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Should artificial agents ask for help in human-robot collaborative
problem-solving?

Adrien Bennetot1,3, Vicky Charisi2 and Natalia Dı́az-Rodrı́guez1

Abstract— Transferring as fast as possible the functioning
of our brain to artificial intelligence is an ambitious goal that
would help advance the state of the art in AI and robotics. It
is in this perspective that we propose to start from hypotheses
derived from an empirical study in a human-robot interaction
and to verify if they are validated in the same way for children
as for a basic reinforcement learning algorithm. Thus, we
check whether receiving help from an expert when solving
a simple close-ended task (the Towers of Hanoı̈) allows to
accelerate or not the learning of this task, depending on whether
the intervention is canonical or requested by the player. Our
experiences have allowed us to conclude that, whether requested
or not, a Q-learning algorithm benefits in the same way from
expert help as children do.

I. INTRODUCTION

Developmental robotics [39] (and synonyms cognitive
developmental robotics, autonomous mental development as
well as epigenetic robotics [10]) is the interdisciplinary
approach to the autonomous design of behavioural and
cognitive capabilities in artificial agents that directly draws
inspiration from developmental principles and mechanisms
observed in children’s natural cognitive systems [10], [39].

Autonomous agents in such settings learn in an open-
ended [21] manner, where crucial components of such
developmental approach consist of learning the ability to
autonomously generate goals and explore the environment,
exploiting intrinsic motivation [43] and computational mod-
els of curiosity [42], [37].

II. RELATED WORK

A. Development and learning in human child

The development of the executive functions (EF) in human
infants and young children with rudimentary neurodevelop-
ment of prefrontal cortex (PFC) refers to an array of orga-
nizing and self-regulating goal-directed behaviors that inhibit
impulses and regulate behaviour from a very early age.
These developments have been associated with both the PFC
maturation and its connectivity with other brain areas [25]
which is enabled by the individual’s sustained interaction
with the surrounding physical and social environment [55].
The initiation of these sensorimotor interactions in young
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children are exploratory in nature and often are embedded
in playful activities with components of motor learning [1],
[27]. Visual stimuli are also responsible for the elicitation of
improved EF and cognitive organization which contributes
to the development of perceptual learning.

Although exposure to visual stimuli can lead to perceptual
learning, it is often insufficient to yield robust learning [40].
Research shows that additional factors, such as attention and
reinforcement are needed to produce robust learning. Amount
of exposure, strength of exposure, relation to attention, in-
teractions of multiple sensory systems in perceptual learning
are some of the factors that promote human learning; the
underlying brain mechanisms that relate to these factors are
among the most active targets of research into the complex
mechanisms of child’s learning and the association of EF
development with visuo-motor integration [40].

In relation to the above-mentioned mechanisms, research
has shown the interaction of memory and learning with
mechanisms such as curiosity, appraisal, prediction and ex-
ploration [28], [31]. Gruber’s PACE framework [31] suggests
that curiosity is triggered by significant prediction errors
that are appraised. This enhances memory which is encoded
through increased attention, exploration and information
seeking and contributes to the consolidation of information
acquired while in a curious state through dopaminergic
neuromodulation of the hippocampus. More on the dopamine
neuromodulator from the intrinsic and extrinsic reward per-
spective of RL is in [51].

From a behavioural perspective, exploration has been
previously identified as a special form of curiosity that refers
to a drive that is either intrinsic or extrinsic [38]. Active
experimentation with physical objects generates more accu-
rate inferences about the latent properties of the object than
passive observation [8]. Exploration of the physical world is
considered as a phase in human transition from behavioural
events towards symbolic and conceptual thinking. The de-
velopmental process of symbol and concept emergence has
been associated to the relative frequency in which certain
strategies are used and to the process of abandoning an old
strategy and discovering new ones [50].

In problem-solving tasks these mechanisms have been
correlated with child’s ability to inhibit a certain action
while considering an alternative one that would be more
appropriate for the optimal performance of a task [6]. The
developmental process that leads from sensori-motor events
to abstract learning and the acquisition of the optimal strategy



for a specific task can be measured by behavioural indicators
such as task performance speed and accuracy level. [19].
However, this process appears more complex in the case
of collaborative problem-solving where the child interacts
with a more knowledgeable social agent. This includes the
process of selective social learning and relies on child’s
social motivation aspects for learning [34].

Research shows that humans have the ability to explicitly
communicate their uncertainty to others at a very early stage
of their life. Infants are capable of monitoring and communi-
cating their own uncertainty non verbally to gain knowledge
from others [29]. While playing in unstructured and uncertain
environments that lack clear extrinsic reward signals, they
actively seek help from other humans. In early childhood,
however, children might be aware of their uncertainty, but
they do not proceed always to help-seeking [57] which shows
the complexity of extrinsic and intrinsic motivation.

In this complex context, the examination of the learning
outcome often is not adequate for the understanding of
children’s problem-solving activity. An emphasis on how
children move from early to later levels of competence within
an EF component allows the depiction of their developmental
trajectories [50], [18], [6]. A mapping of the developmental
trajectories reveals inter-individual differences in cognitive
mechanisms such as inhibition of prepotent responses, men-
tal shifting [26] and generalization [3]. These changes have
been associated with changing brain connectivity which is
considered as both cause and consequence of the devel-
opmental changes [52]. An additional input towards the
understanding of child’s developmental process comes from
the field of child-robot interaction in which the child can
take advantage of the robot’s appropriate interventions.

B. Child development inspired artificial agent learning

Child learning has vastly inspired how to build learning
machines [35]. A sample of cognitive architecture to teach
robots in the way infants learn is in [33], demonstrating
how exploiting sensitivity to sensorimotor contingencies/
affordances in developmental psychology, combined with the
notion of goal allows an agent to develop new sensorimotor
skills in open ended learning settings [21], [20]. An example
of new discovered contingency is, e.g., touching a bell to
generate a sound.

Inspired by developmental psychology, in [22] interac-
tive learning (active imitation learning and goal-babbling)
is combined with autonomous exploration in a strategic
learner to reuse previously learned tasks or “procedures”
in a Socially Guided Intrinsic Motivation with Procedure
Babbling (SGIM-PB) able to determine the representation of
a hierarchy of interrelated tasks. In hard-exploration games,
novelty seeking agents [14], curiosity meta-learning [2] and
remembering promising states and exploring from them [24]
are powerful approaches to learn artificial agents.

Essential robotics scenarios for open-ended learning mak-
ing use of brain inspired models are Long-Term Memory

for Artificial Cognition [23], for robots to learn to operate in
different worlds under different goals when the occurrence
of experiences is intertwined. In this context, a Baxter robot
demonstrates to learn control tasks, segmenting the world
into semantically loaded categories associated with contexts,
that in order, can allow higher level reasoning and planning.
Architectures for lifelong learning by evolution in robots are
MDB (Multilevel Darwinist Brain) [5], [4].

Some of the modulation based mechanism embedded
within a cognitive architecture for robots combine long-
term memory and a motivational system in order to select
candidate primitive value functions for transfer and adap-
tation to new situations through modulatory ANNs. These
progressively conform new parameterized value functions
able to address more complex situations in a developmental
manner in a Baxter robot, which must solve different tasks
in a cooking setup [46], or simplify the utility space in
continuous state spaces [47].

Charisi et. al. [12] take inspiration from inhibitory control
in developmental psychology and examine child-robot col-
laborative problem-solving with a focus on the process rather
than the outcome of child’s acquisition of a certain strategy.
The task of Tower of Hanoı̈ is used to study the initiation
of voluntary request for help in a child-robot interaction
setting with child-initiated robot interventions. They observe
children’s trajectories of problem-solving and the needs for
exploratory actions. We extend this work [12] to test if
robotics learning processes and agent learning from an expert
can be child-development inspired. Since their analysis of
when and why asking for help helps solving collaborative
tasks in inhibitory processes, in this paper we contrast the
hypotheses tested in kids with those mimicking the same
situations in an artificial agent learning to solve the same
task, with reinforcement learning [53].

III. METHODOLOGY

As in [12] we are evaluating the learning agent (LA) on
the Tower of Hanoı̈ game, but instead of the LA being a
child, our agent is a Q-learning algorithm [58] with a learning
rate α = 1, a discount factor γ = 0.8 and an exploration
ε = 0.05. As it can be seen on Fig. 3 in the Appendix, the
Tower of Hanoı̈ game with 3 disks is a simple close-ended
task with 27 possible states and, at most, 3 possible actions
associated to each state. Each element of the reward matrix
used for the Q-learning represents the reward from moving
from the current state to the next one. Moves leading to
the goal state are assigned a reward of 100, illegal moves a
reward of −∞ and others a reward of 0.

A. Hypotheses

In order to explore if algorithms benefit from asking
for help in human-robot collaborative problem-solving, in
the same manner as kids do, we further formulate two
hypotheses:



• H1: Canonical interventions from an expert speed up
learning.

• H2: Getting help on demand from an expert acceler-
ates finding the optimal solution compared to not on
demand.

B. Research Design

We manipulate the expert intervention with 2 different
scenarios:

• The LA1 solves the task in collaboration with the expert
in a “turn-taking” scenario, which results in a canonical
cognitive intervention by the expert.

• The LA2 solves the task independently, having the
option to ask for help of the expert whenever (if) this
is needed, which results in an on demand intervention
by the expert.

In order to test the different variations among teacher-
driven and learner-driven interaction [16] in our HRI setting,
we vary two main parameters:

• The canonical intervention rate, i.e. the frequency of
the expert’s intervention during the canonical scenario.

• The ask-for-help parameter, i.e. how much the LA
asks the expert to do the next movement, as a proxy
to simulate the needs for help, during the on demand
scenario.

Our evaluation metric is the number of movements re-
quired to solve the task after a variable number of training
episodes. To make these results robust, all the experiments
were repeated 100 times.

IV. RESULTS

We used the above-mentioned parameters to test our
hypotheses as follows.

A. Task Performance with and without Turn-Taking

The first configuration consists of a LA1, a Q-learning
agent, playing in collaboration with an expert that knows
exactly what is the optimal movement in each configuration.
Every two turns, the expert will play instead of the LA1
and perform the optimal action. We compare this with the
performance of the LA1 when it solves the task alone, and
with the one of a random policy.

As it can be seen in Fig. 1, the LA1 is directly more
efficient when it is helped by the expert in a turn taking
scenario, going from an order of 102 moves to solve the
task without help without training, to 101 with canonical
interventions. This can be explained by the fact that the agent
is directly placed by the expert on the optimal sequence of
actions (the left side diagonal from Fig. 3) to solve the task.
In fact the expert is able to solve the task in 7 moves starting
from any state, so after it has played, the LA1 is necessarily
only 6 moves away from victory rather than 7. Thus during
the first episodes of Q-learning, when the LA1 is not yet
aware of the optimal path and acts somewhat randomly, it

Fig. 1. Canonical intervention scenario: the LA1 solves the task in
collaboration with the expert as they play alternatively. In cyan and yellow
the performance when the LA1 follows a random policy, with and without
help. Log. scale used on both axes.

is still closer to the resolution of the task when it receives
help than when it does not, because in the worst case it
would be 6 moves away from the resolution instead of 7. In
other words, the help of an expert improves the performance
of the random policy. However the LA1 is moving away
from the random policy after only 10 episodes when it does
not receive help and it takes 100 training episodes to start
drastically reducing its mean number of moves. At the same
time, the performance still seems to be random in the turn-
taking configuration and it takes to the agent 300 training
episodes before it starts to converge to the optimal solution.
The curves intersect after 400 training episodes when the
LA1 without help starts to outperform the helped LA1. The
LA1 needs 3,000 episodes of training to reach the optimal
solution with canonical interventions, whereas it only needs
1,000 episodes when it is not helped. We can therefore
conclude that being helped every 2 rounds by an expert agent
does not speed up the learning process, on the contrary it
slows it down.

This is somehow not really surprising because the expert
giving the optimal solution every two rounds prevents the
agent from exploring every possible state. As shown in Fig.
3, the objective is to reach the 222 state at the bottom left
and each move of the expert will therefore lead the game to
a state further to the left or further down than the previous
state. This makes some states hard to reach (such as 121) or
even impossible (such as those below the 223), thus delaying
the convergence towards the optimal solution as the agent
will still waste time trying to get in there even if it is not
possible. This is a drawback of the learning system used.
In contrast to some state-of-the-art methods such as Policy
Shaping [30], [11], our Learning Agent is guided by an
expert user and the feedback is not formulated as policy
advice, as the goal is not to optimize the human feedback
but to mimic how a kid learns solve the task with a Learning
Agent with a Q-learning algorithm, instead of a child as in
the settings of [12]. The learning system could be improved
by optimizing the teaching [9] by not always giving the



optimal action but the one that will teach the agent the most.
A solution that would not deviate from the initial exper-

imental setup could therefore be to let the LA1 explore the
different states by involving the expert less frequently, by
modifying the canonical intervention rate. This is what we
did in Fig. 4 in the Appendix, letting the expert play every
3 and 4 turns.

B. On demand or canonical intervention by the expert

The second configuration consists of a LA2, a Q-learning
agent, trying to solve the task independently. It has the
opportunity to ask for help to an expert agent whenever it
needs to. To do this, we added an ask for help parameter
to the Q-learning. At each turn, if the best policy value is
lower than the ask for help parameter, the expert will play
instead of the LA2. As we can see on Fig. 2, the LA2 is
directly more effective, because he is always asking for help
as it does not know yet what do to. After asking for help
many times during the first 10 episodes it starts solving the
task by itself, resulting in a loss of efficiency. We interpret
this as the LA2 gaining confidence in movements which,
while not perfect, still allows the task to progress towards
its resolution through state exploration and trial. Compared
to the LA1 without help, the LA2 asking for help is much
more efficient but there is not a lot of variation between the
canonical and the ask for help configuration. This is probably
due to the rather simple simulation of the ask for help trigger.

Fig. 2. Asking for help scenario with different ask for help values: the LA2
tries to solve the game alone while being able to ask for help whenever its
best action is not good enough (plot not on logarithmic scale as the agent
asks for help at most 7 times).

V. DISCUSSION AND FUTURE WORK

This paper presents the initial work towards the un-
derstanding of problem-solving process with two artificial
agents by simulating a child-robot interaction experimental
study. We acknowledge that the simulation of child’s be-
haviour is a complex task and more emphasis is needed on
accurate description of the multidimensional child behaviour.

The aspect of intrinsic motivation [43], indirectly related
with solving a concrete task, but concerned with learning
a set of reusable skills, should be further studied when
rising the level of abstraction, specially in the context

of solving different tasks and taking as input larger state
spaces and of larger dimensionality [45], [44] in order to
simplify problem-solving in an end-to-end learning manner.
State representation learning [36] may come into use for
a more realistic, less preprocessing demanding setting, i.e.,
not requiring human annotations of each game state when
involving human collaboration.

Our point is to verify if hypotheses derived from an
empirical study in an HRI setting are valid when translated
from children to a RL Agent. Thus, the difficulty lies in the
simulation of the child’s behaviour by an artificial agent. The
addition of an intrinsic motivation, on the desire for the LA
to solve the game by itself, could increase the accuracy of
this comparison. Our LA asks for help when it considers that
a movement is not good enough to be played (i.e. when the
largest Q-value among all available states fall under a pre-set
threshold), whereas in reality, the mechanisms pushing the
child to ask for help are much more complex [35], [7].

One of the challenges to explore is to validate the hypothe-
ses tested with more complex tasks. More elaborated man-
ners should be devised to more faithfully model uncertainty
in the agent while acting. Future work could better mimic
the presented and other human learning inspired behaviours.
For instance, one could quantify (aleatoric and epistemic)
uncertainty [54], [13], [15] of the agent’s next action so we
can better simulate the ask for help setting when an agent
is not certain enough. An accurate assessment should be
made of the mechanisms that lead a child to ask for help
when solving a task independently. This would allow it to
be represented in the LA’s behaviour so that it could ask for
help in a more human-like natural way.

Future work includes the expansion of collaborative
problem-solving settings with triadic interactions e.g. two
children and a robot, in order to examine features of col-
lective problem solving accounting for social dynamics [56].
In addition to this, we are planning to examine the shifting
processes [41], i.e. the processes of strategy generalization in
a different task in human and artificial agents. Future work
could also consider the possibility of trading-off between the
gain generated for the agent by asking versus the disruption
it causes to the human, using principles of mixed initiative
interaction [32]. CoBots approaches1 to ask for help are a
related field to further explore, e.g., planning approaches
for the LA to distinguish actions that it can complete
autonomously from those that it cannot [49], [48].

Finally, in order to better understand child’s developmen-
tal trajectories, we aim to replicate a similar child-robot
interaction setting with a larger sample by manipulating
additional variables such as the agent’s social behaviour. This
would inform our testing of more complex algorithms than
Q-learning, using other dopamine based distributional RL
signals [17], and as little training data as people need [35].

1CoBots http://www.cs.cmu.edu/˜coral/projects/
cobot/
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APPENDIX

A. Tower of Hanoı̈ game

All possible states of the Tower of Hanoı̈ game are in Fig.
3.

B. Additional Results

The LA1 who receives help is, regardless of the number
of training episodes, always more efficient than the one who
does not receive help. We can therefore conclude that an
agent is more efficient when it receives help, as long as this
help does not block its exploration.

Fig. 3. Abstract graph of the Tower of Hanoı̈ game states for 3 disks. Each
node represents one possible state of the game. The starting configuration
is on the top, the final one in the bottom left. In red the optimal sequence
of actions, in blue dashed movements between sub-graphs leading toward
the solution (retrieved from [12].)

Fig. 4. Canonical intervention scenario with different intervention rates:
the LA1 and the expert solve the game in collaboration but the expert is only
playing every 2, 3 and 4 turns. It means that, e.g., in the last configuration,
the LA1 will play 3 times before the expert plays. Log. scale used on both
axes.


	INTRODUCTION
	RELATED WORK
	Development and learning in human child
	Child development inspired artificial agent learning

	METHODOLOGY
	Hypotheses
	Research Design

	RESULTS
	Task Performance with and without Turn-Taking
	On demand or canonical intervention by the expert

	DISCUSSION AND FUTURE WORK
	ACKNOWLEDGEMENT
	References
	Tower of Hanoï game
	Additional Results


