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Motion Compensated Dynamic MRI 
Reconstruction With Local Affine 

Optical Flow Estimation
Ningning Zhao , Daniel O’Connor , Adrian Basarab , Dan Ruan, and Ke Sheng

Abstract—This paper proposes a novel framework to 
reconstruct dynamic magnetic resonance imaging (DMRI) 
with motion compensation (MC). Specifically, by combining 
the intensity-based optical flow constraint with the tradi-
tional compressed sensing scheme, we are able to jointly 
re-construct the DMRI sequences and estimate the 
interframe motion vectors. Then, the DMRI reconstruction 
can be re-fined through MC with the estimated motion field. 
By em-ploying the coarse-to-fine multi-scale resolution 
strategy, we are able to update the motion field in different 
spatial scales. The estimated motion vectors need to be 
interpo-lated to the finest resolution scale to compensate 
the DMRI reconstruction. Moreover, the proposed 
framework is capa-ble of handling a wide class of prior 
information (regulariza-tions) for DMRI reconstruction, 
such as sparsity, low rank, and total variation. The 
formulated optimization problem is solved by a primal–
dual algorithm with linesearch due to its efficiency when 
dealing with non-differentiable problems. Experiments on 
various DMRI datasets validate the recon-struction quality 
improvement using the proposed scheme in comparison to 
several state-of-the-art algorithms.

Index Terms—Dynamic MRI, compressed sensing, opti-
mization, primal-dual algorithm, line search, optical flow, 
multi-scale strategy, motion estimation/compensation.

I. INTRODUCTION

D
YNAMIC magnetic resonance imaging (DMRI) plays an

important role in different clinical exams, e.g., cardiovas-

cular, pulmonary, abdominal, perfusion and functional imaging.

The reconstruction of DMRI aims at obtaining spatio-temporal

MRI sequences in x-t space, from their measurements acquired

in the k-t space. The trade-off between spatial and temporal

resolution in DMRI reconstruction is challenging due to the

physical constraints. Classical techniques to deal with this issue

include echo planar imaging, fast low-angle shot imaging and

parallel imaging [1].
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In recent years, compressed sensing (CS) techniques have

demonstrated great success in reducing the acquisition time

without degrading image quality, see e.g., [2]. CS theory guar-

antees an acceptable recovery of specific signals or images from

fewer measurements than the number predicted by the Nyquist

limit. Image reconstruction from undersampled observations is

an ill-posed problem that consequently requires prior informa-

tion (regularization) to stabilize the solution. The regularizations

widely used for DMRI reconstruction include sparsity in trans-

formed domains [3], total variation (TV) penalties [4], low-rank

property [5] or a combination of several priors [6], [7]. Under

the CS-based framework, DMRI reconstruction methods can

be broadly divided into two categories: offline and online [8].

Similar to most of CS-based DMRI reconstruction methods, we

focus in this paper on the offline approach.

Due to the presence of motion patterns in DMRI acquisi-

tion, combining the motion estimation/motion compenstaion

(ME/MC) with the DMRI reconstruction has been explored in

the literature, see e.g., [9]–[18]. For instance, low rank plus

sparse (L+S) matrix decomposition employed in DMRI recon-

struction decomposes the DMRI sequences into two parts, where

L models the temporally correlated background and S models

the dynamic information [11], [12]. Lingala et al. [13] coupled

the DMRI reconstruction and the inter-frame motion estimation

using a variable splitting algorithm. MaSTER algorithm [9] was

proposed to reconstruct DMRI followed by MC using motion

vectors estimated with different strategies. In [18], DMRI and

motion estimation were conducted under multi-scale resolution

framework.

In this paper, we propose a novel DMRI reconstruction frame-

work with MC, which includes two stages. One is variable up-

dates, where the DMRI sequences and the inter-frame motion

vectors are estimated jointly by combining an intensity-based

optical flow (OF) constraint with the traditional CS scheme. In

the second stage, the DMRI reconstruction is refined with the

estimated motion vectors previously. By employing the coarse-

to-fine multi-scale resolution strategy, we are able to estimate

the motion vectors in different spatial resolution scales. The es-

timated motion vectors in a coarse scale are then interpolated

to the finest scale in order to refine the image reconstruction.

By varying the resolution scale, the two sub-problems are con-

ducted alternately. Note that only the motion vectors are esti-

mated in different resolution scales in the proposed algorithm,



whereas both the image sequences and motion vectors were

updated in different resolution scales in [18]. The formulated

problems in the two stages are addressed using the primal-dual

algorithm with linesearch [19], known to efficiently handle non-

differentiable optimization problems.

The contributions of this work are threefold: i) The primal

dual algorithm with linesearch is explored to address the two

sub-problems; ii) A wide class of DMRI priors can be handled

in the general framework for jointly DMRI reconstruction and

ME in the first stage; iii) In order to model local tissue de-

formations, an affine model is employed for the ME [20]. The

proposed algorithm is an extension of our previous work [21],

where a reference frame is considered for ME. Experiments on

three DMRI datasets demonstrate the superiority of the proposed

framework over several state-of-the-art algorithms.

The remainder of this paper is organized as follows. In

Section II, we describe the background related with the proposed

framework. The variational problem is formulated in Section III.

Section IV details the proposed algorithm. Section V gives the

experimental results. Conclusions and perspectives are reported

in Section VI.

II. BACKGROUND

In this section, the DMRI formation model is expressed.

Moreover, the OF equation and its variants, the proximal op-

erator and the primal-dual algorithm are illustrated hereinafter

to facilitate the explanation of the proposed algorithm.

A. DMRI Measurements

The DMRI measurements acquired in the k-t space are de-

noted as bt(k), which can be modelled by

bt(k) =

∫

x

ft(x) exp(−jkT x)dx + nt(k) (1)

where ft(x) of size Nx ×Ny is the tth frame of the DMRI

sequences, nt(k) represents the additive white Gaussian noise,

x = [x, y]T and t are the spatial and temporal coordinates, k

is the 2D frequency variable, t ∈ {1, . . . , Nt} with Nt as the

total number of temporal frames. Note that although the image

formation model is valid for any number of spatial dimensions,

to simplify the description, we only consider the 2D + t case

in this paper [22]. Given the matrix f = [f1 , . . . , fN t
] of size

(NxNy ) ×Nt whose column ft of sizeNxNy × 1 represents the

vectorized version of the tth temporal frame ft(x), we rewrite

the above expression in a matrix-vector form as below

b = A(f) + n (2)

where the measurement operator A represents the partial/

masked Fourier transform on specific sampling locations, the

observation b and additive noise n are vectors of size Nb × 1
where Nb ≪ ((NxNy ) ×Nt).

B. Optical Flow

Denoting ft(x) as a fixed image acquired at time t, the bright-

ness/intensity constancy in DMRI is formulated as

ft(x) = ft0 (x − d(x, t)) (3)

where d(x, t) = [u(x, t),v(x, t)]T is the motion field between

the fixed image and the moving frame ft0 (x),u(x, t) andv(x, t)
are the horizontal and vertical components of the motion field.

Under the hypothesis of small displacements, the first-order

Taylor approximation can be used to replace the nonlinear in-

tensity profile, i.e.,

ft0 (x − d(x, t)) ≈ ft0 − ∂xft0 u(x, t) − ∂yft0 v(x, t) (4)

where the frame ft0 , ft0 (x), ∂xft0 and ∂yft0 are the partial

derivatives of ft0 with respect to (w.r.t.) x and y. Combining (3)

and (4), the traditional OF equation is given by

ft(x) − ft0 + ∂xft0 u(x, t) + ∂yft0 v(x, t) = 0. (5)

To estimate the motion vectors d(x, t), a dedicated cost function

can be formulated globally (on the entire image) or locally (by

patches) using weighted OF [20], [23]–[25].

1) Weighted OF and Multiscale Approach: The weighted

OF equation can be expressed as below
∫

x

w(x − x0) [ft(x) − ft0 + ∂xft0 u(x, t)

+∂yft0 v(x, t)] dx (6)

where w is a window function centered at x0 . Given the

weighted OF equation, the motion vectors are assumed con-

stant within a spatial neighbourhood. Moreover, B-spline based

windows, i.e., w(x) = βn (x)βn (y), where βn (·) is a symmet-

rical B-spline function of degree n ∈ N, have been shown to be

adapted to medical images [20], [25]. The size of w is deter-

mined by the B-spline degree.

Varying the resolution scale where the motion is estimated

can be achieved by using a window function at different spatial

scales. Specifically, the window function at spatial scale j is

expressed as below

w(j )(x − x0) = w

(

x − 2jx0

2j

)

(7)

Since the window function at scale j is dilated by a factor 2j ,
the calculation of (6) at scale j corresponds to subsampling of

the inner product (6) by a factor 2j . The coarse-to-fine multi-

scale resolution approach has been demonstrated effective for

myocardial motion estimation [20], [25]

2) Affine Model: It is important to note that the motion

patterns in medical images can be very complex due to tissue

deformations such as rotation, expansion, contraction and shear.

In order to accurately describe these motion patterns, the affine

model instead of the pure translation model has been extensively

used in the related literature, see e.g., [20], [24], [25]. Based on

the affine model, the motion vectors at position (x, y) for the tth

frame are expressed by

u(x, t) = u0(x, t) + u1(x, t)x+ u2(x, t)y
v(x, t) = v0(x, t) + v1(x, t)x+ v2(x, t)y

(8)

where u0 , u1 , u2 and v0 , v1 , v2 are the affine parameters

defining the motion of pixel at position (x, y) in frame t w.r.t.

the reference frame f0 [20].



Algorithm 1: Primal Dual Algorithm with Linesearch

(PDAL).

Require: y0 , z0 , σ0 , s, α > 0, ǫ ∈ (0, 1), ρ ∈ (0, 1)
1: Set θ0 = 1.

2: for k = 1 . . . do

3: yk = proxσ k −1 h(y
k−1 − σk−1C∗zk−1)

4: Choose any σk ∈ [σk−1 , σk−1
√

1 + θk−1 ]
5: Linesearch

6: θk = σ k

σ k −1

7: ȳk = yk + θk (yk − yk−1)
8: zk = proxασ k g ∗(z

k−1 + ασkCȳk )

9: if
√
ασk‖C∗zk − C∗zk−1‖ ≤ ǫ‖zk − zk−1‖ then

10: Break linesearch

11: else

12: σk = σkρ and go to linesearch (step 5)

13: Until stopping criterion is satisfied.

C. Proximal Operator

The proximal operator of a lower semicontinuous (l.s.c.) func-

tion g is defined as

proxsg (p) = arg min
x
g(x) +

1

2s
‖x− p‖2 (9)

Note that the proximal operator calculation (9) always has a

unique solution. One important property of the proximal opera-

tor is the Moreau’s decomposition formula given by

proxsg ∗(p) = p− sproxs−1 g

(p

s

)

. (10)

where g∗ is the convex conjugate of function g. Moreau’s decom-

position builds the relationship between the proximal operator

of a l.s.c. function g and the proximal operator of its conjugate

[26], [27].

D. Primal-Dual Algorithm

Primal-dual algorithms (PDAs) have been widely explored

for non-smooth convex optimization problems, see e.g., [27]–

[30]. Given an optimization problem as below

min
y
g(Cy) + h(y) (11)

where g and h are proper, convex and l.s.c. functions, C is a con-

tinuous linear operator, the corresponding primal-dual/saddle-

point problem is expressed by

min
y

max
z

〈Cy, z〉 + h(y) − g∗(z) (12)

where 〈·, ·〉 is the inner product, g∗ is the conjugate of function

g and z is the dual variable. PDA seeks a solution (ŷ, ẑ) of

the problem (12) by alternating proximal gradient steps w.r.t.

the primal and dual variables. Different variants of PDA have

been proposed more recently to tune the stepsize parameters

adaptively and/or speed up the existing algorithms, see e.g.,

[19], [29]. Algorithm 1 summarizes the PDA with linesearch

(PDAL), which accelerates the traditional PDA. C∗ represents

the adjoint of matrix C.

III. PROBLEM FORMULATION

The problem can be divided into two stages, which are de-

tailed in this section.

A. Joint DMRI Reconstruction and Motion Estimation

Given the matrix f̄ = [fN t
, f1 , . . . , fN t−1 ], i.e., f̄ is f with

forward temporal shift by 1, the problem to joint reconstruct

the DMRI and estimate the motion field at resolution scale j is

formulated by the following variational framework

min
f ,d

‖A(f) − b‖2

+ ηφ(T f) + τ‖Mw ( j ) (f , f̄ ,d)‖1 + γψ(d), (13)

where φ(T f) is the regularization term incorporating prior in-

formation about the DMRI, T represents a given transform,

Mw ( j ) (f , f̄ ,d) is the weighted OF constraint between image

sequences f and f̄ expressed in (14), d = [u,v] is the displace-

ment field between f and f̄ , ψ(d) is a regularization term to

smooth the displacement fields and η, τ and γ are hyperparam-

eters weighting the importance of each term.

Mw ( j ) (f , f̄ ,d) = 〈f − f̄〉w ( j ) + 〈∂x f̄〉w ( j ) u + 〈∂y f̄〉w ( j ) v

= 〈f − f̄〉w ( j ) + 〈∂x f̄〉w ( j ) u0 +〈x∂x f̄〉w ( j ) u1 +〈y∂x f̄〉w ( j ) u2

+ 〈∂y f̄〉w ( j ) v0 + 〈x∂y f̄〉w ( j ) v1 + 〈y∂y f̄〉w ( j ) v2 (14)

where 〈r〉w ( j ) is the weighted average of variable r ∈ {f −
f̄ , ∂x f̄ , x∂x f̄ , y∂x f̄ , ∂y f̄ , x∂y f̄ , y∂y f̄} at scale j, which is given

by

〈r〉w ( j ) =

∫

x

w(j )(x − x0)r(x)dx. (15)

In order to smooth the displacement fields, the TV prior is

used to regularize the motion vectors. Considering anisotropic

TV, we have

ψ(d) =
2

∑

i=0

‖∇ui‖1 +
2

∑

i=0

‖∇vi‖1 (16)

where

‖∇ · ‖1 =
∑

i,j

∣

∣(∇x ·)i,j
∣

∣ +
∣

∣(∇y ·)i,j
∣

∣ (17)

with

(∇x ·)i,j =

{

(·)i+1,j − (·)i,j if i < Nx

0 if i = Nx
(18)

(∇y ·)i,j =

{

(·)i,j+1 − (·)i,j if j < Ny

0 if i = Ny
(19)

Note that ℓ2-norm prior can also be implemented to smooth the

motion field since the proposed algorithm can easily handle a

wide range of priors for the variables to be estimated.

B. Refining DMRI Reconstruction by MC

The inter-frame motion vectors estimated at spatial resolution

j are interpolated to the finest scale (the same as the image reso-

lution scale). We then refine the reconstructed DMRI sequences



by solving the following optimization problem.

min
f

∑

t

‖At(ft) − bt‖2 + λ‖Mt−1ft−1 − ft‖1 , (20)

where ft is the tth temporal frame of DMRI and Mt−1 is the

motion operator that uses the motion vectors to interpolate the

pixels in MRI frame ft−1 to displaced locations in ft [9].

IV. PROPOSED ALGORITHM

Note that both the formulated sub-problems can be solved

using primal-dual algorithm. Hereinafter, we summarize the

proposed algorithm.

A. Joint DMRI Reconstruction and Motion Estimation

Since the formulated problem (13) is non-differentiable, we

propose in this work a PDA-based algorithm to solve it. We first

rewrite (13) as a sum of several l.s.c. functions as below

min
y
g(Cy) =

9
∑

l=1

gl(Cly) ,

9
∑

l=1

gl(Ωl) (21)

where Ωl = Cly, y = [f ,u0 ,u1 ,u2 ,v0 ,v1 ,v2 ]
T is the vari-

able to be estimated, the matrix C is expressed in (22), shown at

the bottom of this page, and the expression of functions gl(. . . ; )
(l = 1 · · · 9) are expressed in (23).



























g1(Ω1) = 1
2 ‖Ω1 − b‖2 ,

g2(Ω2) = ηφ(Ω2),

g3(Ω3) = τ‖Ω3 − 〈f̄〉w ( j ) ‖1 ,

gl(Ωd) = γ‖Ωl‖1 , for l = 4, . . . , 9.

(23)

By introducing the dual variables z = [z1 , . . . , z9 ]
T , the PDA

iteration for problem (21) can be summarized as follows

For k = 0, . . . ,












yk = yk−1 − σ
(

∑9
l=1 C∗

l z
k−1
l

)

,

zkl = proxsg ∗
l
(z̃k−1
l ),

= proxsg ∗
l
(zk−1
l + sCl(2y

k − yk−1)),

(24)

where C∗
l is the adjoint of the matrix Cl . The derivation of

proxsg ∗2
(·) is related to the expression of DMRI regularization

Algorithm 2: Joint MRI Reconstruction and Motion Esti-

mation Using PDAL (JPDAL).

Require: y0 = [f 0 ,u0
0 ,u

0
1 ,u

0
2 ,v

0
0 ,v

0
1 ,v

0
2 ], z

0
l , l ∈ {1 . . . 9},

σ0 > 0, α > 0, ǫ ∈ (0, 1), ρ ∈ (0, 1)
1: Set θ0 = 1
2: for k = 1 . . . do⊲ Update

y = [f ,u0 ,u1 ,u2 ,v0 ,v1 ,v2 ]

3: yk = yk−1 − σk−1
(

∑9
l=1 C∗

l z
k−1
l

)

4: Choose any σk ∈ [σk−1 , σk−1
√

1 + θk−1 ]
5: Linesearch

6: ȳk = yk + θk (yk − yk−1)
7: for l=1, . . ., 9 do

8: zkl = proxασ k g ∗
l
(zk−1
l + sCl ȳ

k )

9: if
√
ασk‖CT zk − CT zk−1‖ ≤ ǫ‖zk − zk−1‖ then

10: break the linesearch

11: else

12: σk = σkρ and go to linesearch

13: f̄ = [f̂N t
, f̂1 , . . . , f̂N t−1 ]

14: Until stopping criterion is satisfied.

functions. The calculation of the rest proximal operator of g∗l
(l 6= 2) is given as below











proxsg ∗1
(z̃1) = z̃1 −sb

1+s ,

proxsg ∗3
(z̃3) = Projτ P

(

z̃3 − s〈Ī0〉w ( j )

)

,

proxsg ∗
l
(z̃d) = ProjγP (z̃l), for l = 4, . . . , 9,

(25)

where Projτ P is a projector onto the convex set (Euclidean ℓ2-

ball) τP = {‖p‖∞ ≤ τ}, where ‖p‖∞ = maxi,j |pi,j |. In prac-

tice, this projector can be computed using the straightforward

formula

Projτ P (p) =
p

max{τ, |p|} . (26)

In order to speed up (24), a variant of PDA with linesearch

[19] is employed. The resulting algorithm for jointly recon-

structing DMRI and estimating the motion vectors at spatial

scale j, denoted as (JPDAL), is summarized in Algorithm 2.

The stopping criterion employed is given by

|L(yk+1) − L(yk )|
L(yk )

< ǫ (27)

C =





































C1

C2

C3

C4

C5

C6

C7

C8

C9





































=





































A 0 0 0 0 0 0

T 0 0 0 0 0 0

〈·〉w ( j ) 〈∂x f̄〉w ( j ) 〈x∂x f̄〉w ( j ) 〈y∂x f̄〉w ( j ) 〈∂y f̄〉w ( j ) 〈x∂y f̄〉w ( j ) 〈y∂y f̄〉w ( j )

0 ∇ 0 0 0 0 0

0 0 ∇ 0 0 0 0

0 0 0 ∇ 0 0 0

0 0 0 0 ∇ 0 0

0 0 0 0 0 ∇ 0

0 0 0 0 0 0 ∇





































(22)



where L(y) is the cost function. The stopping tolerance ǫ =
10−4 in this paper.

B. Proposed Algorithm

The proposed motion compensated DMRI reconstruction

framework is summarized in Algorithm 3, denoted as MC-

JPDAL. The proposed method alternates between two steps.

In the first step, the MRI images and the inter-frame motion

vectors (at specific resolution scale) are estimated jointly. Since

the image sequences are estimated at the finest resolution scale,

the estimated vectors are interpolated into the finest scale for the

MC, i.e., the refinement of MRI reconstruction. In this paper,

the range of the resolution scales where the motion vectors are

estimated is fixed at [Jc : Jf ] with Jc = 5 and Jf = 3. The pa-

rameters of the proposed algorithm are divided into two groups.

One group includes the parameters related to the PDAL, such

as the step-size. They were fixed to σ0 = 1, α = 0.5, ǫ = 0.99
[19]. The second category composes the regularization param-

eters. In this paper, the regularization parameters η and τ are

tuned one-by-one in terms of quality of the reconstructed MRI

by cross validation. In addition, the regularization terms for dif-

ferent dataset are chosen according to the reconstruction quality

in this paper.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-

rithm, three MRI datasets were employed in this section: i) coro-

nal lung image, ii) short-axis cardiac cine1 and iii) two-chamber

cardiac cine.2 All three datasets were collected as fully-sampled

data and retrospectively undersampled from single or multiple

receiver coils according to a desired sampling pattern.

A comparison between the proposed MC-JPDAL and differ-

ent state-of-the-art algorithms, including ktSLR [6], L+S [11]

and MaSTER [9] was conducted in terms of the image recon-

struction quality. The quantitative performance of different algo-

rithms was evaluated using the root mean square error (RMSE)

and the image structure similarity index (SSIM) [31]. The two

metrics are expressed as below

RMSE =

√

E(‖f̂ − f‖2
2) (28)

SSIM =
(2µ

f̂
µf + c1)(2σf̂ f

+ c2)

(µ2
f̂

+ µ2
f + c1)(σ2

f̂
+ σ2

f + c2)
(29)

where f , f̂ are the ground truth and the estimated MRI se-

quences respectively, E(·) is the arithmetic mean, µa and σ2
a

are the average and variance of variable a (a ∈ {f̂ , f}), σ
f̂ f

is

the covariance between f̂ and f , c1 and c2 are two constants to

stabilize the division with small denominator.

In order to evaluate how much each stage in MC-JPDAL

contributes to the final reconstruction quality, we also compared

1The data was downloaded using the link https://github.com/js3611/Deep-
MRI-Reconstruction/tree/master/data

2The data was downloaded using the link http://www.ece.ucr.edu/∼sasif/
dynamicMRI/index.html

Fig. 1. RMSE comparison using different reduction factors for the coro-
nal lung data with algorithms ktSLR, L+S, MaSTER and MC-JPDAL.

Fig. 2. RMSE comparison for the coronal lung MRI dataset using the
proposed JPDAL with different priors: “ℓ1 +tv” (sparsity plus TV), “l+tv”
(low rank plus TV), “tv” (TV), “ℓ1 ” (sparsity), “l+s” (low rank plus sparsity).

Algorithm 3: Multi-Scale Motion Compensated DMRI

Reconstruction Using JPDAL (MC-JPDAL).

1: for j = Jc : Jf do

2: Variable estimation: Solving (13) using Algorithm 2;

⊲ Joint motion estimation and DMRI reconstruction.

3: MC: Solving (20) using Algorithm 1.

the DMRI reconstruction performance using JPDAL and MC-

JPDAL. The initial guess of all the algorithms implemented

in this paper was chosen by f 0 = AT (b). Experiments in this

section were performed using MATLAB 2017b on a 64 bit Linux

platform with Intel(R) Core(TM) i7-6700K CPU @4.00 GHz

and 48 GB RAM.

A. Coronal Lung Data

The coronal lung data was acquired with a 1.5T Siemens

Sonata Vision using spin echo (SE) sequences. The coronal lung

data is of size 192 × 192 × 40 with pixel-size 2.08 × 2.08 mm

per frame and 40 temporal frames. The slice thickness is 7 mm.



Fig. 3. Reconstruction of the coronal lung MRI scan using different algorithms: frame 1, 10 and 19 and the temporal profile (left to right). Top row:
fully sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue
vertical line. Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

Fig. 4. Quantitative comparison of the lung coronal MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and
MC-JPDAL. Left: RMSEs over the whole image; Right: SSIMs over the whole image.

In this experiment, a golden angle radial sampling pattern [32]

was implemented.

Fig. 1 displays the reconstruction comparison with different

reduction factors for the coronal lung data using algorithms

ktSLR, L+S, MaSTER and the proposed MC-JPDAL. We ob-

served that the proposed algorithm is superior to the others at

different reduction scales in terms of RMSE.

Fig. 2 shows the reconstruction comparison of the proposed

JPDAL using different priors w.r.t. RMSE and SSIM. The re-

construction with prior “l+s” (low rank and sparsity in temporal

domain) outperforms the others according to Fig. 2. Thus, the

regularization term for the coronal lung dataset is chosen as

“l+s” in the proposed algorithms for further comparison.

Fig. 3 includes three example frames and the temporal pro-

files of the reconstructed DMRI using different algorithms

at reduction factor 9. The first row shows the fully sampled

coronal lung data at temporal frames 1, 10 and 19 and the tem-

poral profile in y-t space (from left to right). The location where

the temporal profile extracted is indicated using a blue verti-

cal line. The region of interest (ROI) are contoured using a red

dashed rectangle. The zoomed ROIs and their corresponding

difference images (i.e., f − f̂ ) of the reconstructed MRI frames

using algorithms ktSLR, L+S, MaSTER, and MC-JPDAL are

displayed from 2nd to 5th rows. According to Fig. 3, the mag-

nitudes of the difference images obtained with the proposed

algorithm MC-JPDAL is darker than the others.

The quantitative measurements calculated over the whole

MRI frames are displayed in Fig. 4. The proposed algorithm

is superior to other algorithms in terms of the two RMSE and

SSIM, which is consistent with the visual inspection. We also

observe that MC-JPDAL improves the DMRI reconstruction

quality slightly comparing with JPDAL in Fig. 4.



Fig. 5. Reconstruction of cardiac cine MRI scan using different algorithms: frame 3, 16 and 27 and the temporal profile (left to right). Top row:
fully sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue
vertical line. Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

B. Short-Axis Cardiac Cine Data

The cardiac cine data was used in [33], which is of size

256 × 256 per frame and contains 30 temporal frames. In this

simulation, a golden angle radial down-sampling pattern with

24 rays per frame was performed. The corresponding down-

sampling factor is 12. After comparing different priors for the

reconstruction of the cardiac cine MRI sequences, the prior

for this dataset is the combination of sparsity and TV prior

(denoted as “ℓ1+tv”) in the proposed algorithms for further

comparison.

The reconstruction results are displayed in Fig. 5. The 1st row

shows the fully sampled cardiac cine data at temporal frames

3, 16 and 27 and the temporal profile in y-t space (from left

to right). The ROIs are contoured by a red dashed rectangle.

The location where the temporal profile extracted is indicated

using a blue vertical line. From 2nd to 5th rows, the enlarged

ROIs and their corresponding difference images (f − f̂ ) of the

reconstructed MRI frames using algorithms ktSLR, L+S, MaS-

TER and MC-PDAL are displayed. Visually, the proposed MC-

JPDAL outperforms the others since the reconstructed frames

with the proposed algorithm are darker in terms of the magnitude

of the difference images.

Fig. 6 shows the quantitative measurements RMSE (left)

and SSIM (right) calculated over the whole MRI frames. The

proposed algorithm MC-JPDAL outperforms the algorithms

ktSLR, L+S and MaSTER in terms of the SSIM, which is

consistent with the visual inspection. The algorithms MC-

JPDAL and MaSTER have comparable performance in terms

of RMSE, which are superior the algorithms L+S and ktSLR.

The proposed MC-JPDAL also improves the image reconstruc-

tion quality compared with JPDAL in terms of RMSE and

SSIM.

C. Two-Chamber Cardiac Cine Data

The two-chamber cine MRI sequences were acquired using

a Philips Intera 1.5T scanner with a 5-element cardiac synergy

coil and a balanced fast field echo study-state free precession

sequence. More details on the scan parameters can be found

in [9]. The sensitivity maps were estimated in advance. In this

experiment, a 2D Cartesian down-sampling pattern with a fully

sampled low-frequency region and a randomly sampled high-

frequency region. The down-sampling/reduction factor was 10.

After comparing different priors for the reconstruction of the

cardiac cine MRI sequences, the prior for this dataset is the

combination of sparsity and TV prior (denoted as “ℓ1+tv”) in

the proposed algorithms for further comparison.

Fig. 7 illustrates the comparison of the reconstruction results

using algorithms ktSLR, L+S, MaSTER and the proposed MC-

JPDAL. The top row shows the frames 3, 10 and 14 out of 16

frames, constructed from fully sampled k-space data and the



Fig. 6. Quantitative comparison of cardiac cine MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and MC-JPDAL.
Left: RMSEs over the whole image; Right: SSIMs over the whole image.

Fig. 7. Reconstruction of the two-chamber MRI scan using different algorithms: frames 3, 10, 14 and the temporal profile (left to right). Top row:
fully sampled MRI sequence with ROI contoured using red dashed rectangle and the location of the extracted temporal profile indicated using blue
vertical line. Bottom rows: zoomed spatial ROI of the reconstructed MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.

temporal profile in y-t space (from left to right). The ROIs are

contoured by a red dashed rectangle. The location where the

temporal profile extracted is indicated using a blue vertical line.

From 2nd to 5th rows, the enlarged ROIs and their correspond-

ing difference images (f − f̂ ) extracted from the reconstructed

MRI sequences using ktSLR, L+S, MaSTER and the proposed

MC-JPDAL are displayed. In terms of the magnitude of the

difference images, the proposed MC-JPDAL outperforms the

others.

Fig. 8 shows the quantitative comparison in terms of RMSE

and SSIM calculated over the entire MRI sequences using

the algorithms ktSLR, L+S, MaSTER, JPAL and MC-JPDAL.

The proposed algorithms JPDAL and MC-JPDAL outperforms

the others in terms of RMSE and SSIM. We also observe that

MC-JPDAL improves the reconstruction quality compared with

JPDAL in terms of RMSE and SSIM.

Table I summarizes the computational time for the three

datasets in this section, where L+S outperforms the others in

terms of computational time for the first and second datasets.

We also note that the proposed algorithm MC-JPDAL is able

to improve the image reconstruction quality of JPDAL without

further computational burden.



Fig. 8. Quantitative comparison of the two-chamber MRI sequences using the algorithms: ktSLR, L+S, MaSTER, the proposed JPDAL and
MC-JPDAL. Left: RMSEs over the whole image; Right: SSIMs over the whole image.

TABLE I
COMPUTATIONAL TIME (MIN) ACQUIRED WITH DIFFERENT METHODS

FOR THE THREE DATASETS

Compared with other DMRI reconstruction algorithms, the

proposed algorithm estimate the motion vectors and the image

sequence jointly, which is one of the main contributions of

this work. It is also interesting to note that both forward and

backward motion patterns were considered for MC in MaSTER.

The image reconstruction performance of the proposed method

is comparable to MaSTER with only the forward motion.

VI. CONCLUSION

This paper proposed a novel framework to reconstruct DMRI

using motion compensation, which alternates between two

stages. One is to jointly estimate the DMRI frames and the mo-

tion vectors by combining the intensity based optical flow con-

straint with the compressed sensing framework, which is one of

the main contribution of the proposed MC-JPDAL. Then, the es-

timated motion vectors are employed to refine the reconstructed

DMRI sequence through motion compensation. By employing

the coarse-to-fine multiscale strategy, the motion vectors can be

estimated at different resolution scales. The formulated problem

is addressed using a primal dual algorithm with linesearch. In

addition, the proposed scheme is able to deal with a wide class

of image priors for DMRI reconstruction. We demonstrated that

the proposed algorithm can obtain state-of-the-art DMRI re-

construction performance without necessarily to be the global

minimum.
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