
HAL Id: hal-02871329
https://hal.science/hal-02871329

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation of Urban Virtual Environments
Tiavina Tantely Nivolala, Tahiry Andriamarozakaniaina, Jean-Pierre Jessel

To cite this version:
Tiavina Tantely Nivolala, Tahiry Andriamarozakaniaina, Jean-Pierre Jessel. Automatic Generation
of Urban Virtual Environments. 11th International Conference on Computer Science and Information
Technology (CSIT 2017), Sep 2017, Yerevan, Armenia. pp.286-289. �hal-02871329�

https://hal.science/hal-02871329
https://hal.archives-ouvertes.fr

Official URL
https://csit.am/2017/Proceedings/ITA/ITA6.pdf

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22284

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Nivolala, Tiavina Tantely and

Andriamarozakaniaina, Tahiry and Jessel, Jean-Pierre Automatic

Generation of Urban Virtual Environments. (2018) In: 11th

International Conference on Computer Science and Information

Technology (CSIT 2017), 25 September 2017 - 29 September 2017

(Yerevan, Armenia).

Automatic Generation of Urban Virtual Environments

Tiavina Tantely, Nivolala

University of Antananarivo

Antananarivo, Madagascar

e-mail:
tiavina.tantely@gmail.com

Tahiry,
Andriamarozakaniaina

University of Antananarivo

Antananarivo, Madagascar

e-mail: filamatra@gmail.com

Jean-Pierre, Jessel

Paul Sabatier University

Toulouse, France

e-mail:
Jean-Pierre.Jessel@irit.fr

ABSTRACT
This paper presents an approach to automatic city gen-
eration relying on the existing set of models. First, a
hierarchical database containing the main elements of
an urban environment is created, and then procedural
techniques are applied in order to generate the environ-
ment with the data from the database, for the chosen
city. This approach adds randomness while keeping con-
trol on the main features of the environment.

Keywords
City generation, 3D database, 3D visualization, virtual
worlds, computer graphics, declarative modelling

1. INTRODUCTION
Urbanization is occurring rapidly, and since 2008, more
than half of the world population lives in cities. Those
cities inspired a number of resulting urban virtual envi-
ronments, and predictably, many new applications be-
gan to use them as a platform to integrate numerous
information on cities coming from various resources.
These environments are used for visualisation and ex-
ploration of urban landscapes as well as to assist in vari-
ous other tasks as they offer plentiful possibilities in the
field of city, traffic or disaster management as well as
the creation of virtual worlds.

Models of 3D cities, in an effort to get closer to the
real ones, are becoming increasingly complex in terms
of spatial and thematic structures. In order to store
all this information, standardized data models, ensur-
ing consistent and inter-operable data structure, have
to be built. On the other hand, all the progress made
in computer graphics and hardware enables 3D virtual
worlds to be more and more complex visually speaking.
As visual quality of video games improves with each new
generation of graphics hardware, the user expectations
increases proportionally. To manage the display of this
quantity of data, a possible alternative to manually cre-
ating large amounts of models is to apply procedural
techniques, along with the use of a few models. Indeed,
a complex city containing many different models would
take a long time to build manually, and to minimize
the costs of world’s creation, the generation of objects
with a procedural approach, not only adds controllable
randomness to the world but also gives varied results.

Our work is focused on creating a hierarchical database
model that contains the basic elements of an urban envi-
ronment, and from these data, our system will automat-

ically generate a city respecting the architectural style
in the database, which will keep control on the costs of
creation and the general appearance of the cities.

2. RELATED WORKS
Past research has tackled the problem of automatic city
generation, each one focusing on a particular aspect.
Several standards exist to represent city data : the IFC
standard [9] is a file format generally used in the build-
ing and construction industry to describe, exchange and
share information. One of the most popular data mod-
els focusing on cities as a whole is CityGML [7]. The
3DCityDB project [14] aims to reuse the main features
of CityGML, while simplifying the complex data model
for a more compact database and improve the speed
of queries, our model is also largely influenced by the
latter. The QUASY model [2] has similarities with
CityGML but it adds semantic extensions to the usual
basic models.

Another interesting approach is to reconstruct city mod-
els from facade photographs [12], to take these facades
and generate variations [1], or to use terrestrial scan
data [4], laser scanning and digital ground plans [3].

The use of grammars, L-systems in particular, showed
successful results in the modeling of plants. Grammars
have been extended to the modeling of architecture since
the introduction of the shape grammars [15], later, other
novel shapes extended this initial grammar, introducing
new concepts and operations, namely : the Split Gram-
mar [16] CGA Shape Grammar [11].

Procedural methods were used for the CityGen system
[10] in order to create cities interactively by direct ma-
nipulation of parameters of the generation algorithm via
an interactive interface. Undiscovered Worlds [6] gener-
ate pseudo-infinite virtual worlds by vertical extrusion
of floor plans, which is possible only by generating the
visible part of the world at once.

3. OVERVIEW
We present a system that allows the user to feed the
database using custom models for each chosen city and
then generate a virtual world respecting this urban style.
The creation of this system is done in two steps:

• The design and feeding of the database.

• Procedural generation of cities from this database.

The rest of this paper will be structured as follows: in
the next section, we describe the methods used for the
representation of the main features of cities and the

feeding of the database. Section 5 focuses on the ran-
dom generation of cities from these key items. Section
6 presents the results of our system and the last sec-
tion concludes the paper and provides some prospects
of evolution.

4. THE DATABASE

4.1 Database design
The database is based on PostgreSQL and its spatial
extension PostGIS that adds new geometric and geo-
graphic types to the database. It will represent the ge-
ometric and thematic aspects of a city. A geographical
region will contain a set of cities, and a city is made
up of buildings, streets, cars and other items that will
be called urban objects, the latter are generic objects
which may contain everything that is not a building.

The solid model of buildings is geometrically represented
using Boundary Representation [8] or BRep. A solid is
represented by its bounding surfaces, a surface by its
edges, and the edges by vertices defined by 3D coor-
dinates. In our case, a simplified model is used: all
geometries will be stored as polygons and aggregations
of polygons, as any surface-based 3D object contained
in the environment may be modeled using these. All
spatial objects are built from polygons compositions.
Aggregations are done between solid and representative
surfaces. We also introduce a table containing appear-
ance data (textures and colors which are typical of the
city in question) which are attached to geometric sur-
faces.

In addition to surface-based elements, we introduce the
predefined objects for the cases where a geometrically
complex element is instantiated multiple times for one
or more buildings. They are 3D models that are first
normalized and then stored as such in the database,
they will be called each time they should be instantiated
in the environment, and each reference will contain the
corresponding transformation matrix.

To keep consistency between the entities, the geomet-
ric elements are linked with the thematic elements with
the same level of hierarchy [13]. The building itself is
composed of bounding faces that may contain openings.
A building may have other facilities outside (fireplace,
balcony ...). Respecting the spatial and semantic con-
sistency, buildings are associated with geometric solids,
bounding surfaces (walls, roof) and openings (doors,
windows) with geometrical surfaces and predefined ob-
jects, respectively.

Figure 1. Simplified model of the database’s geometries

4.2 Database feeding
The feeding of the database is done through model in-
sertion via Blender and its Python API. The database
currently will only contain 2D data, 3D objects are mod-
eled using primitives in 2D with 3D coordinates. We will
directly use the geometric polygon, as edges or isolated
vertices are not representative in a city.

Preliminary operations: Before executing the script
that will perform the transition to the database, the user

must manually perform some operations in Blender. All
meshes of the same urban object must be grouped. In
the case of a building, this group should be assigned a
custom property named ’type’ with the value ’building’,
this property may be omitted for a generic urban object.
In the database, bounding surfaces may contain open-
ings, in order to respect this constraint, the openings
(doors, windows) must have a parent-child relationship
with the bounding surface (wall, roof) they are attached
to. All these entities will also have a custom property
the value of which will be their function (’wall’, ’roof’,
’door’, ’window’). In case the user does not assign any
type or function to the objects in the scene, they will
be inserted into the database as generic objects. If an
object in a building group has no custom property, the
script will assume that this is a building facility and
insert it into the corresponding table.

Inserting surface-based objects: The objects are
first identified by theme. The solid forming these ob-
jects are inserted first. Afterwards, the script retrieves
all the object’s thematic components. For the build-
ing, meshes that do not have parents are collected first,
meaning : roofs and walls, and for each object, an entry
in the bounding surface table is inserted. The corre-
sponding polygons and their vertices are then retrieved;
with this list of vertices, a polygon entry will be inserted
into the geometric surface table. Note that whenever
we are dealing with a polygon, should it be concave,
our script will break it down into a set of smaller and
convex polygons, this will serve us later during the gen-
eration step. After that, appearance data is extracted
from the above multi-surfaces and inserted into the cor-
responding tables.

Inserting predefined objects: Children of each bound-
ing surface are collected and here comes into play the
concept of predefined objects as the same window will
often be reused for one or more buildings. Said window
is stored only once as a 3D model in the predefined form
table under a unique name. Each time it is used, a new
table entry is created as a reference to the entry in the
predefined form table that uses it, accompanied by a
transformation matrix to store the translation, rotation
and scale to apply this new instance. All these items
are standardized before export.

Figure 2. Preparing the predefined object before exporting

Their local center is placed at the center of gravity, their
location is moved to the origin of the scene and their
local pivot is oriented so that the front face of an open-
ing is perpendicular to the x axis. To correctly orient
this pivot, we’ll refer to the position of the opening once
properly placed against its closing surface. At that time,
this opening is properly oriented along the x and y axes
to make its front face perpendicular to the x axis, it
should rotate around the z axis. The value of the rota-
tion angle applied to correct the orientation is the angle
formed between the x axis and the normal of the nearest
polygon constituting the wall that is also the parent of

the said opening.

5. THE CITY GENERATION
The last step is the generation of a simplified city from
the database models. This city consists of a street and
buildings on both sides of the street. This part is car-
ried out with the Unity3D engine. The terrain and the
streets are placed first. After querying the base on a
particular town, we will get a number of buildings, ur-
ban objects and cars.

5.1 Buildings
To each building are attached child elements : bound-
ing surfaces which are a composition of convex polygons,
and openings: predefined objects accompanied by their
transformation matrices. To generate polygon-based el-
ements, a simple triangulation is performed using the
coordinates of the polygon vertices [5]. Next we deter-
mine the UV texture coordinates in order to project a
2D image correctly on the surface of a 3D model by cal-
culating the coordinates of the triangles in the image
used as the texture attached to the triangles of the 3D
object. We can do this by valuing which axis of each
polygon must be eliminated so that we can keep only
two axes in 2D which are normalized between 0 and
1. As for the predefined objects, they are instantiated
at the origin, then the rotation, translation and scale
extracted from the transformation matrix are applied
before they are attached to the building.

Adjustments on buildings: When a building is gen-
erated from a database, we calculate its bounding box to
ensure the placement of buildings at random positions
while checking for collisions. Next, a pivot is attached
to that building. The pivot is positioned in the center
of the bounding box, and the x axis is oriented towards
a door, because often buildings are oriented in respect
to a front door.

Once all database buildings are generated, the existing
buildings are cloned and placed on a random, unoccu-
pied position on the terrain. Once the clone is placed,
we calculate the rotation to be applied to it. We choose
the building rotation so that its door is facing the street
by default (the x axis of its pivot, previously calculated,
points to the street). Lastly, we try to adjust the scale
of the resulting building, if necessary, an item that will
serve as a reference for comparison to correct the build-
ing scale should be chosen. The value of the vertical
height of the door was chosen because, out of all the
elements of a building, this value is less subject to varia-
tion in their style (they must, at least, have a minimum
height). However, we allow a margin of more or less
20 % compared to the standard height. The standard
height is calculated relative to the only element that was
present before any generation: the street and its width.
Finally, the new scale applied to the building will have
a difference in scale between the standard height of the
door and its current height.

Thematic elements: For each building clone placed
on the terrain, its thematic elements are selected, and
instead other ones are placed selected in the database
that belong to the same city and are of the same type.
In order to do this, thematic components of the building
are individually selected. We start by retrieving bound-
ing surfaces which are isolated by type (‘wall’, ‘roof’),
and for them, random appearance data is retrieved in
the database for the same type of element and with the

selected city. These new appearances are applied to the
corresponding surfaces.

We then retrieve the transformation matrix of the build-
ing predefined objects by the type (‘door’ and ‘win-
dow’), and the predefined objects of the same type are
retrieved from the database for the same city and placed
instead of the previous predefined object using the ma-
trix saved above. The dimensions of the previous open-
ing are temporarily stored to prevent any inconsisten-
cies and applied to the new opening. The standardiza-
tion of their orientation before export enables the reuse
and exchange of their rotations. For openings and espe-
cially windows, for each bounding surface of the original
building, it is randomly chosen whether or not windows
will be attached to it on the condition that at least one
bounding surface contains these openings.

5.2 Urban objects and vehicles
Urban objects are generated like buildings, except that
they are not decomposed into thematic elements, and
are simply composed of polygons and/or predefined items
the generation of which has been covered above. They
are also generated after the buildings and cover a larger
area of the terrain than the latter.

The vehicles are similar to urban objects by their design
and extraction from the database. Once all the basic ve-
hicle models are selected, they are randomly generated
along both sides of the street, facing opposite directions.
Once generated they are animated to move towards the
end of the street, and once this goal is achieved, they
disappear and are regenerated at the beginning of the
street, and so on.

6. RESULTS
Typical buildings of three test cities, each with some
common features for their respective buildings and a
well-characterized urban style, were inserted into the
database : a typical colorful city of Madagascar, an-
other American city with skyscrapers with flat roofs and
identical windows and a Norway village with wooden
walls, stave and tiled roofs, and wooden windows and
doors. The terrain and the street were placed first and
buildings and urban objects were generated on areas
unoccupied by the street.

6.1 Output

Table 1. Geometric elements from the database
Region Cities Build-

ings
Multi-
Surfaces

Prede-
fined
ele-
ments

Convex
Poly-
gons

Mada-
gascar

1 4 10 52 67

America 1 5 5 195 42
Norway 1 6 20 59 120

Table 2. Thematic elements from the database
Region Build-

ings
Urban
ob-
jects

Vehi-
cles

Bounding
sur-
faces

Open-
ings

Mada-
gascar

4 1 3 25 50

America 5 0 2 25 195
Norway 6 2 2 43 53

Table 3. Generated elements for each city

Region Build-
ings

Bounding
sur-
faces

Vehi-
cles

Open-
ings

Facili-
ties

Mada-
gascar

150 900 40 1875 37

America 150 750 40 8325 0
Norway 150 1200 40 1325 148

Figure 3. Screenshot of a town from Madagascar

Figure 4. Screenshot of a town from Norway

Figure 5. Screenshot of an American city

We can see that despite applying the variations, the
general style of the cities remains faithful to the overall
styles of the individual buildings. The more contrast be-
tween colors, textures and overall shape of buildings, for
example, in Antananarivo, the more the resulting city
looks disparate, contrarily to the Norway town, which
seems more uniform.

7. FUTURE WORK
We presented a system capable of generating a city from
a set of predefined elements for each urban style of in-
serted cities. The work we have done so far was focused
on a method that associates the use of a database of ur-
ban models and a procedural method for the visualiza-
tion of a city, and our contributions have been focused
on this hybrid approach, using the coupling between
static elements, and the models created manually, and
then using procedural methods on these elements to de-
compose these models and create cities containing var-
ious items, while keeping some control and respecting
the urban style of it. We were able to model and gener-
ate random cities, exchanging architectural elements in
order to obtain variations on an infrastructure, as well
as ensuring that the number of models stored in the
database is reduced to a minimum. While this system
can play a useful role in the construction of an urban
model, this is achieved through compliance with estab-
lished standards and good initialization when modeling.
And thus, the system still has gaps and future research
can be suggested in the following areas :

The first perspective of evolution is to further automate
the model’s import into the database, so as to avoid
having to manually name the descriptive elements of a
building, an algorithm should be developed capable to
recognize the thematic elements from distinct character-
istics such as the position relative to certain components
and, thus, reduce the user’s tasks to a minimum.

It would also be useful to integrate other thematic el-
ements into the category of urban objects, as well as
for the buildings themselves. Buildings could be clas-
sified by function (e.g., residential, commercial, indus-
trial) and their creation and placement follow a number
of rules to ensure the coherence of the whole environ-
ment. In our future works, the procedural aspect will be
explored in more depth, we especially consider taking in
an amount of input data in order to extract derivation
rules, our database could then consist of primary shapes
to use these rules on.

Finally, the system should consider a more complex
street network which could be done via input data on
the street patterns and other information about the ter-
rain pertaining to the streets shape.

References
[1] F. Bao, M. Schwarz, et al. “Procedural facade

variations from a single layout”. 2013.

[2] J. Benner, A. Geiger, et al. “Flexible generation
of semantic 3D building models”. 2005.

[3] C. Brenner. “Towards fully automatic generation
of city models”. 2000.

[4] C. Dold and C. Brenner. “Automatic matching of
terrestrial scan data as a basis for the generation
of detailed 3D city models”. 2004.

[5] A. Fournier and D. Y. Montuno. “Triangulating
simple polygons and equivalent problems”. 1984.

[6] S. Greuter, J. Parker, et al. “Undiscovered worlds–
towards a framework for real-time procedural world
generation”. 2003.

[7] G. GROGER, T. H. Kolbe, et al. Open Geospatial
Consortium OGC City Geography Markup Lan-
guage (CityGML) Encoding standard. 2012.

[8] J. F. Hughes, A. Van Dam, et al. Computer graph-
ics: principles and practice. 2014.

[9] Industry Foundation Classes.

[10] G. Kelly and H. McCabe. “Citygen: An interactive
system for procedural city generation”. 2007.

[11] P. Müller, P. Wonka, et al. “Procedural modeling
of buildings”. 2006.

[12] P. Müller, G. Zeng, et al. “Image-based procedural
modeling of facades”. 2007.

[13] A. Stadler and T. H. Kolbe. “Spatio-semantic co-
herence in the integration of 3D city models”.
2007.

[14] A. Stadler, C. Nagel, et al. “Making interoper-
ability persistent: A 3D geo database based on
CityGML”. 2009.

[15] G. Stiny. “Introduction to shape and shape gram-
mars”. 1980.

[16] P. Wonka, M. Wimmer, et al. Instant architecture.
2003.

