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Abstract

There is a local ring H of order 4, without identity for the multi-
plication, defined by generators and relations as

H = 〈a, b | 2a = 2b = 0, a2 = 0, b2 = b, ab = ba = 0〉.

We classify self orthogonal codes of length n and size 2n (called here
quasi self-dual codes or QSD) up to the length n = 6. In particular,
we classify quasi Type IV codes ( a subclass of Type IV codes, viz
QSD codes with even weights) up to n = 6.
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1 Introduction

In a series of innovative papers [1, 2, 3, 4], self-orthogonal codes over non-
unital rings of order 4 have been explored. The non-unitality makes it difficult
to deal with the usual concept of self-dual code. In consequence, we study
quasi-self-dual codes (QSD codes), that is self-orthogonal codes of length n
with 2n codewords. The notion of Type IV codes that is self-dual codes that
are even is extended to this setting. This notion is inspired by the classifica-
tion of divisible self-dual codes over finite fields due to Gleason, Pierce and
Turyn [18, Chap.19, Th. 1], into Type I codes (binary singly even) ,Type
II codes (binary, doubly even), Type III codes (ternary, weights multiple of
three), and Type IV codes (quaternary, singly even). This classification has
been generalized previously to the three nonfield rings of order 4 in [8]. Due
to some technical difficulties, this concept was relaxed in [1, 2, 3, 4] to the
notion of quasi Type IV codes (QT4), that is to say QSD codes with an even
torsion code. In this paper, however, the semi-local character of H allows for
a simple characterization of Type IV codes (Theorem 5). While this result
reduces the classification of Type IV codes to that of self-orthogonal binary
codes, the classification of QT4 codes remains as challenging as that of QSD
codes.

In the present paper, we consider the alphabet H in the terminology of [9].
It is a semi-local commutative ring, with two maximal ideals of size two. Like
in previous papers, the build-up construction, which has been successfully
used by Kim and co-workers [15, 16] is generalized to the alphabet H, as
it had been for the rings E and I [1, 2]. A classification scheme which
did not appear for local rings of order 4 consists in using a kind of non-
multiplicative CRT to associate two binary codes to a QSD code. One of
these will be self-orthogonal, allowing us to use the census of self-orthogonal
binary codes by dimension in [13]. The other one will be arbitrary linear
allowing us to use the enumeration results of [6, 10]. In order to make a
classification up to coordinate permutation, an important technical tool is
the double coset of the automorphism groups of the said binary codes into the
symmetric group, following the method of [20]. Like in the previous papers
of the non-unital series, the underlying quaternary additive code, obtained
by forgetting the multiplicative structure of the alphabet ring, allows us to
use the additive codes package of Magma [17]. A unital analogue of H is
the ring F2 + vF2 ∼ F2 × F2, studied in [5] in connection with 7-modular
lattices. The CRT over the latter ring allows us to attach an F2 + vF2-code
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to an H-code. In the case when that code is Type IV, it turns out that the
corresponding F2 + vF2-code is Hermitian self-dual in the sense of [5, 8].

The material is arranged in the following way. The next section collects
the necessary notations and definitions. Section 3 develops the build-up
method. Section 4 is dedicated to the classification method. Section 5 con-
tains the classified codes in length at most 6.

2 Background Material

2.1 Binary codes

Denote by wt(x) the Hamming weight of x ∈ Fn
2 . The dual of a binary linear

code C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
2 | ∀x ∈ C, (x, y) = 0},

where (x, y) =
∑n

i=1 xiyi, denotes the standard inner product. A code C
is self-orthogonal if it is included in its dual: C ⊆ C⊥. A code is even
if all its codewords have even weight. All binary self-orthogonal codes are
even, but not all even binary codes are self-orthogonal. Two binary codes
are equivalent if there is a permutation of coordinates that maps one to the
other.

2.2 Rings

Following [9] we define a ring on two generators a, b by its relations

H = 〈a, b | 2a = 2b = 0, a2 = 0, b2 = b, ab = ba = 0〉.

Thus, H has characteristic two, and consists of four elementsH = {0, a, b, c},
with c = a+ b. The addition table is immediate from these definitions

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0
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The multiplication table is as follows.

× 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 b b
c 0 0 b b

From this table, we infer that this ring is commutative, and without an
identity element for the multiplication. It has two absorbing elements 0 and
a. It is semi-local with two maximal ideals Ja = {0, a}, and Jb = {0, b}. The
following decomposition can be checked directly.

H = Ja ⊕ Jb.

Denote by αa : H → F2 the map of reduction modulo Ja, and denote by
αb : H → F2 the map of reduction modulo Jb. Thus αa(a) = αb(b) = 0
and αa(b) = αb(a) = 1. Note that these maps respect addition but not
multiplication. These maps are extended in the natural way in a map from
Hn to Fn

2 .
This alphabet decomposition induces a code decomposition as follows.

The code C over H can be written as a direct sum (in the sense of modules)

C = aCa ⊕ bCb,

where Ca = αb(C) and Cb = αa(C).
On occasion we will use the inner product notation (x, r) for x ∈

Fn
2 , r ∈ Hn to denote

(x, r) =
n∑

i=1

xiri =
∑
xi=1

ri.

2.3 Modules

A linear H-code C of length n is an H-submodule of Hn. It can be described
as the H-span of the rows of a generator matrix. With that code we
associate two binary codes of length n :

An additive code of length n over F4 is an additive subgroup of Fn
4 . It

is an F2 vector space with 4k elements for some k ≤ n (here 2k is an integer,
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but k may be half-integral). Using a generator matrix G, such a code can
be cast as the F2-span of its rows. To every linear H-code C is attached an
additive F4-code φ(C) by the alphabet substitution

0→ 0, a→ ω, b→ 1, c→ ω2,

where F4 = F2[ω], extended naturally to Fn
4 .

Following [17], we use the Magma notation

[< 0, 1 >, · · · , < i, Ai >, · · · , < n,An >]

for the weight distribution of a quaternary code, where Ai is the number of
codewords of weight i. Two H-codes are permutation equivalent if there
is a permutation of coordinates that maps one to the other.

2.4 Duality

Define an inner product on Hn as (x, y) =
∑n

i=1 xiyi.
The dual C⊥ of C is the module defined by

C⊥ = {y ∈ Hn | ∀x ∈ C, (x, y) = 0}.
Thus the dual of a module is a module. A code is self-dual if it is equal

to its dual.

Remark 1 The repetition code of length 2 is defined by R2 := {00, aa, bb, cc}.
Its dual is R⊥2 = {00, aa, bb, cc, cb, bc, a0, 0a}, a supercode of R2 of size 8. In
length one, we have J⊥a = H whereas J⊥b = Ja.

A code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal iff C ⊆ C⊥.

A code of length n is quasi self-dual if it is self-orthogonal and of size
2n.

Following a terminology from [8], a quasi self-dual code over H with all
weights even is called a Type IV code.
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Remark 2 The repetition code of length 2 is quasi self-dual over H and is
of Type IV. This shows, by taking direct sums of codes, that Type IV codes
over H exist for all even lengths. We see that Ja is a quasi self-dual code
over H. This shows, again by taking direct sums, that QSD codes exist for
all integer lengths.

Following [1, 2, 3, 4] we introduce the following larger class. A QSD H-
code is called quasi Type IV (QT4) if Ca is an even code. Every Type IV
code is QT4, but not conversely.

2.5 Codes over F2 + vF2

The ring F2 + vF2 with v2 = v is a semi-local ring with two maximal ideals
(v) and (v + 1). The CRT shows that it is ∼ F2 + F2. Self-dual codes over
that ring were studied in [8]. There is a ring endomorphism over F2 +vF2, an
involution that swaps v and v+1 and fixes 0 and 1. Denoting that involution
by , we can define a Hermitian inner product as

[x, y] =
∑
i

xiyi.

We will also require the complete weight enumerator in four variables
cweC of a quaternary code C over F2 + vF2 defined by

cweC(x0, x1, x2, x3) =
∑
c∈C

3∏
i=0

x
ni(c)
i ,

where ni(c) denotes for i ∈ F2 + vF2 the number of coordinates j for
which cj = i. Thus, if n is the length of C, we have for all c ∈ C the relation

3∑
i=0

ni(c) = n.

In view of the connection with lattices it makes sense to introduce the
Hermitian weight enumerator in one variable hweC of an F2 + vF2-code
C defined as

hweC(y) =
∑
c∈C

ywB(c),
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where the Bachoc weight of x ∈ H is defined as wB(x) = 0, 1, 2, 2 if
x = 0, 1, v, 1 + v, respectively. This notation is extended to vectors in the
obvious way. The following connection with the complete weight enumerator
is immediate from the definitions.

hweC(y) = cweC(1, y, y2, y2).

The first exponent i > 0 for which the coefficient of yi is nonzero is called
the Bachoc distance of the code and is denoted by dB.

For the next theorem, we require some familiarities with lattices in the
sense of the geometry of numbers [7]. The following result is the so-called
Construction A of lattices from codes over F2 + vF2. See [5, Prop. 3.6.] for
a proof.

Theorem 1 If C is an F2 +vF2 code of length n and size 2n, then the lattice
A(C) given by

√
2A(C) =

⋃
c∈C(c + 2Rn), where R = Z[ζ7], has dimension

2n over Z and norm min(4, dB). If, furthermore, C is Hermitian self-dual
then A(C) is 7−modular.

If C = aCa + bCb is an H code, we construct a code over F2 + vF2 as
(1 + v)Ca + vCb = CRT (Ca, Cb). Denote this latter code by M(C).

Theorem 2 If C is a Type IV code over H, then M(C) is Hermitian self-
dual of Type IV in the sense of [8].
Proof. The fact that M(C) is self-dual is immediate by part (2) of The-
orem 5 below, combined with Prop. 3.5 of [8]. The Type IV condition is
immediate by either the definitions of Type IV, or Cor. 3.6 of [8] and the
fact that both Ca and Cb are even codes by the proof of Theorem 5.

3 Build-up construction

In this section we discuss two kinds of construction methods for quasi
self-dual codes over H. The following theorem is the first one, constructing
quasi self-dual codes of length increased by two, with one more generator.

Theorem 3 Let C0 denote a quasi self-dual code of length n and over H, with
generating set r1, . . . , rk. Let x be a fixed vector in Fn

2 satisfying (x, x) = 1.
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(Thus any x of odd Hamming weight works). Write yi = (x, ri) for 1 ≤ i ≤ k.
The H-span of the following k+1 vectors is a quasi self-dual code C of length
n+ 2.

(c, 0, cx), (y1, y1, r1), . . . , (yk, yk, rk).

Proof. First, we check that C is self-orthogonal.

• The first vector is orthogonal to itself by definition of x, since c2 +
c2(x, x) = b+ b(x, x) = 0.

• The last k vectors are orthogonal to each other and to themselves by
self-orthogonality of C0, since yiyj + yiyj + (ri, rj) = 0.

• The first vector is orthogonal to each of the last k vectors by definition
of the yi’s since for i = 1, . . . , k we have cyi + (cx, ri) = cyi + c(x, ri) =
cyi + cyi = 0.

Hence C is self-orthogonal. We claim that |C| = 4|C0| = 2n+2. Indeed define

Ĉ0 as the generator span of the last k generators. Write Sy = (y, 0, yx),
for all y ∈ H. Then it can be seen that the construction in the theorem is
equivalent to

C = ∪̇y∈H(Sy + Ĉ0),

where ∪̇ denotes disjoint union. Thus C is quasi self-dual of length n+ 2.

The next result shows that this construction preserves the quasi Type IV
property.

Corollary 1 If C0 is a quasi Type IV code, then C obtained from the previ-
ous theorem is also quasi Type IV.
Proof. From Theorem 3, it can be seen that the vector (1, 0, x) has even
weight since (x, x) = 1. In addition, since C0 is quasi type IV, the vector
ri
′ = ri( mod b) has even weight. Thus

(αb(yi), αb(yi), αb(ri)) = (yi
′, yi

′, ri
′)

with yi
′ = (ri

′, x) has an even weight . Therefore, C is quasi Type IV.

The second kind of construction also constructs QSD codes of length
increased by two, but with two more generators.
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Theorem 4 Let C0 be a quasi self-dual code of length n over H and G0 = (ri)
be a k × n generator matrix for C0, where ri is the i-th generator of G0 ,
1 ≤ i ≤ k. Let x be a fixed vector in Fn

2 . For 1 ≤ i ≤ k, let yi = ((x, ri), (x, ri))
be a vector of length 2. Then the following generators

(a, 0, ax), (0, a, ax), (y1, r1), . . . , (yk, rk).

generate a quasi self-dual code C over H of length n+ 2.

Proof. Firstly, we show that C is self-orthogonal code.

• The first generator is orthogonal to itself since a2 + a2(x, x) = 0. Simi-
larly the second generator is orthogonal to itself.

• The first generator is orthogonal to the second generator as a2(x, x) =
0.

• The first (or, the second) generator is orthogonal to any of the last k
generators since a(x, ri) + (ax, ri) = 0.

• The last k generators are orthogonal to each other and to themselves
by self-orthogonality of C0 since (yi, yj) + (ri, rj) = (x, ri)(x, rj) +
(x, ri)(x, rj) = 0.

Hence, the set of k generators generates a self-orthogonal code C. We claim
that |C| = 4|C0| = 2n+2. Indeed define Ĉ0 as the row span of the last k
generators. Write Sy = (y, 0, yx), Ty = (0, y, yx) for all y ∈ H. Then it can
be seen that the construction in the theorem is equivalent to

C = ∪̇y,z∈Ja(Sy + Tz + Ĉ0).

Therefore, C is quasi self-dual code of length n+ 2.

Like for the first construction, we have a result on quasi Type IV codes.

Corollary 2 If C0 is quasi Type IV then C obtained from the previous the-
orem is also quasi Type IV if (x, x) = 1.

Proof. Ca has two generator vectors (1, 0, x) and (0, 1, x). They have even
weights since, by hypothesis, (x, x) = 1.
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Since C0 is quasi Type IV, ri
′ has an even weight. Thus, (αb(yi), αb(ri)) =

(yi
′, ri
′) has even weight. Therefore C is quasi Type IV.

Remark 3 The number of codes generated from a given C0 depends on the
number of choices for x. Thus Theorem 1 generates 2n−1 codes, and Theorem
2 generates 2n codes.

4 Classification

The following characterization result is easy but essential to understand the
classification technique.

Lemma 1 A code C, of length n over H is QSD iff it is of the form aCa⊕bCb

where

1. Cb is a self-orthogonal [n, k] binary code,

2. Ca is an [n, n− k] binary code.

Proof. The code C is self-orthogonal iff Cb is a self-orthogonal binary
code because of the following identity

(ax+ by, ax′ + by′) = b(y, y′),

where x, x′, y, y′ are arbitrary binary vectors of the same length. Since |C| =
|Ca||Cb|, we see that |C| = 2n iff Ca and Cb have complementary dimensions.

We can now give a characterization of Type IV codes over H.

Theorem 5 A code C of over H is Type IV iff it is of the form aCa ⊕ bCb

where

1. Cb is a self-orthogonal binary code,

2. Ca = C⊥b .

Proof.
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• Assume C to be Type IV. The first point is immediate by Lemma 1 as
C is, in particular, QSD. We prove the second point as follows. Since
aCa ⊆ C, we know that Ca is an even code. Note that Cb is also even
as being self-orthogonal, by Lemma 1. Consider an arbitrary codeword
xa + yb, of C, with x, y binary vectors of respective supports X, Y.
Thus x, y belong to Ca and Cb, respectively. Set theory shows that the
Hamming weight of ax+ by is

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |
= wt(x) + wt(y)− |X ∩ Y |.

By the Type IV property the LHS is even, yielding that |X∩Y | is even.
Hence Ca ⊆ C⊥b , and by (2) of Lemma 1, and dimension count we see
that Ca = C⊥b .

• In the other direction, assume the two points hold. By the same cal-
culations as above, Ca = C⊥b entails that C has even weights. The fact
that C is QSD is immediate by Lemma 1.

The proof of the next lemma is analogous to that of Lemma 1, and is not
written.

Lemma 2 Every QT4 code of length n over H is of the form aCa ⊕ bCb

where

1. Cb is a self-orthogonal [n, k] binary code,

2. Ca is an even binary [n, n− k] code.

To classify QSD codes, or QT4 codes, we thus have to find all codes that
are permutation equivalent to aCa + bCb for a given pair (Ca, Cb). This is
a similar situation to the classification of self-dual codes over Zpq in [20],
and we follow the method there. Here SDR stands for System of Distinct
Representatives, that is to say elements that are representative of subsets
(here the double cosets) in a set (here the group Sn) partition. The following
result is an immediate generalization of [20, Th. 3.5] from Zpq to H. Its proof
is omitted.

11



Theorem 6 Let (Ca, Cb) be a pair of codes as defined in Lemma 1, with
respective permutation groups A and B. Then, the set

SCa,Cb
:= {aCa + bσ(Cb) | σ runs over a SDR of A\Sn/B}

forms a set of non-equivalent codes. In particular |SCa,Cb
| = |A\Sn/B|.

The immediate application is the next result.

Corollary 3 Let La be the set of all non-equivalent [n, k] binary codes. Let
Lb be the set of all non-equivalent [n, n − k] self orthogonal binary codes.
Then, the set of all QSD codes over H is, up to permutation, the disjoint
union

∐
Ca∈La
Cb∈Lb

SCa,Cb
.

Proof. By application of the maps αa and αb, the following observation
is immediate. If the pairs Ca, Cb and Ca′ , Cb′ are distinct, then none of the
codes in SCa,Cb

are equivalent to any of the codes in SCa′ ,Cb′
.

To apply this theorem effectively to classify QSD codes (resp. QT4 codes)
we thus need to know two lists of codes, for given length and dimension.

1. SDR of equivalence classes of self-orthogonal [n, k] binary codes.

2. SDR of equivalence classes of binary [n, n−k] codes (resp. even codes).

The first list can be established by [13]. The second list can be established
by using the method in [6, 10].

The classification algorithm for QSD (resp. QT4) codes can be described
as follows. Given a length n ≥ 1, and an integer k ≤ n

2
, do the following

steps.

1. Write a list La of binary (resp. even ) [n, n− k] codes.

2. Write a list Lb of binary [n, k] self-orthogonal codes.

3. For all pairs (Ca, Cb) in La × Lb do

(a) Compute the permutation groups A and B of Ca and Cb respec-
tively,

(b) Find a list σ1, . . . , σs of representatives of A\Sn/B,

(c) For i = 1 to s output aCa + bσi(Cb).
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The classification of Type IV codes reduces by Theorem 5 to that of self-
orthogonal binary codes, or more concretely to taking the union of all lists
Lb above for k ≤ n.

5 Numerical Results

All the computations needed for this section were performed in Magma [17].
An H-code C is said to be extremal if M(C) meets the bound of [5, Th. 5.1
(i)], viz: dB(C) = 2(1+bn

3
c). This means that the 7-modular lattice obtained

by Construction A from M(C) is extremal in the sense of [19].

5.1 Length 1 (One code)

There is just one code of length 1. It is generated by (a).

5.2 Length 2 (Two codes)

There is one QSD code with generator matrix(
b b
0 a

)
and weight distribution [< 0, 1 >,< 1, 1 >,< 2, 2 >]. The other one is the
repetition code. It is a type IV code with generator matrix(

b b
a a

)
and weight distribution [< 0, 1 >,< 2, 3 >]. Both codes have a Bachoc
weight 2.

5.3 Length 3 (Five codes)

There are four codes with minimum distance 1. Their generator matrices are

respectively

b 0 b
a 0 0
0 a 0

 and

a 0 b
0 b b
0 a 0

 with weight distribution [< 0, 1 >
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, < 1, 2 >,< 2, 3 >,< 3, 2 >],

b 0 b
a 0 a
0 a 0

 and

b b 0
a 0 a
0 a 0

 with weight

distribution [< 0, 1 >,< 1, 1 >,< 2, 3 >,< 3, 3 >].
The fifth code has minimum distance 2, and it is QT4. Its generator matrix
is b 0 b

a 0 a
0 a a


and its weight distribution is [< 0, 1 >,< 2, 5 >,< 3, 2 >]. All codes have
Bachoc weight 2 and the Hermitian weight enumerator of the (extremal)
quasi Type IV code is 2y5 + 4y4 + y2 + 1.

5.4 Length 4 (17 codes)

The main properties are summarized in the following table.

k d # codes # Type IV # QT4
1 1 10 0 0
1 2 2 1 2
2 1 3 0 0
2 2 2 0 0

All codes have Bachoc weight 2 except the (extremal) Type IV code which
has Hermitian weight enumerator 2y8 + 6y6 + 7y4 + 1.

5.5 Length 5 (58 codes)

The main properties are summarized in the following table.

k d # codes # Type IV # QT4
1 1 18 0 0
1 2 2 0 2
2 1 26 0 0
2 2 12 0 5

All codes have Bachoc weight 2 except one (extremal) QT4 (k = 1) which
has Hermitian weight enumerator 4y9 + 6y8 + 4y7 + 6y6 + 11y4 + 1.
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5.6 Length 6 (316 codes)

The main properties are summarized in the following table.

k d # codes # Type IV # QT4
1 1 31 0 0
1 2 3 1 3
2 1 151 0 0
2 2 55 0 21
3 1 35 0 0
3 2 41 1 14

For k = 1, all codes have Bachoc weight 2 except two QT4 with Hermitian
weight enumerators 8y9+17y8+8y7+6y6+16y4+1 and 2y12+15y10+30y8+
y6 + 15y4 + 1. For k = 2, thirteen codes have Bachoc weight 4 (of which five
are QT4 codes) while all the others have Bachoc weight 2. For k = 3, all
codes have Bachoc weight 2. The unique Type IV code has Hermitian weight
enumerator 8y12 + 12y10 + 18y8 + 13y6 + 9y4 + 3y2 + 1. Note that there is no
extremal 7-modular lattice in dimension 12 [19].

6 Conclusion and Open Problems

In this paper, we have classified certain self-orthogonal codes over the non-
unital ring H of order 4 up to length 6. In comparison the self-dual codes over
unital rings of size 4 have been classified up to length 12 or more [8]. The
reason is that, in the non-unital case, there are more codes, and thus, the
combinatorial explosion happens in shorter lengths. Going beyond length 6
would require more computing resources and/or better algorithms.

The application to 7-modular lattices is worth pursuing. To go beyond
the dimensions explored in [19], one would need algebraic constructions of
self-orthogonal H-codes.
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