
HAL Id: hal-02871341
https://hal.science/hal-02871341

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inference of Channel Priorities for Asynchronous
Communication

Nathanael Sensfelder, Aurélie Hurault, Philippe Quéinnec

To cite this version:
Nathanael Sensfelder, Aurélie Hurault, Philippe Quéinnec. Inference of Channel Priorities for Asyn-
chronous Communication. 14th International Conference on Distributed Computing and Artificial
Intelligence (DCAI 2017), Jun 2017, Porto, Portugal. pp.262-269, �10.1007/978-3-319-62410-5_32�.
�hal-02871341�

https://hal.science/hal-02871341
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1007/978-3-319-62410-5_32

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22056

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Sensfelder, Nathanael and Hurault, Aurélie and

Quéinnec, Philippe Inference of Channel Priorities for Asynchronous

Communication. (2017) In: 14th International Conference on Distributed

Computing and Artificial Intelligence (2017), 21 June 2017 - 23 June

2017 (Porto, Portugal).

Inference of Channel Priorities for Asynchronous

Communication

Nathanaël Sensfelder1, Aurélie Hurault1 and Philippe Quéinnec1

IRIT - Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
http://www.irit.fr

Abstract. In distributed systems, the order in which the messages are
received by the processes is crucial to ensure the expected behavior. This
paper presents a communication model which allows for restrictions on
the deliveries of a channel depending on the availability of messages in
other channels. This corresponds to prioritizing some channels over oth-
ers. It relies on a framework able to verify if a given system satisfies a
user defined LTL (Linear Temporal Logic) property with different pri-
orities. We also propose to automatically infer the channel priorities so
that the system does not infringe on this temporal property.

1 Introduction

In an asynchronous environment, the delivery of messages is by essence nonde-
terministic. This is bound to cause complications, notably with software testing,
making the possibility of a formal verification of the system’s correctness highly
desirable. Many communication models impose additional constraints on the
delivery of a message, such as First-In-First-Out or causally ordered communi-
cation. Those communication models belong in two classes: the generic models,
which are defined independently of the system that uses them; and the applica-
tive models, whose constraints refer to the system’s components (such as, in our
case, its channels). The latter require the communication model to be updated
whenever the definition of the system is changed. This makes it impractical for
non-trivial systems if the constraints are not automatically inferred.

Consider a distributed system composed of peer exchanging messages over
predefined channels. Following the Calculus of Communicating Systems (CCS)
syntax, the sending of a message on a channel is indicated by a ‘ !’, the reception
by a ‘?’, and a peer internal action by ‘τ ’. Using a purely asynchronous commu-
nication model (unlike CCS) in the system described in Figure 1 fails to prevent
the last peer from going into a forbidden state (noted ⊥), for instance via the
sequence of events: a! · b! · b? · c! · c?. The same issue occurs using point-to-point
communication with FIFO ordering (first in first out, i.e. a queue between each

1 This work was partially supported by project PARDI ANR-16-CE25-0006. An ex-
tended version of the paper is available at http://vacs.enseeiht.fr/dcai17-long.pdf.

start start start

⊥

a! b! b? c! a?

c?

c?

Fig. 1. Three Peers Interacting With Three Channels a, b, c. a! is a send event, a? a
receive event, communication is asynchronous.

couple of peers), whereas using a causal communication model would avoid the
problematic executions. However, using that causal communication model comes
at a cost, making the use of an applicative solution worth considering. The issue
comes from a process receiving from channel c instead of channel a, despite both
being available. In this case, channel a should have a higher priority than c.

Another use of the channel priorities is found when trying to reduce the
nondeterminism of a system, even when all possible executions are valid, should
certain executions be preferable to other. A classic example is abortion messages.
If the communication model allows the system to take other messages over the
abortion one, this results in a seemingly unresponsive behavior to abortion or
presents security issues.

The outline of this paper is the following. Section 2 presents the framework
for the verification of asynchronous communication and precisely defines what
priorities mean. Section 3 describes the inference algorithm which uses the frame-
work to discover the necessary priorities in order to ensure the correct behavior
of a system. Section 4 illustrates our approach with an example. Section 5 gives
an overview of other approaches for ordering communication interactions and
Section 6 provides perspectives and final remarks.

2 Verification of Asynchronous Communication with

Priorities

2.1 The Framework

Our objective is to tell if a system, composed of peers and of a communication
model, verifies a correctness property given by the designer. The peers asyn-
chronously interact through channels, and the communication model decides
the delivery of messages (e.g. in what order the messages are available). Fol-
lowing [6], we have built a framework and an automated toolchain, based on
TLA+ [13] and its tools, that enables to check an LTL (Linear Temporal Logic)
property on a system. As the communication models are TLA+ modules which
are composed with the peers, the framework allows to easily verify how a set of
peers interacts with several models, or if the specified parameters are sufficient
to validate the expected property.

In the present case, the communication model with channel priorities is spec-
ified by a set of blocks constraints. Constraint (A blocks b) means: if any of

the channels in the set A contains a message, reception on channel b is disabled.
Note that the blocks constraints do not necessarily form a partial order on
channels.

The framework is accessible online at http://vacs.enseeiht.fr/. It can be used
both to check if a system is correct (for a selection of predefined LTL properties),
and to discover the necessary priorities to make it correct (if possible).

2.2 Formalization

This section presents the formal definitions upon which the framework is built,
and gives the precise definition of the blocks constraint. Classically, the system
resulting of the composition of peers and a communication model is defined as a
labelled transition system, and an execution as a sequence of states. Net is an ab-
straction of the messages in transit. The order of delivery by the communication
model is based on the channel priorities defined by blocks.

Definition 1 (Composed System). A system is a quintuplet (States, Init,
Labels, Relation, Channels) where

– Labels ⊆ (Channels × {“?”, “!”}) ∪ {τ}. c! is interpreted as the sending of

a message on channel c, and c? as the reception of a message from channel

c, and τ is an internal action;

– Relation ⊆ (States× Labels× States) is the transition relation.

– Init ⊆ States are the initial states.

Definition 2 (Execution). The set of all possible executions is the set of all

finite or infinite sequences of states where consecutive states conform to the

transition relation, and such that a message is received at most once and this

reception is preceded by a send.

Definition 3 (Network). At any point of an execution, Net is the set of chan-

nels where at least one message is in transit.

Definition 4 (Disabled reception). Reception on a channel c is disabled at

a given point of an execution if it does not occur at that point.

Channel priorities are a set of static constraints that forces specific receptions
to be disabled, depending on the values of Net and the Channels those transitions
relate to. (B blocks c) means that whenever at least one message is present on
any channel of B, then the reception on c is disabled.

Definition 5 (blocks). A system Sys parameterized by the C blocks con-

straints respects:

Sys, C |= ∀B ⊆ Channels, ∀c ∈ Channels,
(B blocks c) ∈ C ⇒ �(∀b ∈ B, b ∈ Net ⇒ disabled(c?))

3 Inferring Channel Priorities

When inferring the channel priorities, the objective is, given a system Sys and a
property P , to find all the blocks constraint sets C such that Sys, C |= P . We
define an analyzer which asks the framework whether a set of constraints applied
to Sys satisfies P . The analyzer infers new constraints using the counter-example
given by the framework when the property is not verified with the proposed
constraint set. This yields to the generation of new sets of constraints, called
candidates, built by adding new constraints to the current candidate.

3.1 Introducing New Constraint Types

The candidates are built in a incremental manner. Because of this, we have to
ensure that any constraint added to a candidate does not invalidate the need
for the existing ones. Indeed, adding a new blocks constraint may cause a
previously taken reception transition to become disabled without notice. This is
resolved by the use of two other constraints types, exclusively used during the
inference process: the allowed constraints, and the blocked constraints.

The (a allowed b) constraint indicates that the building of the candidate
has allowed the exploration of states that would be unreachable should channel
a blocks channel b. A constraint (a blocks b) is thus prevented from being
added to this candidate.

The (B blocked c) constraint, on the other hand, is used to convey that
at least one channel in the B set blocks the channel c. Not specifying which
channel does the actual blocking, like we would have to when using blocks

constraints, lets the incremental inferring process add (d allowed c) with d ∈ B
to the candidate as long as, for any set of constraints C:

∀B ⊆ Channels, ∀c ∈ Channels, (B blocked c) ∈ C ⇒
∃b ∈ B, (b allowed c) /∈ C

As we don’t know which element(s) of B in (B blocked c) are blocking c,
there are now three possibilities when a peer attempts reception on c. Either c
is blocked by all the channels in the blocking set and the reception is disabled,
or c is allowed by all of the channels in Net and the reception is possible, or
the situation is ambiguous and it is yet unknown if the reception is possible.

Definition 6 (Ambiguity). At a given state, available is the set of all channels

that can be received from by the peer at that state. Ambiguity is the subset of

available channels which are not allowed by at least one of channels holding

at least one message.

available(peer) , {channel ∈ Channels | enabled
1 receive(peer, channel)}

Ambiguity(peer) ,
{c ∈ available(peer) | ∃ ch ∈ Net, (c 6= ch) ∧ ¬(ch allowed c)}

1 In TLA+, enabled Action is true in a state if the action is possible, meaning there
is a successive state reachable with Action. The action receive(p, c) is enabled in a
state if c is not blocked by a blocked constraint at that point.

3.2 The Analyzer

The analyzer handles sets of candidates, each of which is a set of allowed and
blocked constraints. It starts with a single candidate without any constraint.
Information on the system is gathered by choosing a candidate, setting it as the
constraint set of the communication model, and then asking the framework to
report. The framework either declares that the targeted property is validated, or
gives its report of ambiguous states. This report is 〈net, channels〉, the current
value of Net and the Ambiguity set. When the framework reports that the
expected property is verified, the candidate is added to the solutions. Otherwise,
if there is no ambiguous state, the candidate is rejected; if ambiguous states are
reported, the analyzer replaces the candidate by its children, each of which is
generated using the following function where chosen is any subset of channels:

update(Candidate, 〈net, channels〉, chosen) ,
Candidate

∪ {((net \ {v}) blocked v) | v ∈ channels \ chosen}
∪ {(c allowed v) | v ∈ chosen ∧ c ∈ net}

Every subset of channels generates its own child (including ∅). The allowed

constraints make sure that the elements of chosen are not blocked. The ele-
ments of channels that are not chosen are blocked, so there is no longer any
ambiguity. Obviously, inconsistent children (e.g. a child with both ({a} blocked

b) and (a allowed b)) are discarded.
The inference process offers two variations of the analyzer. The Pessimistic

Priority Finder find all the possible solutions. When studying a candidate, the
framework stops and reports at each ambiguous state, and the analyzer explores
all the children of this candidate. The Optimistic Priority Finder sacrifices ex-
haustiveness for performance. In that case, the framework pursues the verifica-
tion until it finds an invalidation of the desired property (in which case another
candidate is generated), or it validates the candidate.

4 Example: A Client-Controller-Application System

A system is composed of three peers: a client, a controller and an application
(Figure 2). The client interacts with the controller to get the authorization to
access the application, then interacts with the application which has been started
when needed by the controller. More precisely, the client sends a login to the
controller which can accept of reject it. If accepted, the client can send upload

messages to the application. This controller starts the application (message start)
when it accepts a client, and signals it to end when the client logouts.

Several problems occur if the messages are arbitrarily delivered. Among oth-
ers, the application must consume start before processing the messages upload

whereas they come from different peers; end must not be consumed when there
are pending uploads; when the client logouts then logins again, start must not
overtake any of the messages from the previous round (notably upload or end). . .

Client

Controller Appli

⊥ ⊥

login!
accept?

reject?
upload! upload!

logout!

login? τ

τ
start!

accept!

reject!logout?

end!

start?

end?,
upload?

upload?

end?
start?

Fig. 2. A Client-Server System. The server is split into a controller (bottom left) and
an application (bottom right). The controller accepts or rejects the client (top), and
starts/ends the application when needed.

To avoid deadlock and ⊥ states, specifying and manually verifying a correct or-
dering of messages is not easy. Our framework automatizes the verification and
the inference algorithm discovers the seven possible solutions, among others:

({start} blocks upload)
({upload} blocks end)
({logout, end} blocks login)
Distinct states: 298

({start} blocks accept)
({upload} blocks end)
({logout} blocks login)
({end} blocks start)
Distinct states: 465

({start} blocks accept)
({upload} blocks logout)
({logout, end} blocks login)
Distinct states: 99

Observe that the solutions present a large scattering in the number of states,
meaning that some solutions allow more executions than others. Note also that
the client is not explicitly waiting for the application to progress: the message
priorities ensure that the application does not lag behind too much.

5 Related Work

Generic ordering. Generic ordered delivery, such as FIFO or causal delivery, has
been studied in the context of distributed algorithms. Asynchronous communica-
tion models in distributed systems have been studied in [12] (notion of ordering
paradigm), [5] (notion of distributed computation classes), or [7] (formal de-
scription and hierarchy of several asynchronous models). Implementations of the
basic models using histories or clocks are explained in classic textbooks [10, 12,
15]. These works deal with generic orderings, solely based on the behavior of the
system (e.g. relative order of the events) but they are not application-defined.

Applicative Priority on Specific Transitions. In [4], a priority operator prisum

is added to CCS, allowing for the expression of preference between two actions.
Its semantics is similar to the extended constraints presented in section 6, as
an enabled action forbids any action with a strictly lower priority. A differ-
ence is that the prisum relation is defined at state level, making it possible

for preference between two actions to change over the course of the execution,
something that cannot happen with blocks constraints. Conversely, expressing
({a} blocks b), ({b} blocks a) using prisum does not appear to be possible.

The behavior of the ALT construct in the Occam programming language [11]
lets its users give a list of channels to receive from, establishing a priority relation
between them according to their location in the list. While this can easily be
translated to blocks constraints, with channel being blocked by all of those
that surpass its priority in the ALT construct, we again face priorities that are
established for (and at) a specific state.

Priorities have been introduced in Petri Nets. In [3], priorities are statically
associated to couples of transitions. In interleaving semantics, a transition is
enabled at a marking when no transition with higher priority is enabled at that
marking. However, concurrent semantics cannot be naturally defined with causal
partial order. Dynamic priorities are introduced in [2]. Priorities are a relation
between couples of transitions, for each possible marking. The objective is to
reduce the number of enabled transitions at a marking, in order to reduce the
size of the reachability graph without affecting the truth of the studied property.

Applicative Priorities on Labels. Another point of view is to assign priorities
to labels or message identities, as we have done in this paper. [1] uses this
to provide an interrupt mechanism in process algebra. Priorities are associated
to labels and form a partial order. Its semantics is defined by rules such that
a + b = a if a > b. However, this is not as easy as stated when labels can be
masked and composability is lost if care is not taken. A thorough exploration
of priority in process algebras with synchronous communication is done in [9].
The authors distinguish operational semantics and behavioral congruences (for
compositional reasoning). Priorities are associated to labels, and are used only
in a synchronous communication event. [14] is an extension to a broadcasting
calculus with priority. Priorities are associated to processes and to send/receive
events. A process can only receive messages with a higher priority than its own.

Controller synthesis. One difference with all the previous work is that our
work not only defines priorities on channels and offers a framework to check if
a temporal property is verified by the system, but we also provide an inference
process to find all the solutions (if any) which guarantee that a given propriety
is satisfied. This is reminiscent of controller synthesis [8]. We differ from this
approach as we are not building a synchronizer based on the temporal property
of interest, and several incomparable solutions are possible.

6 Generalization and Conclusion

On the whole, channel priorities are easy to use when the priorities are auto-
matically inferred. Thanks to inference, fine grain interactions do not have to
be specified when developing a system, and application-specific protocols are
derived from the system requirements. This allows to focus on the architecture
of the system, and to postpone protocol considerations until deployment.

The next step is to extend the constraints to all the action types: send,
receive, and tau, all having priorities over one another. This can be achieved
by making the channel priority constraint types work with Actions instead of
Channels, an Action being c? (receive from channel c), c! (send on c) or τ .
Interestingly enough, this does not cause any change to the inference analyzer
and the framework is easily altered to take those new constraints into account.

This extension allows to set a constraint such as ({tick?} blocks alarm!), to
make a peer report an alarm if and only if it is unable to receive an expected mes-
sage. It also allows to express fairness constraint: for instance a ({a?} blocks τ)
with τ -stuttering ensures that the peer does not get stuck in a τ loop if a re-
ception on a is possible. This also allows a cancellation or abortion action to be
easily described for any kind of action.

References

1. Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Syntax and defining
equations for an interrupt mechanism in process algebra. Fundamenta Informati-
cae, IX:127–168, 1986.

2. Falko Bause. Analysis of Petri nets with a dynamic priority method. In 18th
International Conference on Application and Theory of Petri Nets ICATPN’97,
volume 1248 of Lecture Notes in Computer Science, pages 215–234. Springer, 1997.

3. Eike Best and Maciej Koutny. Petri net semantics of priority systems. Theoretical
Computer Science, 96(1):175–174, 1992.

4. Juanito Camilleri and Glynn Winskel. CCS with priority choice. Information and
Computation, 116(1):26–37, 1995.

5. Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous,
asynchronous, and causally ordered communication. Distributed Computing,
9(4):173–191, February 1996.

6. Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. Automated verification
of asynchronous communicating systems with TLA+. Electronic Communications
of the EASST (special issue AVOCS’15), 72:1–15, 2015.

7. Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity of
asynchronous communication. Formal Aspects of Computing, 28(5):847–879, 2016.

8. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logics of Programs, volume 131
of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

9. Rance Cleaveland and Matthew Hennessy. Priorities in process algebras. Informa-
tion and Computation, 87(1/2):58–77, 1990.

10. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: con-
cepts and design. Addison Wesley, second edition, 1994.

11. M. Elizabeth C. Hull. Occam - A programming language for multiprocessor sys-
tems. Computer Languages, 12(1):27–37, 1987.

12. Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, March 2011.

13. Leslie Lamport. Specifying Systems. Addison Wesley, 2003.
14. K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Pro-

gramming, 25(2-3):285–327, 1995.
15. Michel Raynal. Distributed Algorithms for Message-Passing Systems. Springer,

2013.

