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Numerical and Experimental Study of Wave
Propagation in Water-Saturated Granular Media

Using Effective Method Theories and
a Full-Wave Numerical Simulation

Katsunori Mizuno , Paul Cristini, Member, IEEE, Dimitri Komatitsch, and Yann Capdeville

Abstract—In this article, the detection of an object buried in
marine sediments is investigated. Using the results from a series of
experiments realized in a tank filled with water and calibrated glass
beads, we evaluate the performances for a wide range of the value of
the ratio kd of the grain size to the wavelength (k is the wave number
and d is the grain diameter) of three types of prediction tools. The
first two prediction tools are based on the definition of an equivalent
model. The first tool is based on the well-known Biot–Stoll theory
(BM model) while the second tool uses nonperiodic homogenization
to define effective velocity and anisotropy maps representing the
medium (HM model). The last prediction tool implements a time-
domain full-wave numerical method, which takes into account each
grain separately (GM model). It is shown that a good agreement
between experiments and numerical simulations can be achieved
using the BM model for the low kd regime and the HM model for
high kd regime.

Index Terms—Biot–Stoll model, nonperiodic homogenization,
time-domain full-wave numerical method, water-saturated
granular media.

I. INTRODUCTION

ACOUSTIC systems with various operating frequencies
are commonly used for the detection of objects buried in
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marine sediments. For example, submarine pipelines with outer
diameters of 0.2–1.8 m were investigated using a continuous-
wave pulse subbottom profiler, which operates at 3.5 kHz [1].
Buried wooden shipwrecks under the seabed can be visualized
using chirp signals with 1.5–13-kHz swept pulses [2]. Nonlinear
acoustic systems, such as parametric subbottom profilers, which
operate at a 50 kHz primary frequency and a 5-kHz secondary
one, have been developed and used for the survey of buried
deep-sea resources [3], [4]. Recently, relatively high-frequency
signals of 100 kHz have been used for the precise survey of
buried roots of a plant with outer diameters of 5–10 cm [5]. Even
higher frequency signals with a center frequency of 1 MHz are
just beginning to be used for the survey of small creatures, such
as asari clam with a size of 3–5 cm [6].

To be accurate, all these systems must take into account both
the propagation in water and sediment. However, the propaga-
tion of acoustic waves in sediments is generally much more
complicated than in water because sediments are in general
granular media composed of solid and fluid parts. The acoustic
characteristics, such as the sound speed and the attenuation, can
dramatically change with the ratio of the grain size to the wave-
length [7]–[11]. Especially, as pointed out by Sessarego et al.,
when the wavelength is smaller than the grain size, the effect
of scattering becomes very strong and can considerably affect
the signal structure [12]. This grain size dependence makes the
understanding of signals more difficult and engineers have to
rely on an empirical method for the design of the new subbottom
devices, which results in an increase in the total cost of the sea
surveys. As a consequence, the availability of a good prediction
tool of the reflected signals from buried objects in granular media
is critical to facilitate the design of these systems.

In this article, we propose to evaluate the performances of
three different types of prediction tools for the simulation of
backscattered signals by comparing them to experimental results
obtained in a tank filled with water and several sets of calibrated
glass beads having a wide range of ratios of the grain size to the
wavelength.

The first type relies on the definition of a physical model.
Many physical models with varying complexity have been de-
veloped for the modeling of acoustic wave propagation in marine
sediments. For a review of the different models, which are
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Fig. 1. Sketch of the experimental setup. In water, for a 1 MHz frequency, the 3-dB beamwidth of the probe is approximately 1.5 mm at the focal point. The
amplitude of the input signal was 100 Vp-p.

widely used in the underwater acoustics community, the reader
is referred to the recent article from Ballard and Lee [13], which
provides a state-of-art review of the research on the acoustics
of marine sediments. Among the different models, two types
are widely used: the Buckingham’s grain-shearing theory [14]
and Biot’s theory [15], [16] with all its variants. In this article,
we arbitrarily chose to use the Biot–Stoll model [17], [18]. This
prediction tool will be referred to as BM hereafter.

Recently, in seismics, another type of model, called nonperi-
odic homogenization [19]–[21], was introduced to account for
the presence of small heterogeneities (with respect to the min-
imum wavelength) in a homogeneous medium without having
to mesh them explicitly. This method leads to the definition of
an effective wave equation and an effective medium and has
been successfully used. Since this approach may also hold for
marine sediments, we propose to include it as a prediction tool
and evaluate its performances. It will be the first time that such a
model is used in the context of underwater acoustics and it will
be referred to as HM hereafter.

Finally, with the advent of supercomputers, time-domain
full-wave numerical methods are now able to produce accurate
results even for highly heterogeneous models, such as marine
sediments. With this approach, all beads will be explicitly con-
sidered and meshed. Such an approach is supposed to generate
accurate numerical results although these results may be ob-
tained at a very high computational cost. It will be the third type
of prediction tool that we will consider and will be referred to
as GM.

For all models, the generation of the numerical results will be
based on a spectral element method (SEM) [22], [23].

II. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for imaging
an aluminum block buried in a medium made of glass beads
with controlled size. Signals backscattered from the aluminum
block were recorded using the system illustrated in Fig. 1. The
aluminum block had a length of 100 mm, a width of 20 mm,
and a height of 20 mm. Signals were received by an acoustic

TABLE I
EIGHT TYPES OF GLASS BEADS

focus probe of 30 mm in diameter having a focal distance of
32 mm (1-3 Piezocomposite, B1K25.4I PF38, Japan Probe Co.,
Ltd., Yokohama, Japan) and acting both as an emitter and a
receiver. The probe generates square pulses in the time domain
with a central frequency of 1 MHz. Eight types of glass beads
(Fuji Manufacturing Co., Ltd., Tokyo, Japan) with different sizes
were prepared (see Table I). In this table, kd represents the “wave
number k (associated with the central frequency of the signal)
times the mean grain diameter d.” An acrylic case was filled
with water-saturated glass beads and set in a water tank. Then,
the surrounding water and the water-saturated glass beads were
boiled long enough to remove the possible remaining air bubbles.
The water temperature was approximately 22 °C. The aluminum
block was buried at a depth of about 28 mm below the glass bead
surface to the surface of the block. A probe was then moved
along the x-direction and signals were recorded on a laptop
computer through a digital pulse receiver (JPR-300C, Japan
Probe Co., Ltd., Yokohama, Japan) with a 10-MHz sampling
rate. In the present study, for each glass bead sample, 70 signals
were recorded along the x-direction with a 1-mm step.

III. DIFFERENT PHYSICAL AND NUMERICAL MODELS

Wave propagation can be dramatically different with kd be-
cause of different physical phenomena. For example, absorption
(e.g., due to grain resonances or pore fluid viscosity) is the
dominant propagation loss mechanism in the low-frequency or
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Fig. 2. Layout of the numerical models. Two different models (EM: Effective medium models and GM: Grain model) are considered in the numerical simulations.
The size of the whole area is 0.046 × 0.068 m2. The 61 sources and receivers are shown as light green lines. In these configurations, the space between the
sources/receivers is 0.5 mm in the x-direction. Four types of mediums are considered: M1, water with glass beads; M2, aluminum block; M3, water; and M4, glass
beads. The values of the physical parameters are given in Table III.

small-diameter regime (kd<< 1) while scattering prevails in the
high-frequency or large-diameter regime (kd >> 1) [6], [11],
[12]. As a consequence, to cover all situations, different types of
modeling have to be considered. As indicated in the introduction,
we will consider, in a first step, two types of 2-D models, which
provide effective physical properties of the granular medium.
Then, in a second step, we perform numerical simulations that
do not rely on effective properties by considering explicitly all
grains and propagating acoustic waves in the complex medium
as it stands. The two different types of models (BM and HM:
effective medium models and GM: grain model) used to generate
the numerical results are depicted in Fig. 2.

For all simulations, 61 equally spaced sources and receivers
are set at the positions that simulate the size and curvature of the
transducer, which is used in the experiments. A Gaussian pulse
with 1 MHz center frequency is used as the source. The details
of the models will be given in Sections III-B and III-C.

A. Solver

One of the most efficient ways of performing numerical
simulations in the time domain for the solution of the full-wave
equation is the spectral finite-element method. In this section,
we recall the main characteristics of the spectral finite-element
method and we focus only on some of its most important fea-
tures. The SEM is based upon a high-order piecewise polynomial
approximation of the weak formulation of the wave equation.
It combines the accuracy of the pseudospectral method with
the flexibility of the finite-element method. In this method, the

wavefield is represented in terms of high-degree Lagrange inter-
polants, and integrals are computed based upon Gauss–Lobatto–
Legendre quadrature. This combination leads to a perfectly
diagonal mass matrix, which in turn leads to a fully explicit
time scheme that lends itself very well to numerical simulations
on parallel computers.

In an elastic medium, the wave equation can be written in its
strong equations form as

ρü−∇ · σ = f (1)

σ = c : ε = λtr(ε)I+ 2με (2)

ε =
1

2

[
∇u+ (∇u)T

]
(3)

where σ is the stress tensor, f is an external force, c is the elastic
stiffness tensor, ε is the strain tensor, u is the displacement vector,
and ρ is the density. λ and μ are the two Lamé parameters,
tr(A) = Aii is the trace operator, and I is the identity tensor. ∇
is the divergence operator, T is the transpose operator, and a dot
over a symbol denotes time differentiation.

In fluid regions, the wave equation can be written in the
following form:

1

κ
χ̈ = ∇ · 1

ρ
∇χ (4)

u =
1

ρ
∇χ (5)

where χ is a scalar potential and κ is the acoustic bulk modulus.
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From a numerical point of view, it is more convenient to
use this system because it allows for a numerical fluid–solid
coupling, which is based on a noniterative scheme (see [44]).

It is particularly well suited to handling complex geometries
and interface conditions. The use of a pseudospectral method
also leads to the generation of coarser meshes. The typical
element size that is required to generate an accurate mesh is of the
order of λ; λ being the smallest wavelength of waves traveling in
the model. This comes from the fact that each spectral element,
when using the SEM with a polynomial degree of N = 4, which
is a typical value, contains a subgrid of (N + 1)2 = 5 × 5 Gauss–
Lobatto–Legendre discretization points and requires about five
points per minimum wavelength of the problem under study.
Very distorted mesh elements can be accurately handled. Com-
plex models that include fluid, elastic, viscoelastic, anisotropic,
or porous media can be modeled, making the SEM a method of
choice for the numerical modeling of wave propagation through
various types of media encountered in underwater acoustics.
Results have been thoroughly validated with analytical codes
and are used by many researchers in seismology all over the
world. The reader is referred to [24, Ch. 4] for more details on
the SEM and to [25] and [26] for a review of its capabilities for
both forward and inverse modeling. Additionally, convolutional
perfectly matched layers are used to remove spurious reflec-
tions from the boundaries of the computational domain [27].
Finally, the SEM is well suited for parallel implementations
on supercomputers as well as on clusters of GPU cards by
using the Message Passing Interface library and overlapping
communications with calculations to hide their cost. This is
an important feature for high-performance computing, which
is absolutely necessary for the configurations we want to solve.

Several publications have already used its potential in under-
water acoustics [28]–[30]. In this work, we will present a new
application of the use of an SEM in this domain.

It must be noted that one of the main difficulties of the SEM is
the mesh generation because it requires quadrangles in 2-D and
hexahedra in 3-D. Depending on the geometry of the model, it
can be very difficult or even impossible to generate a mesh. This
is the case for the grain model where the distance between two
grains can be very small. It also leads to a mesh, when it is possi-
ble to generate one, with very small elements (much smaller than
the wavelength and thus unnecessary small). As a consequence,
time-domain simulations will require very small time steps and
the resulting numerical cost can be prohibitive. For the mesh
generation, two meshing software were used: CUBIT/Trelis
(developed by Sandia National Laboratories, Albuquerque, NM,
USA) and Gmsh by Geuzaine and Remacle [31].

This solver will be used for the generation of the numerical
results with the HM and GM models.

B. Effective Medium Models (EM)

1) Biot–Stoll Model (BM): In this first model, we consider
that the space, which is occupied by the water-saturated glass
beads (M1), is a homogeneous medium. The layout of the model
is given in Fig. 2(a). As mentioned in the previous section,
the physical parameters in water-saturated granular media, the

sound speed and attenuation, vary depending on the grain size.
Such physical parameters can be evaluated using Biot–Stoll
model [3], [7], [8], [11], [32]. The Biot–Stoll model is widely
used and a useful tool to analyze the acoustic characteristics
of water-saturated granular media. Kimura et al. summarized
the characteristics of the Biot–Stoll model and reported some
comparisons between analytical and experimental results [11],
[32], [33]. Let us briefly recall the main characteristics of the
Biot–Stoll model (more detailed information on the Biot–Stoll
model can be found in [3], [7], [8], [17], [18], and [32]). The
physical parameters of the equivalent model are derived using
the equations of motion for the porous water-saturated granular
media expressed in the following form:

μb∇2ub + (H − μb) {∇ (∇ · ub)}
− C {∇ (∇ ·wb)} = ρbüb − ρbf ẅb (6)

C {∇ (∇ · ub)} −M {∇ (∇ ·wb)}

= ρbf üb −mẅb − ηF

kb
ẇb (7)

where

H =
(Kr −Kb)

2

D −Kb
+Kb +

4

3
μb (8)

C =
Kr (Kr −Kb)

D −Kb
(9)

M =
K2

r

D −Kb
(10)

D = K2
r

{
β

1

Kf
+ (1− β)

1

Kr

}
(11)

wb = β(ub −Ub) (12)

m = αb
ρbf
β

. (13)

In these equations,μb (μb = μbr + jμbi) is the complex shear
modulus of the frame, ub is the displacement vector of the
frame, U b is the displacement vector of the pore fluid, β is
the porosity, ρb = βρbf + (1− β) ρbr is the density of water-
saturated granular media,ρbf andρbr are the densities of the pore
fluid and grain, m is the virtual mass, and αb is the structural
factor when considering the nonuniformity of the pore fluid.
The viscous resistance to fluid flow is given by the ratio η/kb
(where η is the fluid viscosity and kb the permeability) and
the viscous correction factor F. The quantities Kf , Kr, and
Kb (= Kbr + jKbi) are the frame moduli of the pore fluid, the
grain, and the frame, respectively. The frame bulk and shear
moduli are given by

Kb = Kbr

(
1 + j

δl
π

)
(14)

μb = μbr

(
1 + j

δs
π

)
(15)

where δl and δs are the bulk and shear log decrements, respec-
tively.
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TABLE II
PARAMETERS USED TO COMPUTE THE ACOUSTIC CHARACTERISTICS OF THE BIOT–STOLL MODEL

In the harmonic regime, when a solution of the form of a lon-
gitudinal plane wave with a wave number kl (kl = klr + jkli)
is sought, the following characteristic equation is obtained:

(C2 −HM)k4l +

{(
m− j

ηF

kbω

)
H + ρbM − 2ρbfC

}

ω2k2l +

{
ρ2bf − ρb

(
m− j

ηF

kbω

)}
ω4 = 0. (16)

The roots of this characteristic equation yield the sound speeds
of the longitudinal waves cl = ω/klr (m/s) and their attenuation
coefficients αl = 8.69kli (dB/m).

Similarly, the characteristic equation for a shear plane wave
solution is

(
m− j

ηF

kbω

)
μbk

2
s +

{
ρ2bf − ρb

(
m− j

ηF

kbω

)}
ω2 = 0

(17)
where ks = ksr + jksi.

The root of this equation yields the sound speed of the
shear wave cs = ω/ksr (m/s) and its attenuation coefficient
αs = 8.69ksi (dB/m).

The input parameters for the Biot–Stoll model are given in
Table II. In this table, the physical parameters of the grains are
taken from [34]. We measured the density of water-saturated
glass beads accurately using a precise electrical scale and a
measuring cup. This quantity was used for the porosity calcula-
tion. All other parameters were calculated using the equations
given in [32]. In addition, the bulk and shear quality factors
are required for the numerical simulations. The quality factors
for the longitudinal wave Ql and for the shear wave Qs can be
calculated using the following relations Q−1

l = 0.037λlαl and
Q−1

s = 0.037λsαs [35]. They are related to the bulk and shear
quality factors Qκ and Qμ as follows [36], [37]:

Q−1
l =

(
1− c2s

c2l

)
Q−1

κ +

(
c2s
c2l

)
Q−1

μ (18)

Q−1
s = Q−1

μ (19)

where λl and λs are the wavelength of longitudinal and shear
waves. Finally, the physical parameters for the model are given
in Table III.

2) Nonperiodic Homogenization (HM): In recent years, the
so-called “nonperiodic homogenization method” has emerged
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TABLE III
PHYSICAL PARAMETERS FOR THE SIMULATION

as a general technique to compute the effective properties of a
heterogeneous medium. For wave propagation numerical sim-
ulations, it can drastically reduce the computation cost due to
small-scale features while preserving good accuracy [19]–[21].
This method basically uses the two-scale homogenization tech-
nique for the upscaling. The idea of the two-scale homogeniza-
tion has emerged in the 1970s from research in mechanics [38]
and was also applied to the study of elastic wave propagation
[39]. However, it was still limited to the periodic case. In the
last decade, Capdeville et al. successfully extended the periodic
two-scale homogenization theory to the nonperiodic case for the
elastic wave in 2-D and 3-D [19], [21] and for the acoustic case
[20]. A comprehensive description of the nonperiodic homoge-
nization technique can be found in [19]–[21]. In its current form,
the nonperiodic homogenization can only handle heterogeneous
media that are fully fluid, fully solid, or with small fluid inclu-
sions in a solid matrix. As a consequence, the homogenization
technique cannot consider the solid nature of grains and we will
have to rely on a fluid approximation of the grain properties.
Nevertheless, this approximation, which is necessary to be able
to use the homogenization technique in its current state, may also
give us interesting information about the influence of the shear
properties of the grains thanks to the comparison with the results
provided by the GM model, which can handle both fluid and
solid grains. The main effect of this approximation can be found
in [20]. Within the framework of the homogenization technique,
the strong form of the equations governing the effective acoustic
wavefield is expressed as follows:

1

κ∗ χ̈
∗ − ∇ · u∗ = 0 (20)

u∗ = L∗ · ∇χ (21)

where 1/κ∗ is the filtered version of 1/κ, χ is the displacement
scalar potential, u∗ is the effective displacement vector, χ∗ is the
effective displacement scalar potential, and L∗ is a second-order
tensor that may carry the effective density anisotropy. As a
result, effective velocity and anisotropy maps representing the
medium are obtained. These maps, which depend on the grain
distribution, are then inserted into a wave equation solver able
to handle anisotropy for the density [20]. An example of the

Fig. 3. Effective velocity and anisotropy maps generated by the nonperiodic
homogenization approach. (Top: sample of the GB1 model with positions of the
glass inclusion; Middle: effective velocity for the same sample; Bottom: inverse
density anisotropy measured as, for each position, the matrix distance to the
nearest isotropic inverse density matrix.)

results provided by the nonperiodic homogenization approach
together with the grain distribution is presented in Fig. 3. Once
homogenized, the effective model can be used in the wave
equation solver with a simple regular mesh [19]. In this study,
as already mentioned in Section I, the numerical results will be
obtained using an SEM.

C. Grain Model (GM)

In this model, we chose to use a time-domain full-wave
numerical model that does not rely on the approximation of a
heterogeneous medium by an effective one. As a consequence,
we have to consider each grain explicitly as shown in Fig. 2(b).
This approach should provide the exact results but at the price
of a computational cost, which can rapidly become prohibitive.
The layout of the model is given in Fig. 2(b) and the physical
parameters of the model are given in Table III. In this case,
only media M2 (aluminum), M3 (water), and M4 (grain) are
considered. The grains are disconnected, which means that there
is always some water between two grains. The attenuation of the
longitudinal and shear waves inside the grains is considered to be
very small and thus neglected. The grain diameter, the number
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TABLE IV
GRAIN DISTRIBUTIONS

Fig. 4. Snapshots at time t = 10 µs. Red color represents the norm of
displacement.

of grains, and the porosity for the model are given in Table IV.
The porosity was obtained by subtracting the sum of the areas
of all grains to the area of the rectangle in which the grains are
placed.

IV. RESULTS AND DISCUSSION

A. Comparison Between Waveforms Observed in
Experiments and Simulations

First, we show the snapshots generated by two of the numer-
ical methods namely the BM model and the GM model. The
red color represents the norm of the displacement (magnitude
of the displacement vector). These two snapshots (see Fig. 4)
are obtained at the same time. In the GM simulation, we can
see how the focusing of the emitted wave due to the concavity
of the transducer is distorted by multiple scattering in the GM
simulation. These snapshots are helpful for the understanding
of wave propagation in the granular media.

Next, we show the typical waveforms that propagate in each
sample for the eight kinds of water-saturated glass beads. The
received waveforms obtained in the experiments are shown
in Fig. 5. In this figure, multiple scattering is clearly seen
and increases with grain size as well as the duration of the

reflected signal from the aluminum block. In Fig. 6, we present
the numerical results using the BM model. In this case, the
shape of the waveforms is similar with an amplitude slightly
changing with grain size. Fig. 7 shows the results using the HM
model, which uses the nonperiodic homogenization technique.
As in Fig. 5, multiple scattering is clearly seen and increases
with grain size. The duration of the signal reflected from the
aluminum block also increases with grain size. Finally, we show
the results using the GM model in Fig. 8 with similar results as
in Fig. 7. For the GM model, the number of elements was very
big for the grain size distribution GB6 and we were not able
to get a mesh for the grain size distribution GB5 and smaller.
All these waveforms obtained from numerical simulations are
the result of the summation of the 61 signals received at the
61 receiver positions. The reflected waves coming from the
surface of the glass bead medium and of the aluminum block are
clearly detected in all data sets. They are found at approximately
12 and 45 μs, respectively. To improve the dynamic range
of the acquisition of the signals, the recorded emitted signal
was saturated that prevents us from using it in the numerical
simulations. We chose to use a Ricker wavelet as source time
signal with a central frequency equal to the central frequency
of the transducer. As a result, the emitted bandwidths in the
experiments and in the numerical simulations are very different.
However, the waveform changes with kd are clearly seen and
some tendencies can still be found. As shown in Figs. 5, 7,
and 8, multiple scattering is seen between the two reflected
arrivals. It can also be seen that multiple scattering starts to
appear for a value of kd around 1 and increases after. Multiple
scattering is often considered as a “speckle noise” in images
and affects their quality [6]. To quantify the variability of the
signal amplitude due to multiple scattering, we define the root
mean square (rms) value frms of the backscattered signal in the
time interval [T1, T2] as

frms =

√
1

T2 − T1

∫ T2

T1

[f(t)]

2

dt (22)

where f(t) is the backscattered signal and T1 and T2 are the
beginning and end of the time interval in which we want to
evaluate the level of multiple scattering. To quantify the vari-
ability with kd, frms is normalized by its value for GB1 (for
which multiple scattering is weak) for both the experimental
and numerical results. Fig. 9 shows the variation with kd of
normalized frms values calculated between 20 μs (T1) and 40 μs
(T2) from experiments and the HM model. The normalized frms

value increases with kd in both results. However, in the kd < 1
regime, the normalized frms values given by the HM model are
higher than the ones obtained from the experiment. In Fig. 5, it
can be seen that the duration of the signal reflected from the
top of the aluminum block increases with kd. This behavior
is caused by the effect of velocity dispersion, especially, in kd
> 1 regime, and consistent with the results shown in previous
studies [6], [11]. Since the bandwidths of the source signals
used in the experiment and for the numerical simulation are
different (the bandwidth for the numerical simulation is about
two times wider), the signals are therefore different, however,
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Fig. 5. Experimental signals obtained for different grain size distributions. The amplitude is normalized by the maximum value of the signal reflected from the
aluminum block (in this case, the data are normalized with GB4 as a reference).

the evolution of their waveforms, with increasing value of kd, is
similar.

Finally, to evaluate the impact of the approximation made in
the HM model where the grains are considered as a fluid medium,
we compare the signals obtained with the GM model and with the
HM model using the same grain distribution size namely GB8.
Since we can, with the GM model, either consider the grains as
a fluid or an elastic medium, we use this possibility to evaluate
the changes that this modification has on the time sequences.
The results are shown in Fig. 10. It can be seen that when the
grains are considered as a fluid medium, both models provide
almost the same signal showing that the homogenization works
very well in this configuration. Nevertheless, when the grains
are considered as an elastic medium, the two time sequences are
different. A small time shift of a few microseconds is observed on
the position of the reflected signal from the top of the aluminum
block.

B. Effective Velocity and Effective Attenuation as a
Function of kd

Another way of comparing the numerical results with the
experimental ones is to evaluate from two signals two different
quantities, which are characteristic of the propagation of the

acoustic wave through the granular medium. These two quanti-
ties, effective velocity and attenuation, are calculated from the
envelope of the received signals. As indicated in Fig. 11, two
distinct peaks can be detected from the envelope. The first peak
corresponds to the reflection from the surface of the medium
made of glass beads while the second peak corresponds to the
reflection from the top surface of the aluminum block. The first
quantity is a velocity, which can be obtained from the time
difference between the first peak and the second peak using the
thickness of the glass bead medium. The first peak is obtained
using the signal between 10 and 40 μs, whereas the second
peak is obtained using the signal between 40 and 60 μs. The
second quantity is the ratio of the amplitude of these two peaks.
It is related to the “apparent” attenuation due to the propagation
through the granular medium. We denote these two quantities
by effective velocity and effective attenuation.

Since it is difficult to determine exactly the arrival time of
the first peak because of the roughness of the surface of the
glass beads medium, especially in the high kd regime, we used
the time of arrival of the first peak obtained with the grain
distribution GB1 as a reference. The calculated effective velocity
as a function of kd is shown in Fig. 12(a). The effective velocity
obtained in the experiment is almost constant in the kd < 1
regime (GB1–GB4) and dramatically decreases for kd > 1
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Fig. 6. Signals obtained with the BM model for different grain size distributions. The amplitude is normalized by the maximum value of the signal reflected from
the aluminum block (in this case, the data are normalized with GB8 as a reference).

(GB5–GB8) regime. This decreasing is caused by the multiple
scattering as shown by Schwartz and Plona [40] and consistent
with a former study [6], [11]. The effective velocity obtained
with the BM model is almost constant for the whole kd regime
since the effect of multiple scattering is not taken into account
in this model. The effective velocity obtained in the HM model,
which uses homogenization, is almost constant for the kd < 1
regime (GB1–GB4) and GB5, then decreases with kd in the
higher kd region (GB6–GB8). The tendency of the effective
velocity variations found in the experiments and the one given
by the HM model is similar. However, the effective velocity we
get from the experiments is higher than the one given by the HM
model. In the kd regime where it was possible to get numerical
results, the effective velocities given by the GM model are slower
than the ones provided the HM model and closer to the results
obtained from the experiment.

The variation with kd of the effective attenuation is shown
in Fig. 12(b). In this figure, we chose to normalize the second
peak by its value for the GB4 configuration. Therefore, for the
value of kd corresponding to the GB4 configuration, the normal-
ized effective attenuation will be equal to 0 dB. The effective

attenuation obtained in the experiment is almost constant for
kd < 1 regime (GB1–GB4) and dramatically decreased with
kd for the kd > 1 (GB5–GB8) regime. This high attenuation
due to multiple scattering in the high kd regime was pointed
out by Sessarego et al. [12]. The effective attenuation values
obtained from the BM model are slightly increasing with kd.
The tendency is different from the results provided by the
experiments, especially in the high kd regime, since multiple
scattering is not taken account in this model (only attenuation is
considered). The effective attenuation values obtained with the
HM model are decreasing with kd. The tendency is consistent
with the results obtained from the experiments made in the high
kd regime. However, it is different in the low kd regime because
attenuation is not taken account in the HM model and attenuation
due to multiple scattering becomes smaller in the low kd regime.
It means that in this regime, intrinsic attenuation is stronger than
attenuation due to multiple scattering. The effective attenuation
values obtained with the GM model are almost the same as the
ones obtained with the HM model. Here, since we were unable to
get numerical results for GB4, the effective attenuation values
were normalized with respect to the value obtained for GB4
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Fig. 7. Signals obtained with the HM model for different grain size distributions. The amplitude is normalized by the maximum value of the reflected signal from
the aluminum block (in this case, the data are normalized with GB1 as a reference).

with the HM model. As shown in Fig. 12(b), the normalized
effective attenuation for kd < 1 with the HM model greatly
differs from the experiment. As mentioned in the literature,
the friction associated with grain motion and a change of the
physical properties of the fluid in small interstitial spaces should
have been considered [41], [42]. However, it is not possible to
consider these effects in our grain models GM and HM. It may
be at the origin of the discrepancy between the experimental and
numerical results. From these results, we can see that the wave
propagation characteristics in water-saturated granular media
are dramatically changed around the transition region (kd = 1).
Therefore, we chose to change the numerical model depending
on the kd regime. The effective velocity and effective attenuation
are replotted in Fig. 13 using the two models. The result obtained
with the BM model is used in low kd regime (GB1–GB4) and the
HM model is used in high kd regime (GB5–GB8). In this way, we
get a good agreement between the experiments and the numerical
simulations.

C. Comparison of the Computational Cost

For practical considerations, it is also important to compare
the numerical cost of the different approaches. In Table V, for
each grain size distribution, we give the number of elements of
the mesh and the number of CPU hours required to perform the
simulation. In this table, we do not take into account the time for
the mesh generation, which can be nonnegligible. For the BM
model, the number of elements and CPU hours were relatively
high because of the low value of the velocity of shear wave
which required to have small elements. For the GM model, the
number of elements was very big for the grain size distribution
GB6 mainly because of the very small distance between the
grains, which was the main difficulty for the mesh generation and
because we were not able to get a mesh for the grain size distri-
bution GB5 and smaller. For the grain size distributions GB8 and
GB7, we were able to get a mesh with the Trelis meshing soft-
ware but Trelis failed to generate a mesh for GB6. Only the Gmsh
meshing software was able to generate a mesh but at the price
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Fig. 8. Signal obtained with GM model for different grain size distributions.
The amplitude is normalized by the maximum value of the signal reflected from
the aluminum block (in this case, the data are normalized with GB4 from HM
model as a reference).

Fig. 9. Normalized frms value of backscattered signal amplitude obtained in
the experiments (red circle and line) and the results obtained with the HM model
(blue triangle and line) for different grain size distributions. The error bar shows
the standard deviation calculated from 70 data sets. frms was calculated using
the signal between 20 and 40 µs.

of a very big number of elements. For GB7 and GB8, we were
also able to generate a mesh with Gmsh but these meshes were
much bigger than the ones obtained with Trelis, which were thus
preferred. This is because there is a huge increase in the number
of elements between GB7 and GB6. For the HM model, we

Fig. 10. Signals obtained for the grain size GB8. The two signals obtained
with GM model are shown as full lines. The red line corresponds to a numerical
simulation with fluid grains. The gray line corresponds to a numerical simulation
with solid grains. The signal obtained with the HM model is the black dashed
line.

Fig. 11. Envelope of the experimental signal obtained with the grain distribu-
tion GB1.

were able to run the simulations for all grain size distributions,
including the grain size distribution GB1 where the diameter of
a grain was about 1/30th of the wavelength. Furthermore, the
increase in the number of CPU hours required for performing
the numerical simulation is moderate. This is due to the efficient
parallelization and memory management of the SEM [43].

V. CONCLUSION

In this study, backscattered signals from an object embedded
in a water-saturated granular media were obtained experimen-
tally and compared to the results provided by different numerical
models. The predicted characteristic variations, as a function
of grain size, of the waveforms, which propagate in a water-
saturated granular media, were recovered in both experimental
and numerical results.

Among the numerical models we considered, we found that
the Biot–Stoll model provides good results in the low kd regime
(kd< 1), whereas the GM model, based on full-wave simulation,
can provide good results in the high kd regime (kd> 1). The main
limitation of the GM model is related to obtain a reliable mesh.
In addition, the third model that we considered, which uses the
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Fig. 12. (a) Effective velocity and (b) effective attenuation for different grain size distributions. The red color represents the experimental results. The error bar
shows the standard deviation calculated from 70 data sets. The green color represents the numerical results obtained with BM model and the blue color represents
the results obtained with the HM model. The pink triangles are the results obtained with the GM model. The error bar for the GB model at the highest kd (GB8)
shows the standard deviation calculated using 11 data sets. Due to the computational cost, other error bars were not calculated.

Fig. 13. (a) Effective velocity and (b) effective attenuation are shown. The experimental results correspond to the red line and the numerical results (blue line)
are a mix of the results obtained with the BM model and the results obtained with the HM model. The results obtained with the BM model are used for the low kd
regime (GB1–GB4) and the results obtained with the HM model are used for the high kd regime (GB5–GB8).

nonperiodic homogenization technique, happens to have a wide
range of validity much wider than the other numerical models we
used. In its current state, it is limited because it is not possible to
consider solid inclusions in a fluid medium but the preliminary
results we obtained are very encouraging. In particular, it is very
efficient from the computational cost point of view, even for
small grains.

Finally, the numerical models we used in the present study
were 2-D. It is clear that, to be as close as possible to reality,
3-D simulations are required. Obviously, the GM model based
on full-wave simulations cannot be used. The only choice will
be to use the nonperiodic homogenization approach, but an
extension of this approach, able to handle solid inclusions in
a fluid medium, would probably be necessary.
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TABLE V
COMPUTATIONAL PERFORMANCE
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