left lateral component resulting from a N-S to NNW-SSE orientation of crustal extension (Fig. 1). 

These different stages of deformations result in a complex geometry of the fault trace. 

 

The VBF scarp extends E-W nearly 48 km, from the San Andres volcano to the Cachiví River plain 

(Fig. 3). It represents the southwestern boundary of the Acambay Graben and the northern boundary 

of the hilly region surrounding Tlalpujaua and El Oro de Hidalgo.  The VBF is discontinuous and is 

divided in three main segments. 

 

The Eastern VBF segment is composed of two parallel fault branches 2 km apart and oriented W-E 

to WNW-ESE. The northern strand (nº 1 and 2 in Fig. 3) extends 21 km, from the San Andres 

volcano to the Venta de Bravo village, with a scarp height of 40-190 m in Pliocene volcanic 

formations (Fig. 2; profiles H, I and J in Fig. 3). According to classical scaling relationships (Wells 
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and Coppersmith, 1994), such a normal fault could cause MW 6.6 ± 0.3 earthquakes when rupturing 

entirely. The southern strand (nº 3 in Figs. 2, 3) is developed on the up-thrown block of the northern 

strand, has a total length of 10 km and a scarp height of 60-80 m affecting Miocene to Pliocene 

volcanic deposits (Fig. 2; profiles H and I in Fig. 3). Its proximity to the main VBF (2 km) and 

consistent dips suggest that the two fault branches connect at depth and are the expression of a 

single fault at the surface. 

  

The Central VBF segment (nº 4 in Figs. 2, 3) is 18 km long with maximum scarp heights > 200 m 

in Pliocene volcanic rocks (Fig. 2; profiles F and G in Fig. 3). Such a normal fault could cause MW 

6.5 ± 0.3 earthquakes when rupturing entirely (Wells and Coppersmith, 1994). At its easternmost 

end, the fault overlaps and connects with the Eastern VBF segment. 

  

The Western VBF segment (nº 5, 6, 7 and 8 in Figs. 2, 3) is 26 km long and separates Miocene to 

Quaternary andesitic lavas to the south from younger fluvial deposits to the north. Its morphology 

varies from east to west and its scarp height ranges from 50 to 300 m (profiles C to F in Fig. 3). 

Such a fault segment could cause MW 6.7 ± 0.3 earthquakes when rupturing entirely (Wells and 

Coppersmith, 1994). 

 

In addition to this main segment, three shorter (4 to 10 km) secondary fault scarps affect Pliocene 

lava domes and surrounding landscape both within the hanging and foot walls (nº 6, 7 and 8 in Fig. 

3). These faults are considered as branches, probably merging at depth with the main VBF. They 

display vertical scarps reaching up to 130 m height in the Pliocene lava and less than 20 m high on 

the Cachiví River plain (profiles A to D in Fig. 3). The cumulated observed displacement of parallel 

branches of the Western VBF segment is about 400 m, which is the “apparent” vertical offset. The 

actual vertical displacement could be substantially larger, and constrained through detailed mapping 
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of the base of the Pliocene volcanic bodies under the Quaternary sedimentary infill in the down-

thrown block. 

 

Furthermore, structural and geomorphological studies (Suter et al., 1992, 1995, 2001; Langridge et 

al., 2013; Ortuño et al., 2015) suggest that the VBF and the Pastores fault might be a same fault 

system (Figs. 1, 2). The whole system Pastores-VBF is approximately 80 km long at the surface 

(Fig. 2) and could cause major earthquakes when rupturing entirely.  

 

3. Methods 

 

Three sites (Terreros, Guapamacataro and Campo Hermoso) were selected according to a 

preliminary geomorphic analysis of the landscape after aerial photoreconnaissance and field 

inspection (Fig. 4). Three trenches by sites were dug with a backhoe excavator perpendicularly to 

the inferred fault trace. Each excavation was between 10 and 30 m long and 2 to 3 m deep exposing 

well-preserved and moderate-height geomorphic fault scarps (Figs. 4, 5). Only five out of nine 

trenches provided relevant information (red labels in Fig. 4).  

 

Classical methods of paleoseismic survey across normal fault scarps (e.g., Audemard, 2005; 

McCalpin, 2009) were used. A detailed description of the sedimentary facies, composition and 

mineralogy combined with the dating of samples from each unit allowed us to infer the stratigraphic 

correlations within and between trenches. A total of 24 samples from the five trenches yielded 

radiocarbon ages. They were processed at three different laboratories by conventional dating and 

accelerator mass spectrometry (AMS) methods (Table 1). Radiocarbon ages were calibrated without 

taking into account the stratigraphic order, using the OxCal 4.1 program (Bronk Ramsey, 2009) and 

resulting ages are presented at the 2 sigma confidence level (Table 1), and expressed in calibrated 

years before present (cal. BP). As usual in paleoseismological studies, ages are expressed as 
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conventional radiocarbon ages in the description of the results and trench log figures, while 

calibrated ages are only used in the discussion. In the same way, the seismic events identified in the 

different trench sites are exposed from the youngest to the oldest, in order to subtract, for each 

event, the effects of later ruptures. 

 

Below, results are presented on a site-by-site basis from E to W (i.e., Terreros, Guapa and Hermoso 

Trench sites), as shown by the overview pictures and the trench logs (Figs. 4-8). 

 

4. Results and analyses: trench survey  

4.1 Depositional context 

 

The study focused on the Western VBF segment because it is where the fault intersects the youngest 

deposits of the area (Upper Pleistocene and Holocene), with potentially resolved stratigraphy 

(alluvium and/or volcanic layers), therefore allowing us to make an estimation of the recent 

earthquake history of the fault system. A detailed stratigraphic analysis was carried out at five 

trenches located in the alluvial plains of the Cachiví River and close to Terreros dam (Fig. 4).  

 

The Upper Pleistocene-Holocene sedimentation at the Western VBF segment is driven by various 

factors and sources that prevent clear stratigraphic correlation of the depositional units between 

sites (Fig. 4). At the Terreros site, the erosion of the dacitic dome formed colluvial deposits that 

prograded on a fluvio-lacustrine plain. The Guapa Site is located on the alluvial plain of the Cachiví 

River where epiclastic volcanic deposits and alluvial sediments overlay volcanic bedrock. Finally, 

the Hermoso site is located on a former alluvial plain filled by volcanic deposits and detritic flows 

from the south and elevated 20 m with respect to the current Cachiví River plain.  

 

4.2 Terreros trench site  
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10 

 

The Western VBF segment offsets the lava flows of the San Miguel volcanic complex, and displays 

a sinuous trace (Figs. 3, 4). Between the volcanic edifices of San Miguel to the east and the El 

Jagüey cinder cone to the west, a depression has been generated in the down-thrown block, 

occupied today by the Terreros dam and an agricultural plain (Figs. 4, 5). The main fault scarp has a 

> 200 m throw at this site and presents a curved geometry. Secondary fault branches were observed 

in the down-thrown block, with smooth and low elevation (< 2 m) associated scarps that displace 

the surface of an alluvial fan (Fig. 4). We excavated one trench across the main fault segment 

without conclusive results (Terreros 3 in Fig. 4D) and two trenches, about 280 m apart, across these 

secondary morphological scarps. These last two trenches were 24 and 30 m long, and 3 m deep 

(Terreros 1 and 2 in Fig. 4D) but only Terreros 1 showed faulted units.  

 

4.2.1 Terreros 1 trench stratigraphy 

 

Five units were exposed in Terreros 1 (Fig. 6). Their stratigraphy is described in detail in Table 2 

and summarized in the following. The two basal units are ignimbrites (Units E and D). Unit D 

might be considered as the upper part of Unit E, since the transition from one to the other is gradual. 

They are overlain by two debris flow deposits (Units C and B). In the southern part of the trench, 

Unit C is covered by the thinner Unit C’ corresponding to a final deposit segregated from Unit C. 

Unit B is only observed closer to the geomorphological scarp. The top Unit A is interpreted as a 

colluvial slope deposit generated by the wash-out of the finer components of the up-thrown block of 

the fault. Units A and B incorporate two large and subspherical blocks (up to 2.2 m diameter) that 

likely correspond to blocks of rock fallen from the scarp and deposited during or immediately after 

Unit B. Only two samples of charcoal from Units A and C yielded ages at that site (Table 1). 

 

4.2.2. Faulting 
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A number of N070E to N080E oriented vertical faults and fractures affecting all units except the 

uppermost one (Unit A) were exposed in the trenches (Fig. 6). F8 and F9 vertically displace Units D 

and E with a maximum offset of 12 cm, since F1 to F4 show vertical offsets of almost 20 cm. The 

spatial coincidence of F4 with respect to the position of the larger boulder (columns 15-17) suggests 

that the geometry of the layers have been disturbed by the impact of the block that fell from the 200 

m high main fault scarp (Fig. 3). Colluvial layers related to the erosion of an earthquake scarp 

(colluvial wedge), like commonly identified along dip-slip faults (McCalpin, 2009) and like those 

shown below at the Guapa site, were not observed at this site. We could only use the upward fault-

termination beneath dated stratigraphic layers to infer the faulting events (Fig. 6). The youngest 

event (Tr.1) is constrained by Units A (not affected) and B (last affected) and is obvious in the fault 

zone F1a-F2a. The previous event (Tr.2) is located at the base of Unit C, which is not affected by 

the faults exposed in the northern part of the trench (F6a, F7a and F9a). The scarcity of dating 

results produces a large uncertainty in constraining the age range of the events: Tr.1 occurred 

between 10,090 ± 130 
14

C yr BP (age of Unit C’) and 2980 ± 85 
14

C yr BP (age of Unit A), while 

Tr.2 was older than 10,090 ± 130 
14

C yr BP. 

 

4.3 Guapa trench site 

 

The Guapa site is located near the village of Guapamacataro, ca. 6 km southeast of Maravatío, and 

next to the intersection of the Cachiví River with the fault (Fig. 4). This area was selected because 

the Venta de Bravo main fault scarp presents a clear morphological expression and intersects the 

alluvial plain, is crosscut by the river and sealed by younger alluvial deposits, and has less 

geomorphological expression (1 to 3 m high) in the vicinity of the river, so that preserved young 

sediments were expected to show evidence of the latest earthquakes. 
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Three trenches, located in the Cachiví floodplain and containing a relatively complete recent 

sedimentary record, were dug at this site (Fig. 4C). They are named Guapa 1, 2 and 3 and are 30 m 

E, 120 m W and 170 m W of the Cachiví riverbed, respectively (Fig. 5A, 5B). Guapa 1 exposed at 

least 2 m of sub-actual flood deposits within which no recent deformation could be identified, while 

more stratigraphic units were preserved in Guapa 2 and Guapa 3. Twelve charcoal and bulk soil 

samples were collected in both trenches for radiocarbon dating (Table 1). The resulting ages are 

consistent with the stratigraphy and can be reasonably interpreted as depositional ages.  

 

4.3.1 Guapa trench stratigraphy 

 

The Guapa trenches exposed (1) fluvio-lacustrine deposits, (2) volcanic or reworked volcanic 

layers, and (3) paleosols that are described in detail in Table 2. Most units were easily correlated 

between both trenches (Fig. 7, Table 2). The oldest deposits correspond to an andesitic lava flow 

(Unit H) and are only seen in Guapa 2. The overlying Unit G is a sequence of yellow massive 

ignimbrite (possibly reworked). Unit F is a reworked yellow ignimbrite only visible in Guapa 3, 

where its base is not exposed and its top is eroded. All other overlying units are clearly exposed in 

both trenches and correspond to epiclastic volcanic deposits, fluvial deposits and soil. Unit E is an 

ash-rich paleosol. Excavation of a test pit near Guapa 3 (location in Fig. 5C) indicates that Unit E is 

also present near the surface on the footwall of the fault. Unit D lies unconformably on Unit E and 

corresponds to a thick colluvium deposit. Between both units we identified two colluvial wedges. 

The lower one, CW1, is mainly composed of fragments of Unit G in a brown clay matrix. The 

upper one, CW2, is composed of undifferentiated angular andesitic fragments in a yellow-brown 

clay matrix. Unit D and CW2 are mainly distinguished using the color and matrix composition. The 

top of Unit D is eroded and unconformably covered by Unit C, a dark brown paleosol. Unit B is a 

pale brown paleosol, overlain by Unit A, the present soil. 
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4.3.2. Faulting 

 

Apart from top Units A and B, all units are faulted at both trenches. Four and five N085E to N100E 

oriented faults are exposed in Guapa 2 and Guapa 3, respectively. The main fault, F1, dips 70º-80º 

to the N and displaces all the units deposited before Unit B (Fig. 7). The other faults correspond to 

branches of secondary faults and are labeled F2a, F3a and F4a at Guapa 2 and F2b, F3b, F4b and 

F5b at Guapa 3; the damage zone width spans from 3 to 5 m. F3a, F4a and F5b are located in the 

hanging wall formed by the main fault F1. At Guapa 2, F3a and F4a are small normal faults, 

synthetic to F1 and partially inverted by the decrease of the vertical stress at the surface. F3a 

displaces Units E and lower units, and F4a reaches Unit C. At Guapa 3, F5b could correspond to a 

wall of a fracture opening along F1 or to the limit of an altered area along the main fault zone 

without clear displacement. At both trenches, F2a, F2b, F3b and F4b fracture the footwall. These 

faults clearly displace Unit G and some younger units above it. Finally, at Guapa 3, Units G, F and 

E are clearly faulted and folded at the vicinity of F1. This folding of Unit G, whose S0 is nearly 

parallel to the F1 fault plane, is interpreted as a draping fault process at the beginning of the 

deformation of Unit G. Open fractures were also observed within Unit G.  

 

Four events, Ga.1 to Ga.4 from youngest to oldest, were inferred at the Guapa site. The youngest 

event, Ga.1, faulted (and maybe folded?) Unit C and underlying units without affecting Unit B 

along the main fault F1 and related F2a, F4a, F3b. By measuring the offset of the base of Unit C 

along F1 on Guapa 3 western wall, a minimum vertical slip of 18 ± 2 cm was calculated for this 

event that occurred after the deposition of Unit C (130 ± 30 to 935 ± 30 
14

C yr BP) and before Unit 

B (175 ± 30 
14

C yr BP). 

  

A previous event, Ga.2, faulted the colluvial wedge 2 (CW2) without affecting Unit D. A minimum 

displacement of 35 ± 5 cm was inferred by measuring the offset of the base of CW2 along fault F1 

on Guapa 3 eastern wall. The geometry of the colluvial wedge indicates that its uplifted part was 
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probably eroded before the deposition of Unit D. This event occurred after the deposition of CW2 

(2305 ± 30 
14

C yr BP) and before Unit D (1460 ± 30 
14

C yr BP). 

 

The colluvial wedge CW2, identified in both trenches, corresponds to an earlier event, Ga.3. The 

vertical displacement associated with this event is impossible to measure due to the lack of 

preservation of the units on the footwall. However, it can be roughly inferred from the thickness of 

the colluvial wedge (McCalpin, 2009). Here, the 30-40 cm thick colluvial wedge would correspond 

to a minimum vertical slip of 60-80 cm for event Ga.3, which occurred just before the deposition of 

CW2 (2305 ± 30 
14

C yr BP). 

 

Events Ga.4 corresponds to the formation of the CW1, a colluvial wedge composed of angular 

clasts of Unit G formation in a clay matrix. CW1 has been recognized in both trenches, although 

with some uncertainty in Guapa 2, and indicates that Ga.4 occurred after the deposition of Unit E 

(7365 ± 35 
14

C yr BP) and before the formation of CW2 (2305 ± 30 
14

C yr BP). Using the McCalpin 

(2009) relation between displacement and colluvial wedge thickness, the 40-60 cm thick CW1 

would correspond to a minimum vertical slip of 80-120 cm for event Ga.4. An older event could be 

deduced from fracture fillings in older formations. However, the poor preservation of the oldest 

units on either side of the fault zone makes it impossible to characterize them with certainty. 

 

4.4 Hermoso trench site 

 

The Hermoso site is located near the village of Campo Hermoso, ca. 6 km southwest of Maravatio 

(Fig. 4). We excavated three trenches (Hermoso 1, 2 and 3) at the western end of the fault, where 

the scarp was inferred from a smooth inflection of the surface. The trenches, 80 and 150 m from 

each other on the same volcanic-fluvial surface (Fig. 4), were 12 m long and approximately 3 m 

deep (Fig. 5E). Hermoso 3 exposed an approximately 3 m deep buried cave at the fault. Volcanic 
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deposits sealing the fault attested to its inactivity during the last ruptures. Therefore, Hermoso 3 was 

not incorporated in the paleoseismological analysis. Hermoso 1 and 2 show intensely deformed 

stratigraphic units, with faults and largely opened fractures. Nine soil samples were collected from 

both trenches for radiocarbon dating (Table 1), with the ages in stratigraphic order. 

 

4.4.1 Hermoso trench stratigraphy 

 

The Hermoso trenches exposed volcanic deposits or epiclastic volcanic deposits, sediments and 

soils rich in volcanic material (Fig. 8). Their stratigraphy is described in detail in Table 2 and 

summarized in the following. The Quaternary volcanism has not been described in this area, and the 

age and provenance of volcanic formations observed in the trenches are unknown. Several units 

were easily correlated between the trenches (Units I, F, C, B, A). The oldest exposed formation 

(Unit I) is a lava flow. At Hermoso 1, Unit I is unconformably overlain by Unit H, a brown clay 

interpreted as an epiclastic deposit. Unit H is overlain by lapilli and pumice deposits (Units G and 

F). Unit F is the oldest unit above Unit I that can be correlated between the two trenches. Unit E and 

D are only preserved at Hermoso 2 and are an epiclastic volcanic deposit and a debris flow deposit 

(eroded on top), respectively. The three younger units are visible in both trenches. Unit C is 

interpreted as an epiclastic ash deposit, eroded on top and unconformably covered by Unit B, which 

corresponds to weathered ash deposits or to epiclastic volcanic deposits. Unit B is overlain by the 

present black soil, Unit A. 

 

4.4.2. Faulting  

 

Apart from the present soil (Unit A), all units are faulted at both trenches. A total of 13 and 12 faults 

were exposed at Hermoso 1 and Hermoso 2, respectively. The main fault, indicated as F1b at 

Hermoso 2, is oriented N070-080E, dips 70º-80º to the N and offsets all the units deposited 
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previously to Unit A (Fig. 8). At Hermoso 1, we did not identify any fault with such a displacement 

and assumed that the main fault must be located south of the trench. The other secondary faults, 

located on the hanging wall of the main fault, are called F2a to F13a at Hermoso 1 and F2b to F12b 

at Hermoso 2. Most secondary faults correspond to filled open fractures with or without associated 

vertical displacement. 

 

Six events, Hr.1 to Hr.6 from youngest to oldest, were inferred at this site (Fig. 8). The youngest 

event, Hr.1, faulted all the units except Unit A along F1b, F2a, F4a, F5a and F6a. A minimum 

vertical slip of 16 ± 2 cm was calculated by measuring the offset of the base of Unit B along F1b at 

Hermoso 2. This event occurred after the deposition of Unit B (3830 ± 30 
14

C yr BP) and before 

Unit A (present soil).  

 

Event Hr.2 activated most of the faults observed at both trenches and corresponds to the opening of 

fractures affecting all units previous to Unit B (along faults F2a to F6a, F8a to F10a, F2b, F12b). 

The following erosive event is highlighted by the angular unconformity at the base of Unit B. Due 

to this erosion, it is not possible to calculate the displacement associated with the event at Hermoso 

1. However, it could be greater than 100 cm if we consider the shifting along fault F1b at Hermoso 

2. The cumulative displacement associated with this event along the secondary faults (e.g., F9a, 

F10a; i.e., 30-40 cm) confirms that the movement was certainly important along the main fault. This 

event occurred after the deposition of Unit C (5185 ± 30 to 6360 ± 35 
14

C yr BP) and before Unit B 

(3830 ± 30 
14

C yr BP). 

 

Event Hr.3 corresponds to the opening and filling of a fracture (F3b-F4b) and a 5 cm vertical 

displacement along F11b. Other possible evidence of Hr.3 is given by the displacement of Unit D 

(debris flow deposit) and the fracture-filling between faults F1b and F2b at Hermoso 2. There, the 

geometry of Unit C seems related to the earthquake rupture, filling the topography formed during 
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the event. Of the over 200 cm of displacement of Unit D along F1b, 116 cm are related to the event 

Hr.1 and Hr.2, and 84 cm could be related to Hr.3. However, this estimation must be considered 

hypothetical since later processes have erased evidence of the measurable displacement attributed to 

Hr.3. Event Hr.3 occurred after the deposition of Unit D (8575 ± 35 
14

C yr BP) and before Unit C 

(5185 ± 30 to 6360 ± 35 
14

C yr BP).  

 

Event Hr.4 is observed in Hermoso 2 along F5b and F8b to F11b, displacing Unit E before the 

deposition of Unit D. At Hermoso 1, an intermediate unit (columns 1 and 2) has been interpreted as 

a colluvial wedge related to an assumed major fault located to the south and not exposed in the 

trench. The main evidence is that its location is restricted to the fault zone, and that its texture is 

made of angular clasts from the underlying unit (lava fragments from Unit I). Due to the lack of 

piercing points, it is not possible to calculate precisely the event displacement, but using the 

McCalpin (2009) relation between displacement and colluvial wedge thickness (40 to 50 cm), we 

would obtain a minimum vertical slip of 80-100 cm. The different dating results indicate that the 

event occurred after the deposition of Unit E (19,930 ± 100 
14

C yr BP) and before Unit D (8575 ± 

35 
14

C yr BP).  The colluvial wedge allows a better constraint of the event, probably occurring at 

8680 ± 40 
14

C yr BP. 

 

Event Hr.5 has only been recognized at the bottom of Hermoso 2 and corresponds to displacement 

along F6b and F7b. Due to the unavailability of measurable markers, it is not possible to calculate 

the displacement related to that event, which occurred just before the deposition of Unit E (19,930 ± 

100 
14

C yr BP) and after Unit E’.  

 

The oldest event identified is Hr.6, which is illustrated, at Hermoso 1, by two fault zones along F7a 

and F11a. It occurred just after the deposition of Unit G and before Unit F. There was no suitable 

material for dating, but this event must be much older than Unit E (19,930 ± 100 
14

C yr BP). 
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5. Discussion  

5.1 Paleoearthquake history of the western segment of the Venta de Bravo Fault 

 

In this section we analyze and compare the timing of the events observed in the five trenches, 

distributed on three sites along the Western VBF segment. The ultimate goal is to estimate the 

recurrence interval of surface faulting on this segment. For clarity and following the approach 

proposed by Ortuño et al. (2012), the term “paleoearthquake” (PE) refers to the paleoseismic events 

deduced from the correlation between the different trenches sites, while the term “event” designates 

individual events described at each site. The timing of the “events” and the related 

“paleoearthquakes” was obtained based on 23 radiocarbon dates (Table 1) and summarized in Fig. 9 

using 2-sigma level of calibration uncertainty. In the following discussion, the age of units and 

events corresponds to calibrated ages BP.  

 

At Terreros site, two events have been identified (Fig. 6) along a secondary fault, parallel to the 

VBF main fault (Tr.1 and Tr.2). However, due to the lack of sedimentary record and radiocarbon 

dates, these two events are poorly constrained (Fig. 9). At the Guapa site, four well-dated events 

younger than 8315 cal. yr BP were recorded in both trenches (Ga.1 to Ga.4) (Figs. 7, 9). At the 

Hermoso site, six events were recorded in two trenches (Fig. 8), but only four of them are well 

dated (Hr.1 to Hr.4). The two older events (Hr.5 and Hr.6) precede 24,268 cal. yr BP. The recent 

sedimentary record at this site is quite poor with only two units younger than 4406-4102 cal. yr BP, 

including the present-day soil. Accordingly, event Hr.1 may correspond to one or all of the three 

most recent events (Ga.1 to Ga.3) identified at the Guapa site (Fig. 9). Considering the uncertainties 

on the ages of the events and the quality of the sedimentary record at the three sites, the Guapa site 

has been taken as a reference for events post-dating 8315-8046 cal. yr BP and the Hermoso site as a 

reference for older events for the identification and characterization of the paleoearthquakes (Fig. 
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9).  

 

The correlation of events allows us to infer at least eight paleoearthquakes. This estimation must be 

considered as a minimum since it is not certain whether all earthquake ruptures were recorded in the 

sedimentary material. Furthermore, the deformation attributed to a single event could also result 

from successive events as illustrated by event Hr.1 that might correspond to events Ga.1, Ga.2 and 

Ga.3. 

 

The eight paleoearthquakes identified are (Fig. 9):  

 

(1) Paleoearthquake 1 (PE 1) corresponds to event Ga.1, recorded in the Guapa 2 and 3 trenches 

but not identified at the others sites (although perhaps Hr.1 at the Hermoso site). This event 

is historical and occurred between 924 and 34 cal. yr BP according to radiocarbon dating. In 

this area the historical earthquake record seems to be reliable only since the 18th century 

(García Acosta and Suárez Reynoso, 1996). Since that time, historical crustal earthquakes in 

1734-35 and 1853-54 and instrumentally recorded seismicity including the February 22, 

1979, MW 5.3 Maravatío earthquake are probably associated with this fault but did not 

rupture the surface. Therefore, PE1 could have taken place between 924 and 250 cal. yr BP. 

 

(2) Paleoearthquake 2 (PE 2) corresponds to event Ga.2, it could also fit Hr.1 and occurred 

between 2359 and 1302 cal. yr BP. 

 

(3) Paleoearthquake 3 (PE 3) corresponds to event Ga.3 and could also match Hr.1. It is well 

dated and should be slightly younger than 2359 cal. yr BP, the date obtained for the colluvial 

wedge associated to the event (Unit CW2 in Fig. 7). 
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(4) Paleoearthquake 4 (PE 4) corresponds to event Hr.2 and could also correlate to events Ga.4 

and Tr.1, which are not so well dated. This event occurred between 7419 and 4102 cal. yr 

BP. 

 

(5) Paleoearthquake 5 (PE 5) corresponds to event Hr.3 and could also match Ga.4 and Tr.1, 

which are not so well dated. This event occurred between 9597 and 5909 cal. yr BP. 

 

(6) Paleoearthquake 6 (PE 6) corresponds to event Hr.4 and could also match Tr.1 or Tr.2. It 

occurred between 24,268 and 9491 cal. yr BP. A colluvial wedge yields an age of 9737-9543 

cal. yr BP, indicating that the event has probably occurred slightly before the formation of 

the wedge. 

 

(7) Paleoearthquake 7 (PE 7) corresponds to event Hr.5 and could also fit Tr.2 that is not well 

dated. It has been only identified in trench Hermoso 2 and occurred just before the formation 

of Unit E, dated at 24,268-23,691 cal. yr BP. 

 

(8) Paleoearthquake 8 (PE 8) corresponds to event Hr.6. It is only observed in Hermoso 1 and 

there is no date for this event, although it is inferred that it occurred before PE 7. 

 

The synthesis of the identified paleoearthquakes reflects the heterogeneity of the sedimentary record 

over time (Fig. 9). Trenches at the Guapa site exposed a recent sedimentary record that preserves 

the evidence of the events occurring between 8315-8046 cal. yr BP and the present. At the Hermoso 

trenches, the analyzed units are older and provide evidence for earthquakes that occurred between 

9737-9543 cal. yr BP and 4406-4102 cal. yr BP. The sedimentary record of the oldest earthquakes 

(PE 7 to PE 8) is not well preserved resulting in poor bracketing of their ages in all trenches. Thus, 

the interpretation of their recurrence interval is highly speculative. For example, should Tr.2 be 
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considered together with Hr.5 as describing PE 7 or should they be considered as two independent 

events? 

 

Consequently, the recurrence interval of surface faulting is ca. 2000-2390 yr if calculated according 

to the last five paleoearthquakes interpreted along the western segment of the VBF (PE 1 to PE 5). 

Including PE 6 in the calculation and considering the age of the colluvial wedge as the age of this 

event, the recurrence interval for the last six paleoearthquakes is 1940 yr. The lack of evidence of 

Holocene events between events PE 4 and PE 3 suggests that the fault does not rupture periodically, 

in agreement with other observations of the central TMVB (Ortuño et al., 2018). 

 

This recurrence interval is in agreement with the range estimated at the junction between the 

Pastores fault and VBF (1.1–2.6 kyr; Ortuño et al., 2015). In contrast, Langridge et al. (2013) 

proposed return intervals for the Pastores fault ranging between 10 and 15 kyr (Table 3). The 

difference could be due to the incompleteness of the sedimentary record in Langridge et al. (2013) 

study (some events were not recorded) or that the central Pastores trenches were excavated on a 

secondary fault segment. Both hypotheses are supported by the lack of evidence of the 1912 

earthquake at trenches across the central Pastores Fault (Langridge et al., 2013).  

 

5.2 Single-event displacement and magnitude relations  

 

In addition to the chronology of the paleoearthquakes, the amount of slip per event and the 

maximum expected magnitude are essential to characterize the seismic behavior of a fault and its 

seismic hazards. The vertical slip per event calculated for the Western VBF segment ranges between 

18 cm (PE 1) and more than 100 cm (PE 4, Fig. 9) with an average slip of ca. 45 cm. These values 

for the VBF should be taken as minima, because they are calculated at the western tip of the fault, 

and they do not include potential slip accommodated by other fault segments (i.e., fault segments 6, 
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7 and 8 in Fig. 3). They are however in agreement with those reported in other paleoseismological 

studies within the Acambay Graben, which range between 29 and 194 cm (Langridge et al., 2000, 

2013; Sunyé-Puchol et al., 2015; Ortuño et al., 2015, 2018) (Table 3). If we assume 18–100 cm slip 

per event to be a representative value of the minimum average displacement along the VBF, it 

corresponds to earthquakes with a magnitude between 6.3 and 6.9, according to the Wells and 

Coppersmith (1994) scaling relationship for normal faults. Considering the uncertainties about the 

amount of slip per event at the western tip of the fault, another way to estimate the maximum 

expected magnitude is based on the total fault length (Wesnousky, 2008). We consider two different 

lengths; the 26 km long Western VBF segment and 48 km VBF total length (Fig. 3). The 

Wesnousky (2008) relationship, scaled for normal faults and crust thicker than 10 km, gives us a 

magnitude that varies from MW 6.8, for the western segment, to MW 6.9, for the total fault length. 

Using the fault length, considered as more reliable (Stirling et al., 2002, 2013), the estimated 

magnitudes are in the high range compared to those obtained using displacements observed in 

trenches. Accordingly, some of the vertical displacements should be considered as minima, which is 

acceptable since some of the trenching sites are located at the tip of the fault. 

 

5.3 Slip rate of the western segment of the Venta de Bravo Fault  

 

The amount of displacement measured in the trenches leads to an estimate of the minimum slip rate 

along the western segment of the VBF. In order to calculate it with the lowest uncertainties we 

focus on the main fault in trenches Guapa 3 and Hermoso 2, which present the most continuous 

sedimentary sequence. At Guapa 3, a test pit (Location on Fig. 5C) highlighted the presence of Unit 

E as a relic on the footwall. Assuming that Unit E was deposited horizontally across the fault and 

later offseted, there is ca. 1.9 m minimum vertical displacement on the top of Unit E. Knowing the 

age of Unit E (8315-8046 cal yr BP) we estimate a minimum dip-slip rate between 0.22 and 0.24 

mm yr
-1

 for a period including the last four paleoearthquakes.  
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At the Hermoso site, the two reported trenches are characterized by a series of largely open fissures 

within the volcano-sedimentary deposits (Fig. 8). They accommodate an almost pure tensile stress, 

normal to the fracture walls, and the amount of opening reveals a relatively large cumulative 

stretching, compared with the deformation observed at the Guapa trenches. Such similar largely 

open fissures were also observed along an intragraben fault on the Temascalcingo volcano after the 

Acambay 1912 earthquake (Urbina and Camacho, 1913) and interpreted as induced by ground 

shaking (Langridge et al., 2000). Thus, part of the deformation observed in both trenches at the 

Hermoso site and attributed to Hr.2 and Hr.3 might partially correspond to co-seismic gravitational 

sliding events instead of pure tectonic events. 

 

At the Hermoso 2 trench, the only clearly offset level (whose age is unknown), is Unit I around 

F1b, F2a and F3a (Fig. 8). Assuming that Unit D was deposited on both sides of the fault, ca. 160 

cm of minimum vertical displacement is measured at the top of Unit D (9597-9491 cal. yr BP). 

Thus, a minimum dip-slip rate for Hermoso 2 is ca. 0.17 mm yr
-1

 during a period that includes the 

five last paleoearthquakes. However, taking into account that we have only found evidence of three 

events at this site during the last 9.5 kyr and that the site is located at the western termination of the 

fault, we should expect a higher slip rate in the central part of the fault. In any case, given the 

uncertainties regarding the origin of the displacement and the poor preservation of younger units on 

the footwall at the Hermoso site, the tectonic displacement measured is uncertain. Accordingly, the 

slip rate of 0.22-0.24 mm yr
-1

, calculated on the Guapa 3 trench, corresponds to a more complete 

paleoearthquake record and better represents the slip rate of this fault. All these values are 

calculated taking into account vertical displacement and without considering strike-slip component. 

Indeed, in the western VBF, fault plane striation inversion and volcanic alignments indicate a 

NNW-directed extension, locally perpendicular to the strike of the fault (Suter et al., 1992, 1995) 

(Fig. 1). However, if there is a strike-slip component of movement, it is necessarily minor as it is 
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not preserved in the Holocene cumulated geomorphic signal.  

 

These new slip rates are somewhat higher but comparable to those, ranging between 0.03 and 0.17 

mm yr
-1

, deduced from paleoseismological analyses on faults of the eastern Acambay Graben 

(Langridge et al., 2000, 2013; Sunyé-Puchol et al., 2015) (Table 3) and are also greater than the 

0.17–0.18 mm yr
-1

 maximum vertical slip rates for the Quaternary faults in the central TMVB 

estimated by Suter et al. (2001). Only Ortuño et al. (2015) calculate a higher slip rate of 0.23-0.37 

mm yr
-1

 for the past ~6-4 kyr and state that prior estimated slip rates should be considered as 

minimum values because some studies calculate a low slip rate on only one segment of a fault 

system, in an area where the deformation could be distributed over several fault segments, and the 

sedimentary and therefore paleoseismological record may be incomplete. In this context, the slip 

rate calculated here, a little higher than the average, could be related to a better record of the 

Holocene paleoearthquakes and could therefore better reflect the Holocene slip rate than previous 

studies. In that case, the slip rate along some faults of the eastern Acambay Graben might be higher 

than previously calculated.  

 

Another explanation might be that in the western part of the Acambay Graben, the tectonic strain is 

more concentrated on some particular faults (e.g., the VBF), whereas in the eastern Acambay 

Graben the strain is distributed in a larger number of faults. This second hypothesis needs to be 

explored through systematic transect studies of the western Acambay Graben faults.  

 

5.4 Seismic hazards posed by the Venta de Bravo Fault 

 

Overall, the results of this study highlight the VBF as an active fault capable of generating 

damaging earthquakes. We have presented evidence for at least eight paleoearthquakes closely 

spaced in time (1.9–2.3 kyr), whose strain would be released by moderate to large earthquakes of 
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magnitude (MW) 6.8-6.9. In addition, the recurrence interval calculated for the VBF is two times 

shorter than that of the Acambay-Tixmadejé Fault and four to eight times shorter than those of the 

other faults studied in the graben (Table 3) (Langridge et al., 2000, 2013; Ortuño et al., 2015; 

Sunyé-Puchol et al., 2015). All these fault parameters point to the VBF as the major seismic source 

in the Acambay Graben. Until now, seismic hazard assessment studies on a national scale have only 

considered the effect of instrumental and historical seismicity on ground acceleration (Shedlock et 

al., 2000; Giardini et al., 2003; Tena-Colunga et al., 2009; Bayona Viveros et al., 2017). However, 

new studies have been dedicated to integrating paleoseismological data in the calculation of seismic 

hazards and try to better characterize the continental seismic sources in Mexico (Rodríguez-Pérez et 

al., 2017; Zúñiga et al., 2017). 

   

A discrete rupture of the entire VBF would result in a higher magnitude earthquake than the 1912 

Acambay multi-segment rupture which generated major ground shaking (MM Intensity 7–8) in 

Mexico City, located 70 km from the epicenter (Suter et al., 1996; Suter, 2014). An earthquake 

along the VBF could be equally damaging, or even worse considering the exponential population 

growth during the last century.  

 

It is important to consider that the VBF could rupture together with other faults located in the 

western Acambay Graben (multiple-segment rupture scenario). Indeed, the 1912 earthquake rupture 

extended along three fault systems of the eastern Acambay Graben (Acambay-Tixmadejé, intra-

graben and Pastores faults; Urbina and Camacho, 1913; Suter et al., 1996) and resulted in a MS 6.7 

earthquake. The possibility of such a major event is supported by the relative synchronicity between 

the last earthquakes recorded at the Guapa site (PE 1 and PE2; Fig. 9) and the more recent 

earthquakes recorded along the western central-graben fault systems (event 1; 4515 to 50 cal. yr BP; 

Ortuño et al., 2018).  
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Another consideration is whether the Pastores fault and VBF could rupture in sequence. Suter et al. 

(1995), Langridge et al. (2013), and Ortuño et al. (2015) discussed the possibility that the VBF and 

Pastores fault, separated by a < 1 km wide step, could be connected at depth and could break at the 

same time during an earthquake. Such a scenario has recently been observed in Italy for normal 

events (2016 MW 6.5 Norcia; Civico et al., 2017) and in New Zealand for strike-slip events (2016 

MW 7.8 Kaikoura event) at a larger scale (Stirling et al., 2017). Recent studies about the empirical 

bounds on rupture propagation predict that steps of 1 km or greater will be effective in stopping a 

rupture about 37% of the time (Biasi and Wesnousky, 2016). Accordingly the rupture crosses such a 

step 63% of the time and it is therefore plausible that the VBF to the Pastores fault break together, 

accounting for a total length of 80 km. Such a rupture would cause an earthquake of MW 7 

(Wesnousky, 2008). More studies at the junction between the two faults could confirm or invalidate 

the hypothesis of previous ruptures having jumped this step-over. 

 

Finally, considering the megacity of Mexico City and medium sized cities like Queretaro, Morelia, 

Toluca, Celaya and San Juan del Rio, more than 30 million people live within a radius of 80 km of 

the Acambay Graben. Even though the likelihood of a large crustal earthquake is small compared to 

the occurrence of a subduction earthquake in Mexico, its consequences would be disastrous 

considering the lack of preparedness and the poor quality of the building infrastructure. 

 

6. Conclusions 

 

Five paleoseismic trenches along the westernmost part of the 48 km long Venta de Bravo Fault 

show evidence of Holocene and historical earthquake ruptures. Evidence for at least eight late 

Pleistocene to Holocene paleoearthquake ruptures, dated with 23 radiocarbon dates, was reported. 

The last six paleoseismic events are well bracketed within the Holocene since the first two other 

events (PE 6 and 7) occurred before 24,268 cal. yr BP. The average recurrence interval of faulting 
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varies between 1940 (PE 1-PE 6) and 2390 years (PE 1-PE 5). The Holocene slip rate along the 

western segment of the fault is 0.22-0.24 mm yr
-1

. On the basis of a range of single-event 

displacements from 18 to 100 cm, an average displacement of ca. 45 cm, a subsurface rupture 

length of 26 km (western segment) and 48 km (entire fault), and a MW 6.3 to 6.9 is estimated for 

discrete rupture events on the VBF. Compared to the seismic parameters previously estimated for 

the faults in the Acambay Graben, these results point to the VBF as the major seismic source of the 

Acambay Graben in terms of length, slip rate and recurrence interval of faulting. Moreover, the 

synchronicity between the last paleoearthquakes recorded along the VBF and the western central-

graben fault systems indicates that the VBF could rupture together with other faults of the Acambay 

Graben. In this case, the associated earthquake could reach a magnitude greater than 7.  

 

Though large magnitude earthquakes on the VBF are infrequent compared to the subduction events 

along the Mexican Pacific coast, their occurrence needs to be integrated into calculations of seismic 

hazard for central Mexico. Much of the population of Mexico lives within this region and is at risk 

of being exposed to strong ground shaking (MM Intensity 7–8), particularly taking into account the 

site effect in the shallow lake basins where the largest population centers are located.  
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Figure 1. Map of the Acambay Graben showing active faults and major volcanic complexes, 

including Altamirano, Amealco caldera, Puruagua range and San Miguel. Red circles represent 

epicenter located by the National Seismological Service of Mexico (SSN). The 1912, MS 6.7 

Acambay earthquake is shown by a red star. Blue star and circles represent the 1979, MW 5.3 

Maravatío main shock and aftershock sequence (Rodríguez-Pérez and Zúñiga, 2017). Stress 

orientations of the studied area, resulting from inversion of fault plane striations, come from Suter 

et al. (1995). White box shows the location of Fig. 3. 30-m-resolution digital elevation model 

derived from Geomapapp. Modified from Lacan et al. (2013). 

 

Figure 2. Simplified geologic map of the Acambay Graben showing the main lithostratigraphic 

units and the fault traces identified within the graben (modified from Ortuño et al., 2015). VBF: 

Venta de Bravo Fault, 1, 2 and 3: Eastern Segment (purple); 4: Central Segment (Orange); 5, 6, 7 

and 8: Western Segment (red). Paleoseismological trench sites from other studies are also reported. 

Shaded relief derived from the 30-m-resolution digital elevation model by Instituto Nacional de 

Estadística y Geografía de México (INEGI, 2011) is used as a background. Plio: Pliocene; Qt: 

Quaternary. 

 

Figure 3. To the left: 30 m resolution Digital Elevation Model (DEM) of the three segments of the 

Venta de Bravo Fault (derived from GeomapApp). Right: Topographic profile across the Venta de 

Bravo fault scarp (Altitude in meters, distance in kilometers, vertical exaggeration x3). The location 

of the profiles is indicated on the DEM. VBF: Venta de Bravo Fault, 1, 2 and 3: Eastern Segment 

(purple); 4: Central Segment (Orange); 5, 6, 7 and 8: Western Segment (red); PF: Pastores fault. The 

white rectangle indicates the location of Fig. 4A.  

 

Figure 4. (A) Aerial orthophoto of the western tip of the Western Venta de Bravo Fault segment. 

The traces of the main faults are highlighted in white, and the location of the three 
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paleoseismological sites, Hermoso (B), Guapa (C), and Terreros (D), is indicated by white 

rectangles. The Cachiví River (in blue) crosses the area from south to north. In B, C and D, small 

rectangles localized the trenches excavated and presented (red) or discard (orange) in this work. 

Orthophoto from Mexican National Institute of Statistics and Geography (INEGI). 

 

Figure 5. Photographs of the paleoseismological sites and trench exposures. (A and B) View of the 

Terreros 1 trench. (C and D) View of the Guapa 3 trench. (E) View of the Hermoso 2 trench. The 

fault scarp is highlighted in red. 

 

Figure 6. Logs of the Terreros 1 trench. See text and table 2 for description of units. The western 

wall of the trench is flipped for ease of comparison.  

 

Figure 7. Logs of the Guapa 2 and Guapa 3 trenches. See text and table 2 for description of units. 

Western walls of the two trenches are flipped for ease of comparison. Photomosaics are in 

supplementary material. 

 

Figure 8. Logs of the Hermoso 1 and Hermoso 2 trenches. See text and Table 2 for description of 

units.  

 

Figure 9. Timing based on radiocarbon ages of the paleoearthquakes identified at the Terreros, 

Guapa and Hermoso sites on the Western Venta de Bravo Fault segment. The right column shows 

the related displacements during each paleoearthquakes.
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Table 1. Dating results. Arizona univ., Arizona University Radiocarbon Laboratory for 

conventional dating, and IRD-LMC14 and CEA Saclay for AMS dating. The calibrated 

ages have been obtained using OxCal 4.2 software (Bronk Ramsey, 2008), 2σ 

uncertainty. All ages are rounded to the nearest multiple of 5.  

Sample name 

(unit) 
Type of sample Radiocarbon Age 

(years BP) 
Calibrated Age 

(years cal. BP) 
 

Terreros trench 

 

   

Terr-1-3 (UC) Charcoal 10090 ± 130 12128-11242 

Terr-1-4 (UA) Charcoal 2980 ± 65 3346-2966 

    

Guapa trenches 

 

   

G2-5 (UC) Charcoal 135 ± 30 279-7 

G2-7 (UC) Charcoal 130 ± 30 275-8 

G2-8 (UC) Soil (Bulk) 395 ± 30 511-322 

G2-10 (UB) Charcoal 175 ± 30 294-34 

G3-16 (R) Soil (Bulk) 5540 ± 30 6400-6291 

G3-17 (CW2) Soil (Bulk) 2305 ± 30 2359-2185 

G3-18 (R) Soil (Bulk) 1460 ± 30 1397-1302 

G3-19 (R) Soil (Bulk) 6485 ± 30 7458-7322 

G3-20 (UD) Soil (Bulk) 1460 ± 30 1397-1302 

G3-21 (UC) Soil (Bulk) 935 ± 30 924-788 

G3-22 (UC) Soil (Bulk) 575 ± 30 648-530 

G3-28 (UE) Soil (Bulk) 7365 ± 35 8315-8046 

    

Hermoso trenches 

 

   

TH2-1 (R) Soil (Bulk) 2900 ± 30 3157-2954 

TH2-4 (UE) Soil (Bulk) 19930 ± 100 24268-23691 

TH2-5 (UD) Soil (Bulk) 8575 ± 35 9597-9491 

TH2-6 (UC) Soil (Bulk) 6360 ± 35 7419-7180 

TH2-7 (UB) Soil (Bulk) 3830 ± 30 4406-4102 

TH2-9 (R-UC?) Soil (Bulk) 6450 ± 35 7431-7294 

TH1-1 (R) Soil (Bulk) 23680 ± 180 28140-27485 

TH1-2 (UC) Soil (Bulk) 5185 ± 30 5992-5909 

TH1-3 (CW) Soil (Bulk) 8680 ± 40 9737-9543 
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Table 2. Sedimentary description and genetic interpretation of units exposed in the 

trench walls of Terreros, Guapa and Hermoso sites. 

 

Sites 

 

Sedimentological description 

 

Interpretation 
 

Terreros 

  

Unit A Up to 1.3 m thick black silt, sand and organic material. Ploughing 

disturbs the first 30 cm. 

Present day slope deposits 

and top soil (ploughed) 

Unit B 

 

60-80 cm thick heterometric and matrix-supported conglomerate with 

angular clasts without internal grading  

Brown debris flow 

Unit C’ 

 

30 cm thick small clasts (< 15-20 cm) dispersed deposit in sandy 

matrix. Brown dark carbon-rich clay at the top. 

Small clasts debris flow / 

Paleosol 

Unit C 

 

Up to 1 m thick heterometric and matrix-supported conglomerate of 

angular clasts without internal grading in sandy and silty light brown 

matrix. Angular and subangular boulders (centimetrics to 1.3 m). The 

clasts are derived from Las Américas ignimbrites, a deposit of the 

Amealco volcano made of pink to grey andesite with black vitrophyre. 

Light brown debris flow 

Unit D 

 

20 cm thick grey ash-supported clasts of andesite (< 10 cm diameter).  

It contains 20% of crystals of quartz, sanidine and hornblende.  

Grey ignimbrite (Upper part 

of Unit E?) 

Unit E 

 

Up to 1 m brown ash-supported dispersed clasts of andesite (< 15 cm 

diameter) and glass “nodules” with concentric fractures (probably 

obsidian) embedded in a sandy-clayey matrix. It contains 20% of 

crystals of quartz, sanidine and hornblende. 

Brown ignimbrite 

 

Guapa 

  

Unit A Dark brown organic material. Top soil  

Unit B 

 

10 to 60 cm thick pale brown carbon-rich clay, intersected to the north 

of the trench by gravel deposits associated to a paleochannel (Unit B’). 

Pale brown paleosol 

Unit C 

 

40 cm thick dark brown carbon-rich sandy clay formation with 

abundant blocks of andesite and various ceramic remnants. 

Dark brown paleosol 

Unit D 

 

Mafic, vesiculated and rounded andesite lava blocks, up to 50 cm in 

diameter, in a mud (clay) matrix. 

Colluvium deposit 

Unit E 

 

30-50 cm thick brown-grey carbon-rich sandy and high volcanic ash 

content formation. At Guapa 2, the bottom of Unit E is a gravels 

supported layer without sorting and with a brown clay matrix. 

Ash rich paleosol 

Unit F Up to 60 cm thick alternated reworked yellow ignimbrite material, with 

pumice clasts (<0.5 cm) and matrix of glass shards, phenocrysts of 

biotite (abundant), and hornblende. 

Epiclastic volcanic deposits 

Unit G Yellow massive volcanic ash formation with small pumice clasts (<0.5 

cm) and glass-shards matrix, phenocrysts of quartz, plagioclase, 

hornblende and oxidized biotite. 

Ignimbrite (possibly 

reworked) 

Unit H Scoriae and andesite blocks. Andesitic lava flow 

 

Hermoso  
Unit A 10 to 30 cm thick black silt and clay. Top soil 

Unit B 

 

40 to 60 cm thick dark brown crystal rich clay. Dark clay (epiclastic 

volcanic deposits) 

Unit C 

 

45 cm thick brown muddy clay deposit with abundant volcanic ash and 

clasts of different composition, rich in organic matter. 

Brown clay (epiclastic 

volcanic deposits) 

Unit D 10 to 20 cm thick matrix-supported deposit, clasts of rounded andesite. Debris flow deposit 

Unit E 

 

Ash-supported grey clay deposit with paleosol on top. Grey clay (epiclastic 

volcanic deposits) 

Unit F 10 to 40 cm thick white angular clast-supported pumice deposit with 

eroded top. 

Fall deposits, pumice 

Unit G 25 cm thick grey coarse pumice lapilli deposit. Fall deposits, lapilli 

Unit H 50-90 cm thick deposit of brown muddy clay, with abundant volcanic 

clasts and a crystals rich matrix. 

Brown clay (epiclastic 

volcanic deposits) 

Unit I Up to 2 m thick black and red scoria blocks in a scoriaceous matrix. Lava flow (Scoria blocks) 
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Table 3. Comparison of paleoseismological data calculated along the different faults of 

the Acambay Graben. SED: Single Event Displacement. 

Faults 
Length 

(km) 
Events 

Recurrence 

time 

(kyr) 

Maximum 

SED 

(cm)  

Average 

displacement 

(cm) 

Slip-rate 

(mm/yr) 

Amount 

of 

trenches 

Maximum 

Magnitude 
References 

Acambay-

Tixmadejé 
42 4 3.6 46-58  35  0.17 4 6.9 

Langridge et 
al., 2000 

Pastores 33-39 3 10-15 50  30  0.03 2 6.6-6.8 
Langridge et 

al., 2013 

Pastores 20.4 5 1.1-2.6 > 29-37  Not calculated 0.23-0.37 2 6.7 
Ortuño et al., 

2015 

San Mateo 13 3 11.6 52-196  85  0.085 1 6.4-6.7 
Sunye-Puchol 

et al., 2015 

Venta de Bravo 47 8 1.9-2.4 >100  45  0.22-0.24 5 6.9 This study 

Temascalcingo 21 6 Clustering 72  Not calculated 0.17 2 6.7 
Ortuño et al., 

2018 

Tepuxtepec 7 2 2.5-2.7 100  Not calculated 0.24-0.26 1 6.5 
Ortuño et al., 

2018 
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