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ABSTRACT

Cardiac strain estimation from ultrasound images is an

efficient tool for the diagnosis of cardiac diseases. This study

focuses on cardiac amyloidosis, a pathology characterized

by non-specific early symptoms such as the increased wall

thickness. Recent clinical studies have demonstrated that

patients with cardiac amyloidosis present an apex-to-base

gradient longitudinal strain pattern, i.e., a normal strain

in apex and abnormally lower values for base segments.

Existing cardiac motion estimation methods belong to three

categories based on optical flow, speckle tracking and elastic

registration. To overcome the ill-posedness of motion estima-

tion, they use local parametric models (e.g., affine) or global

regularizations (e.g., B-splines). The objective of this study

is to evaluate a recently proposed cardiac motion estimation

method based on dictionary learning on patients subjected

to cardiac amyloidosis.
Index Terms—Cardiac motion estimation, dictionary learn-

ing, cardiac amyloidosis.

I. INTRODUCTION

The amyloidoses are a rare group of diseases that re-

sult from extracellular deposition in organs and tissues of

pathologic insoluble fibrillar proteins that self-assemble with

highly ordered abnormal cross β-sheet conformation [1].

Fibrillar material derives from various precursor proteins and

the classification of amyloidosis is based on the nature of the

precursor plasma proteins that form the fibril deposits [2].

Acquired monoclonal immunoglobulin light-chain (AL) and

transthyretin (TTR)-related (familial and wild-type/senile)

diseases are the most frequent causes of cardiac amyloidosis

[1]. The diagnosis of amyloid cardiomyopathy is usually

difficult on the basis of noninvasive studies alone and almost

invariably requires tissue confirmation. Biopsy procedures

are not without risk of hemorrhage, possibly due to increased

fragility of blood vessels or factor X deficiency. Regarding

the prognostic value of the organ involvement pattern, a
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noninvasive test would be helpful in evaluating the extent of

organ involvement in amyloid disease, thereby eliminating

the risk of multiple biopsy procedures. Echocardiography

is considered the gold standard for noninvasive detection

of amyloid cardiomyopathy. However, echocardiography is

not specific for cardiac amyloidosis and cardiac MRI is

most of the time required for the non-invasive diagnosis,

before histological confirmation. In fact, cardiac amyloidosis

is manifested mainly by increased left ventricular myocardial

thickness, which is a common echocardiographic finding,

and can be related to a multitude of other cardiac disor-

ders, such as aortic stenosis, hypertensive heart disease or

hypertrophic cardiomyopathy. Among the etiologies leading

to left ventricular hypertrophy, cardiac amyloidosis is one of

most common and is a powerful independent risk factor for

cardiovascular mortality [3]. Specifically, amyloid infiltration

of the heart typically leads to a restrictive cardiomyopathy

and progressive congestive heart failure and sudden death.

Therefore, early diagnosis and specific management is key

determinant in the prognosis of these patients. Furtheremore,

recent studies suggest that regional patterns in longitudinal

strain using two-dimensional speckle-tracking echocardiog-

raphy would allow differentiating cardiac amyloidosis from

other causes of left ventricular hypertrophy [4].

Cardiac motion estimation from ultrasound spatio-

temporal images plays a key role in the assessment of

strain measurements. Therefore, methods aiming at accu-

rately estimating the heart motion have received a consider-

able attention in the literature. They mainly fall into three

categories based on speckle tracking, optical flow and elastic

registration. Speckle tracking consists in matching blocks of

pixels from frames acquired at different time instants using

standard similarity or dissimilarity metrics such as cross-

correlation [5], sum of absolute differences (SAD) [6] or sum

of squared differences (SSD) [7]. Optical flow methods are

based on the pixel brightness constancy constraint. They esti-

mate the motion fields using global [8] or local regularization

models [9]. Finally, elastic registration methods estimate

non-rigid geometric transformations (e.g., represented on

a B-spline basis [10], [11]) that align ultrasound images

acquired at different times of the cardiac cycle.



The ill-posed nature of motion estimation, the complex

local deformations of the heart and the intrinsic nature of

ultrasound images affected by speckle noise are well-known

issues that make the cardiac motion estimation difficult.

In order to tackle these issues, existing methods integrate

regularization approaches in the form of spatial smoothness

[10], [11] or local parametric models (e.g., affine model [9],

[12]). However, this a priori knowledge is often application-

independent, i.e., it is not directly related to the cardiac

motion nature. We have recently shown that using a sparsity-

based regularization through trained dictionaries containing

patterns of cardiac motion improves estimation accuracy

compared to several state-of-the-art methods [13], [14]. The

main objective of this paper is to show the effectiveness of

this method in estimating apex-to-base gradient longitudinal

strain patterns on patients subjected to cardiac amyloidosis.

The reminder of this manuscript is structured as follows.

In the following section we provide a short overview of

sparse representations through learned cardiac motion dic-

tionaries. Section III resumes the cardiac motion estimation

method used in this study. Finally, before concluding the

paper, in vivo results are reported in Section IV.

II. OFFLINE CARDIAC MOTION DICTIONARY

LEARNING

Sparse representations express a signal or image as a linear

combination of a few elements of a dictionary. Their interest

in image processing has been intensively studied in the liter-

ature, in a number of applications such as image denoising,

inpainting or demosaicing. While a large variety of data-

independent transforms exists (e.g., wavelets, discrete cosine

or Fourier transform), it has been shown that dictionaries

learned from the data itself can be more efficient than the

predefined ones [15].

In this work, two overcomplete dictionaries (i.e., contain-

ing more atoms than the size of the motion patches to be

sparsely coded) have been trained offline to capture typical

patterns of vertical and respectively horizontal cardiac mo-

tions. The training process used motion patches extracted

from simulated cardiac ultrasound image sequences with

available ground-truth motion (see [16] for details about the

ultrasound image simulation process). Mathematically, the

calculation of the cardiac motion dictionary D translates into

the following optimization problem

min
D,αp

∑

p
‖P pu−Dαp‖

2

2
subject to ∀p, ‖αp‖0 ≤ K (1)

where P p ∈ R
n×N is a binary operator that extracts the pth

patch of size n from the simulated motion field u ∈ R
N×1,

αp ∈ R
q×1 is the corresponding sparse code, with K its

maximum number of non-zero coefficients and D ∈ R
n×q

is the dictionary to be estimated composed of a set of q > n

training elements called atoms. The optimization problem (1)

was classically solved by iterating between a sparse coding

step (estimating αp for a fixed D) and a dictionary update

Fig. 1. Example of sparse representation of a cardiac motion

patch in an overcomplete dictionary, expressed as the linear

combination of 5 atoms.

step (estimating D for fixed sparse codes αp). Note that (1)

is solved twice, for the horizontal and vertical components

of the cardiac motion field, respectively.

Fig. 1 shows an example of a simulated cardiac motion

field (horizontal component of the motion vectors) used

in the offline dictionary learning process and the resulting

atoms for the horizontal dictionary. As illustrated in this

figure, a motion patch is only coded by a few atoms of the

dictionary, namely 5 atoms in this example.

III. CARDIAC MOTION ESTIMATION

The cardiac motion estimation problem is formulated as

the minimization of the cost function given below [13], [14]

min
αp,u

{

Edata(u) + λd

∑

p
‖P pu−Dαp‖

2

2
+ λs‖∇u‖2

2

}

(2)

subject to ∀p, ‖αp‖0 ≤ K

where Edata is the data fidelity term, the dictionary D

results from the offline training described in the previous

section and ∇ is the gradient operator, λd and λs are

positive hyperparameters weighting the importance of the

regularization terms with respect to the data attachment.

The optimization problem (2) aims at estimating the cardiac

motion field as a trade-off between the data fidelity and two

regularizations imposing patchwise sparsity in the dictionary

and spatial smoothness of the motion. Note that in this work

the motion is estimated from B-mode images. As a conse-

quence, the data fidelity term is based on the assumption of

multiplicative Rayleigh-distributed speckle noise corrupting

the envelope images (see [13], [17] for more details about

the derivation of the likelihood function). To solve (2), we

alternate between estimating the motion field u for fixed αp

and a sparse coding, which consists in decomposing sparsely

all motion patches P pu in the dictionary D [13], [14].

IV. IN VIVO RESULTS

The cardiac motion estimation method described previ-

ously was shown in [13], [14] to outperform several existing

algorithms on the highly realistic simulations of B-mode
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Fig. 2. In vivo longitudinal strain maps super-imposed to the B-mode images and strain curves over the cardiac cycle

corresponding to the 6 myocardium segments. (a) and (c) correspond to patient 1, (b) and (d) correspond to patient 2.

ultrasound data (obtained using the method introduced in

in [16]), including speckle tracking, the B-spline elastic

registration studied in [11] and the monogenic phase-based

optical flow [12].

In this paper, we evaluate its ability to estimate meaningful

longitudinal strain maps for two patients suffering from

cardiac amyloidosis. The long-axis view data was acquired

by a specialist doctor using a GE Vivid E90 cardiovascular

ultrasound system. For both patients, the motion was esti-

mated over an entire cardiac cycle of 40 frames. The spatial

smoothness hyperparameter was fixed to λs = 0.75 and λd

was logarithmically increased at each iteration from 10−3

to 102. The size of the motion patches was set to 20 × 20
(n = 400), the sparsity parameter was fixed to K = 5 and

the dictionary D had a redundancy of 1.5 (q = 600).

Using the estimated motion fields, longitudinal strain

maps for the apical four-chambers view were calculated

following the procedure studied in [16]. For a given frame

k, the distance dk between adjacent points uniformly chosen

in the myocardium was measured. Strain values were then

obtained relatively to the first frame of the cardiac cycle as

sk =
dk

d0
− 1 (3)

where d0 is the distance between the points in the first

frame of the cardiac cycle. The myocardium was manually

segmented by the radiologist and further divided into 6

regions of interest for which an average strain value was

computed.

Fig. 2 displays, for each patient, the initial points used for

the longitudinal strain calculation, the strain curve evolution

over a cardiac cycle for the 6 cardiac segments and an

example of a longitudinal strain map super-imposed to the

B-mode image. The strain maps shown in Fig. 2 correspond

to the maximum deformation state of the heart, i.e., the

end systole. The results clearly highlight the apex-to-base

gradient longitudinal strain pattern specific to cardiac amy-

loidosis. In particular, the maximum apical strain obtained

at the end systole corresponds to normal values ranging

from 15% to 20% of deformation, while it dramatically

drops to abnormally low values (almost 0%) in the basis

segments. The same behaviour can be observed from the

mean strain over the whole cardiac cycle, highlighted by

the two plots in Fig. 2 corresponding to the two patients

considered in this study. We note that the mean strain

values computed in each myocardium segment progressively

decreases for the segments close to the myocardium basis.

In particular, normal strain behaviour of the apex segments



and abnormally low strain variations of the basis segments

over the cardiac cycle can be observed.

V. CONCLUSIONS

Cardiac amyloidosis is a severe cardiac pathology. The

interest of echocardiography and in particular of longitudinal

strain in its diagnosis has been recently highlighted. The ob-

jective of this paper was to evaluate the ability of a recently

proposed cardiac motion estimation method to highlight the

apex-to-base gradient longitudinal strain pattern specific to

cardiac amyloidosis. Encouraging results were shown on

two patients, and should be further confirmed through an

extended study including more patients.
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