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Abstract

There exist two semi-local rings of order 6 without identity for
the multiplication. We classify up to coordinate permutation self-
orthogonal codes of length n and size 6n/2 over these rings (called here
quasi self-dual codes or QSD) till the length n = 8. To any such code
is attached canonically a Z6-code, which, when self-dual, produces an
unimodular lattice by Construction A.
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1 Introduction

Codes over the ring of order six Z6 have received some attention in the
past due to their connection to euclidean lattices [10, 11]. The main tool
in this context is the Chinese Remainder Theorem (CRT) over the integers
[7]. A classification technique for self-dual codes over this ring up to the
permutation part of their monomial automorphism group was derived in
[17], using the notion of double cosets in permutation groups. In a series of
recent papers, the authors have studied self-orthogonal codes over non-unital
rings of order 4 [1, 2, 3, 4]. This is a major innovation in the domain of codes
over rings, where only unital rings were used as alphabets till then [20, 21].

In the present paper, we combine these two strands of thought in the
following way. We study self-orthogonal codes over two non-unital rings of
order 6, denoted here by H32 and H23. Both rings are semilocal with two
maximal ideals of size two and three. There is a non multiplicative analogue
of the CRT that allows to attach to any code over such a ring the ordered pair
of a binary code and a ternary code. If the code is quasi self-dual (QSD) that
is self-orthogonal of length n and size 6n/2, it can be shown that one of the
two codes is self-dual and the other is a rate one-half code. Forgetting their
multiplicative structure, we can regard the codes over either of these two
non-unital rings as additive codes over Z6, or, equivalently Z6-linear codes.
This simple observation allows us to use the Magma package for codes over
rings [15] to compute weight distributions, and complete weight enumerators.
We use the same classification methodology as that in [17] for codes over Z6.
We are able to classify QSD codes over these two rings up to length n = 8.

The material is layed out in the following way. The next section collects
the notations and notions needed for the rest of the paper. Section 3 is an
exposition of the classification technique that we used. Section 4 contains
some numerical data pertaining to that classification in modest length.

2 Background material

2.1 Codes over fields

Let p be a prime. Denote by wt(x) the Hamming weight of x ∈ Fn
p . The dual

of a linear code C over Fp is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
p | ∀x ∈ C, (x, y) = 0},
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where (x, y) =
∑n

i=1 xiyi, denotes the standard inner product. A code C is
self-orthogonal if it is included in its dual, i.e. C ⊆ C⊥. A code is even
if all its codewords have even weights. All binary self-orthogonal codes are
even, but not all binary even codes are self-orthogonal. Two codes over Fp

are permutation equivalent if there is a permutation of coordinates that
maps one to the other.

2.2 Rings

Let Cp be the cyclic additive abelian group of order p and Cp(0) be the
ring with additive group Cp and trivial multiplication. We know (see for
example [8, Lemma 2]) that, up to isomorphism, there are exactly two rings
of order p, namely Zp and Cp(0) and, if p and q are distinct primes, there are
exactly four rings of order pq. These are Zpq, Cpq(0), Hpq := Zp +Cq(0), and
Hqp := Cp(0) +Zq. The symbol + denotes the direct product of rings. Since
the first two rings are well known, we consider in this paper the last two
rings which are semi-local non-unital rings of order pq. In order to effectively
construct codes, we restrict ourselves to the case p = 3 and q = 2. We denote
these rings by

H32 := Z3 + C2(0) = 〈a, b | 2a = 0, 3b = 0, a2 = 0, ab = 0 = ba, b2 = b〉,
and

H23 := Z2 + C3(0) = 〈a, b | 2a = 0, 3b = 0, a2 = a, ab = 0 = ba, b2 = 0〉.
We denote by c, d, e the remaining three elements, which we define as

c = a+ b

d = 2b

e = a+ 2b.

The addition tables of H32 and H23 are identical up to isomorphism and given
by the following table

+ 0 a b c d e
0 0 a b c d e
a a 0 c b e d
b b c d e 0 a
c c b e d a 0
d d e 0 a b c
e e d a 0 c b
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The multiplication tables for respectively H32 and H23 are as follows.

× 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0
b 0 0 b b d d
c 0 0 b b d d
d 0 0 d d b b
e 0 0 d d b b

and

× 0 a b c d e
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 0 0
c 0 a 0 a 0 a
d 0 0 0 0 0 0
e 0 a 0 a 0 a

From these tables, we infer that these two rings are commutative, and without
an identity element for the multiplication. They are semi-local with the two
maximal ideals Ja = {0, a}, and Jb = {0, b, d}. Let z ∈ {23, 32}. The following
decomposition

Hz = Ja ⊕ Jb,

can be checked directly from the defining relations of c, d, e.
This alphabet decomposition induces a code decomposition as follows.
The code C over Hz can be written as a direct sum (in the sense of

modules)
C = aCa ⊕ bCb,

where Ca is a binary code and Cb is a ternary code.
Denote by αa : Hz → F2 the map of reduction modulo Ja, and denote

by αb : Hz → F3 the map of reduction modulo Jb, where Ja, and Jb are
viewed as additive groups. Thus αa(a) = αb(b) = 0, and, by convention we
choose αa(b) = αb(a) = 1. These maps are extended in the natural way into
maps from Hn

z to Fn
2 (resp. from Hn

z to Fn
3 ).

Thus, with these notations, we see that Ca = αb(C) and Cb = αa(C).

Remark 1 These maps are additive morphisms but not ring morphisms.
Still Ca (resp. Cb) is a vector space over F2 (resp. F3) because F2 (resp. F3)
is a prime field and additive subgroups of Fn

2 (resp. Fn
3) coincide with vector

spaces over F2 (resp. F3).

2.3 Weight Enumerators

A linear Hz-code C of length n is an Hz-submodule of Hn
z . It can be de-

scribed as the Hz-span of the rows of a generator matrix. Two Hz-codes
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are permutation equivalent if there is a permutation of coordinates that
maps one to the other.

An additive code C of length n over Z6 is an additive subgroup of Zn
6 .

It is an Z6 sub-module of Zn
6 . By the CRT over the integers we can attach

two codes to C: a binary code C2, and a ternary code C3. We will write
C = CRT (C2, C3). Conversely, from every pair of a binary code B and a
ternary code T of the same length a Z6-code C can be constructed by the
formula C = CRT (B, T ).
If C = aCa + bCb is an Hz-code, we can identify it with an additive Z6-code
given by C = CRT (Ca, Cb). We use the Magma notation

[< 0, 1 >, · · · , < i, Ai >, · · · , < n,An >]

for the weight distribution of a senary code, where Ai is the number of
codewords of Hamming weight i. The first index i > 0 for which Ai is nonzero
is called the Hamming distance of the code. It is denoted by dH . We will
also require the complete weight enumerator in six variables cweC of a
senary code C defined by

cweC(x0, x1, x2, x3, x4, x5) =
∑
c∈C

5∏
i=0

x
ni(c)
i ,

where ni(c) denotes for i = 0, . . . , 5, the number of coordinates j for which
cj = i. Thus, if n is the length of C, we have for all c ∈ C the relation

5∑
i=0

ni(c) = n.

We follow the notation of [14].
In view of the connection with lattices it makes sense to introduce Eu-

clidean weight enumerator in one variable eweC of a senary code C de-
fined as

eweC(y) =
∑
c∈C

ywE(c),

where the Euclidean weight of x ∈ Z6 is defined as wE(x) = 0, 1, 4, 9 if
x = 0,±1,±2,±3 respectively. This notation is extended to vectors in the
obvious way. The following connection with the complete weight enumerator
is immediate from the definitions.
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eweC(y) = cwe(1, y, y4, y9, y4, y).

The first exponent i > 0 for which the coefficient of yi is nonzero is called
the Euclidean distance of the code and is denoted by dE.

For the next theorem we require some familiarity with lattices in the
sense of the geometry of numbers [6, 10]. The following result is the so-called
Construction A of lattices from codes over Zm when m = 6. For a proof see
[6] for m = 2, and [13] for m = 4.

Theorem 1 If C is a Z6 code of length n and size 6n/2, then the lattice A(C)
given by √

6A(C) =
⋃
c∈C

(c+ 6Zn)

has determinant 1 and norm min(6, dE/6). If, furthermore, the code C is
self-dual, then A(C) is unimodular.

Remark 2 It is proved in [10, 11] that C = CRT (B, T ) is self-dual iff both
B and T are self-dual. Thus the Z6-codes produced in this paper, in view of
Lemma 1, and Lemma 2 are not always self-dual.

2.4 Duality

Define an inner product on Hn
z as (x, y) =

∑n
i=1 xiyi.

The dual C⊥ of C is the module defined by

C⊥ = {y ∈ Hn
z | ∀x ∈ C, (x, y) = 0}.

Thus the dual of a module is a module. A code is self-dual if it is equal
to its dual.

A code C is said to be self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal iff C ⊆ C⊥.

Remark 3 Let the alphabet be H32. The repetition code of length 2 is defined
by R2 := {00, aa, bb, cc, dd, ee}. We see that R2 is self-orthogonal. Its dual
contains also bc, cb, ed, de. (Note that the rows of c and b (resp. d and e) are
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the same).Thus R2 is not self-dual.
A code of length n is said to be quasi self-dual (QSD) if it is self-orthogonal
and of size 2n.

Example: The code R2 over either H32 or H23 is self-orthogonal of car-
dinality 6, hence it is QSD.

3 Classification

The following characterization result is easy but essential to understand the
classification technique.

Lemma 1 Every QSD code C of length n over H23 is of the form aCa⊕ bCb

where

1. Ca is a self-dual binary code,

2. Cb is an [n, n/2] ternary code.

In particular n must be even.
Proof. The code C is self-orthogonal iff Ca is a self-orthogonal binary
code because of the following identity

(ax+ by, ax′ + by′) = a(x, x′),

where x, x′ (resp. y, y′) are arbitrary binary (resp. ternary) vectors of length
n. Since by the QSD hypothesis C = |Ca||Cb| = 6n/2, we see that both Ca

and Cb have dimension n/2.

Lemma 2 Every QSD code C of length n over H32 is of the form aCa⊕ bCb

where

1. Cb is a self-dual ternary code,

2. Ca is an [n, n/2] binary code.

In particular n must be doubly even.
Proof. The proof of the first statement is analogous to the proof of Lemma
1, and is not written. To prove the second statement we use the fact that
ternary self-dual codes only exist in doubly even lengths [14].
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To classify QSD codes, we thus have to find all codes that are permutation
equivalent to aCa+bCb for a given pair (Ca, Cb). This is a similar situation to
the classification of self-dual codes over Zpq in [17], and we follow the method
there. Here SDR stands for System of Distinct Representatives.

Theorem 2 Let (Ca, Cb) be a pair of codes as defined in Lemma 1 or Lemma
2, with respective permutation groups A and B. Then, the set

SCa,Cb
:= {aCa + bσ(Cb) | σ runs over an SDR of A\Sn/B}

forms a set of inequivalent codes. In particular |SCa,Cb
| = |A\Sn/B|.

The next corollaries are immediate.

Corollary 1 Let La be the set of all inequivalent self-dual binary codes of
length n. Let Lb be the set of all inequivalent [n, n/2] ternary codes. Then, the
set of all QSD codes of length n over H23 is, up to coordinate permutation,
the disjoint union

∐
Ca∈La
Cb∈Lb

SCa,Cb
.

Corollary 2 Let Lb be the set of all inequivalent self-dual ternary codes of
length n. Let La be the set of all inequivalent [n, n/2] binary codes. Then, the
set of all QSD codes of length n over H32 is, up to coordinate permutation,
the disjoint union

∐
Ca∈La
Cb∈Lb

SCa,Cb
.

To apply Corollary 1 effectively to classify QSD H23-codes, we thus need
to know two lists of codes, for a given length n.

1. An SDR of equivalence classes of self-dual [n, n/2] binary codes,

2. an SDR of equivalence classes of ternary [n, n/2] codes.

To apply Corollary 2 effectively to classify QSD H32-codes, we thus need to
know two lists of codes, for a given length n.

1. An SDR of equivalence classes of self-dual [n, n/2] ternary codes,

2. an SDR of equivalence classes of binary [n, n/2] codes.

The first type of list can be found in [16]. The second type of list can be
established by using the method in [5, 9].

The classification algorithm for QSD H23-codes can be described as fol-
lows. Given an even length n ≥ 1, do the following steps.
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1. Write a list La of self-dual [n, n/2] binary codes.

2. Write a list Lb of ternary [n, n/2] codes.

3. For all pairs (Ca, Cb) in La × Lb do the following.

(a) Compute the permutation groups A and B of Ca and Cb respec-
tively.

(b) Find a list σ1, . . . , σs of representatives of A\Sn/B.

(c) For i = 1 to s output aCa + bσi(Cb).

A similar description holds for QSD H32-codes.

1. Write a list Lb of self-dual [n, n/2] ternary codes.

2. Write a list La of binary [n, n/2] codes.

3. For all pairs (Ca, Cb) in La × Lb do the following.

(a) Compute the permutation groups A and B of Ca and Cb respec-
tively.

(b) Find a list σ1, . . . , σs of representatives of A\Sn/B.

(c) For i = 1 to s output aCa + bσi(Cb).

4 Numerical results

All the computations needed for this section were performed in Magma [15],
except for the length 8 where we used Sage [19]. The Euclidean distance of the
codes below is computed by inspection of the Euclidean weight enumerator,
which is, most of the time, too long to be displayed. In the following sections
Z6-codes are classified up to coordinate permutation, which is a weaker form
of equivalence than that used in [11, 16, 17] where the permutation part of
the monomial automorphism group of the codes is authorized. Thus, we find
seventeen euclidean self-dual Z6-codes for n = 8, where only five are found
in [16, 17]. In general all the self-dual codes mentioned below are self-dual
for the standard inner product over Z6 like in [11, 16, 17].
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4.1 The Ring H32

The bijective correspondence H32 ↔ Z6 is given informally by

0 = 0, e = 1, b = 2, a = 3, d = 4, c = 5.

4.1.1 Length 4 (13 codes)

The main properties are summarized in the following table.

# codes 4 6 1 2
dH 1 1 2 2
dE 6 3 6 3

There is a unique self-dual Z6-code of length 4. Its ewe is

y36 + 10y18 + 16y12 + 8y6 + 1.

This is consistent with [17, Table 2]. Construction A yields the lattice
Z4.

4.1.2 Length 8 (11 615 codes)

The Hamming distance distribution is summarized in the following table.

# codes 4516 6365 743
dH 1 2 3

There are seventeen self-dual codes, eleven of Hamming weight 2 and Eu-
clidean weight 6, and six of Hamming weight 3 and Euclidean weight 12.
The six codes of Euclidean distance 12 yield the lattice E8 by Theorem 1,
the unique Type II lattice in dimension 8 [6].

4.2 The Ring H23

The bijective correspondence H23 ↔ Z6 is given informally by

0 = 0, e = 1, b = 2, a = 3, d = 4, c = 5.

4.2.1 Length 2 (two codes)

We obtain two codes one with generator matrix (1 3), dH = 1, dE = 4, and
the other one with generator matrix (1 1), dH = 2, dE = 2.
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4.2.2 Length 4 (fourteen codes)

The metric properties are summarized in the following table.

# codes 2 3 3 5 1
dH 1 1 2 2 2
dE 2 4 2 4 6

The unique code with dE = 6 is the self-dual code obtained in §4.1.1.

4.2.3 Length 6 (162 codes)

The metric properties are summarized in the following table.

# codes 16 34 25 56 31
dH 1 1 2 2 2
dE 2 4 2 4 6

4.2.4 Length 8 (10447 codes)

The metric properties are summarized in the following table.

# codes 209 1797 509 3690 11 3179 416 481 117 6 27 5
SD N N N N Y N N N N Y N N
dH 1 1 2 2 2 2 2 3 3 3 4 4
dE 2 4 2 4 6 6 8 4 8 12 4 8

Like for codes over H32, there are 17 self-dual codes, 11 of Hamming weight
2 and Euclidean weight 6, and 6 of Hamming weight 3 and Euclidean weight
12. The 6 codes of Euclidean distance 12 yield the lattice E8 by Theorem 1,
the unique Type II lattice in dimension 8 [6].

Acknowledgement: The authors are indebted to Prof. David Kohel for
helping them with computations in the computer package Sage [19].
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