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The square root of a parabolic operator

El Maati Ouhabaz

Abstract

Let L(t) = −div (A(x, t)∇x) for t ∈ (0, τ) be a uniformly elliptic operator with
boundary conditions on a domain Ω of Rd and ∂ = ∂

∂t . Define the parabolic operator
L = ∂ + L on L2(0, τ, L2(Ω)) by (Lu)(t) := ∂u(t)

∂t + L(t)u(t). We assume a very
little of regularity for the boundary of Ω and assume that the coefficients A(x, t) are
measurable in x and piecewise Cα in t for some α > 1

2 . We prove the Kato square
root property for

√
L and the estimate

‖
√
Lu‖L2(0,τ,L2(Ω)) ≈ ‖∇xu‖L2(0,τ,L2(Ω)) +‖u‖

H
1
2 (0,τ,L2(Ω))

+

(∫ τ

0
‖u(t)‖2L2(Ω)

dt

t

)1/2

.

We also prove Lp-versions of this result.
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regularity, the holomorphic functional calculus, non-autonomous evolution equations.

Home institution:
Institut de Mathématiques de Bordeaux
Université de Bordeaux, CNRS, UMR 5251,
351, Cours de la Libération. 33405 Talence, France.
Elmaati.Ouhabaz@math.u-bordeaux.fr

1 Introduction and the main results
Consider on L2(Rd) the differential operator L(t) = −div (A(x, t)∇x) where the matrix
A(x, t) = (akl(x, t))1≤k,l≤d has complex measurable entries and satisfies the usual ellipticity
condition

Re〈A(x, t)ξ, ξ〉 ≥ κ|ξ|2, |〈A(x, t)ξ, ζ〉| ≤ C|ξ||ζ| (1.1)

for all ξ, ζ ∈ Cd, where κ,C are positive constants independent of (x, t) ∈ Rd×R and 〈., .〉
denotes the scalar product of Cd. We consider the first order differential operator ∂u = ∂u(t)

∂t
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for all u in the Sobolev space H1(R, L2(Rd)). One defines the half-order derivative ∂1/2 by

∂1/2u(t) = − 1

2
√

2π

∫
R

1

|t− s|3/2
(u(t)− u(s)) ds.

The following theorem is a parabolic version of the Kato square root property. It is proved
by P. Auscher, M. Egert and K. Nyström [5].

Theorem 1.1. Suppose (1.1). There exists a realization of the parabolic operator L := ∂+L
which is maximal accretive on L2(Rd+1), the domain of its square root

√
L coincides with

H
1
2 (R, L2(Rd)) ∩ L2(R, H1(Rd)) and

‖
√
Lu‖L2(Rd+1) ≈ ‖∇xu‖L2(Rd+1) + ‖∂1/2u‖L2(Rd+1)

for all u ∈ D(
√
L).

A similar result was proved by K. Nyström [20] in the case where A(x, t) = A(x).
The aim of the present short paper is twofold. We consider the above parabolic Kato

square root problem for operators on domains with boundary conditions. Secondly, we
investigate the problem on Lp(0, τ, Lr(Ω)) and not only on L2(0, τ, L2(Ω)). We consider
the time variable t in an interval (0, τ) which is usual for evolution equations rather than
the whole set R. In order to give the precise statements we need some preparation.

Let Ω be an open subset of Rd with boundary Γ. Consider a closed subspace V of
H1(Ω) which contains H1

0 (Ω) and define the sesquilinear form

a(t, u, v) =

∫
Ω

A(x, t)∇xu.∇xv dx

with domain V . We assume that the matrix A(x, t) = (akl(x, t))1≤k,l≤d satisfies the ellip-
ticity condition (1.1) with constants independent of (x, t) ∈ Ω × (0, τ). The associated
operator is formally given by L(t) = −div (A(x, t)∇x) and subject to the boundary condi-
tions fixed by V . We say that a is Cα for some α > 0 if there exists a positive constant M
such that for all u, v ∈ V

|a(t, u, v)− a(s, u, v)| ≤M |t− s|α‖u‖V ‖v‖V .

We say that a is piecewise Cα for some α > 0 if there exist τ1 = 0 < τ2 < · · · < τN = τ
such that on each sub-interval (τj, τj+1), a is the restriction of a Cα form on [τj, τj+1].

We make the following two assumptions. Suppose that a is piecewise Cα for some
α > 1

2
. Observe that this is satisfied if the coefficients akl, 1 ≤ k, l ≤ d are piecewise Cα in

the t-variable for some α > 1
2
.

Next, we assume that for each fixed t, the operator L(t) satisfies the following Kato square
root property

V ⊆ D
(√

L(t)
)

and
∥∥∥√L(t) f

∥∥∥
L2(Ω)

≤ C
[
‖∇xf‖L2(Ω) + ‖f‖L2(Ω)

]
, f ∈ V. (1.2)

The constant C is independent of t. In this case, a well known duality argument implies
that D

(√
L(t)

)
= V and the norms

∥∥∥√L(t) f
∥∥∥
L2(Ω)

+‖f‖L2(Ω) and ‖∇xf‖L2(Ω) +‖f‖L2(Ω)

are equivalent. In many cases, the homogeneous estimate

D
(√

L(t)
)

= V and
∥∥∥√L(t) f

∥∥∥
L2(Ω)

≈ ‖∇xf‖L2(Ω) (1.3)
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holds. The implicit constants in the equivalence ≈ are independent of t since they depend
only on the ellipticity constants.
The square root property (1.3) is always satisfied if A(x, t) is symmetric. It is satisfied if
Ω = Rd by the solution of the Kato square root problem (see P. Auscher et al. [4]). The
non-homogeneous estimate (1.2) is satisfied if one has in addition terms of lower order. On
domains, it is satisfied if the boundary of Ω has a little of regularity (for example Lipschitz
is enough) for Dirichlet boundary conditions (V = H1

0 (Ω)), Neumann boundary conditions
(V = H1(Ω)) or even for mixed boundary conditions. For all this we refer to the paper
of M. Egert, R. Haller-Dintelmann and P. Tolksdorf [13], the recent preprint of S. Bechtel,
M. Egert and R. Haller-Dintelmann [8] and the references therein.
Now we state our first main result.

Theorem 1.2. Suppose (1.1), (1.2) and suppose that a is piecewise Cα for some α > 1
2
.

Then there exists a realization of the parabolic operator L := ∂+L that is maximal accretive
on L2(0, τ, L2(Ω)) and satisfies the Kato square root property

D
(√
L
)

=

{
u ∈ H

1
2 (0, τ, L2(Ω)) ∩ L2(0, τ, V ),

∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t
<∞

}
and ∥∥∥√Lu∥∥∥

L2(0,τ,L2(Ω)
≈ ‖∇xu‖L2(0,τ,L2(Ω) + ‖u‖

H
1
2 (0,τ,L2(Ω))

+

(∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t

)1/2

for all u ∈ D
(√
L
)
.

Our main idea for the proof of this result is to use the maximal regularity for the
non-autonomous evolution equation{

∂u(t)
∂t

+ L(t)u(t) = f(t), t ∈ (0, τ ]
u(0) = u0.

(P)

This maximal regularity was proved in an abstract setting by B. Haak and E.M. Ouhabaz
[14] under the assumption that the form a is piecewise Cα for some α > 1

2
. It is also

proved there that the maximal Lp-regularity holds if there exists a non-decreasing function
ω : [0, τ ]→ [0,∞) such that for u, v ∈ V

|a(t, u, v)− a(s, u, v)| ≤ ω(|t−s|) ‖u‖V ‖v‖V

with ∫ τ

0

ω(t)

t
3
2

dt <∞. (1.4)

See also M. Achache and E.M. Ouhabaz [1] and the references there for an account on
recent development on this topic.
The idea of using the maximal regularity in the proof of Theorem 1.2 lies in the fact that
we have a precise description of the domain of the maximal accretive operator L. Then
with the help of imaginary powers (or a holomorphic functional calculus) of L we can
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appeal to results on interpolation spaces which in turn give the description of D
(√
L
)
.

Note that the proof of Theorem 1.1 in [5] is very different and it is based on the first order
approach initiated by A. McIntosh and his collaborators (see e.g., A. Axelsson, S. Keith
and A. McIntosh [6]). One may whether the (piecewise) regularity required in Theorem
1.2 can be removed by adapting the proof in [5] to parabolic operators on domains. This
is not known and remains to be done.

Our approach is flexible and applies without any additional effort to other situations
such as operators with lower order terms, degenerate operators, systems and operators on
weighted spaces. For clarity of exposition we do not search for generality and we keep
the setting described above. Instead, we consider another problem which was not studied
before in the literature. We study the problem of the square root of L on Lp(0, τ, L2(Ω))
for p 6= 2. For this we shall need the following slightly stronger condition than (1.4)∫ τ

0

ω(t)

t1+β
dt <∞ (1.5)

for some β > 1
2
. Clearly, (1.5) is satisfied if the coefficients akl are Cα in t for some α > 1

2
.

We prove the following result.

Theorem 1.3. Suppose (1.1), (1.2) and (1.5) and let p ∈ (1,∞) with p 6= 2. There exists a
realization of the parabolic operator L := ∂+L that is maximal accretive on Lp(0, τ, L2(Ω))
and satisfies the Kato square root property

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
+ ‖∇xu‖Lp(0,τ,L2(Ω)).

If p ∈ (1, 2), the domain of
√
L coincides with W

1
2
,p(0, τ, L2(Ω))∩Lp(0, τ, V ). If p ∈ (2,∞)

this domain coincides with {u ∈ W 1
2
,p(0, τ, L2(Ω)) ∩ Lp(0, τ, V ), u(0) = 0}.

The ideas in the proof are similar to the case of p = 2 in the sense that we use the
maximal regularity of (P) and estimates for imaginary powers ∂is, Lis and (ν + L)is for
some constant ν ≥ 0. While for p = 2, the boundedness of Lis follows from the accretivity
of the operator L on the Hilbert space L2(0, τ, L2(Ω)), the situation for p 6= 2 requires some
additional work. In order to prove the boundedness of (ν + L)is we use a perturbation
result for the holomorphic functional calculus due to J. Prüss and G. Simonett [24]. The
regularity condition (1.5) will be used both to ensure the maximal Lp-regularity and to
prove a commutator estimate in order to apply the perturbation theorem in [24]. As a
result, we prove that the maximal accretive operator ν + L has a bounded holomorphic
functional calculus on Lp(0, τ, L2(Ω)) for all p ∈ (1,∞). This latter result uses only the
maximal regularity through the condition (1.5) and not the square root property (1.2).
Theorem 1.3 shows that the Kato square root property for the parabolic operator L holds
beyond the Hilbert space setting L2(0, τ, L2(Ω)). A natural question arises whether one
might prove a similar result on Lp(0, τ, Lr(Ω)) for some (or all) r 6= 2. We prove such a
result for time independent coefficients. The general case is more complicate and remains
open unless the coefficients are smooth with respect to the space variable. See the last
section of the paper.
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Throughout the paper we use ‖.‖E to denote the norm of a given Banach space E. All
inessential constants are often denoted by C,C ′..., the notation A ≈ B means that there
exists a constant C > 0 such that 1

C
A ≤ B ≤ CA.

Acknowledgements. The author would like to thank Moritz Egert and Sylvie Monniaux
for stimulating discussions.
This research is partly supported by the ANR project RAGE, ANR-18-CE-0012-01.

2 Proof of Theorem 1.2
We start by recalling the following maximal regularity result from [14] (Theorem 2 and
Corollary 4). It is proved there in an abstract setting of time dependent forms having
the same domain. We state it here for the case of elliptic operators as defined in the
introduction, so we assume throughout this section that the ellipticity condition (1.1) is
satisfied.

Theorem 2.1. 1) Suppose that a is piecewise Cα for some α > 1
2
and that (1.2) holds.

Then the Cauchy problem (P) has maximal L2–regularity in L2(Ω) for any given u0 ∈ V .
In addition, there exists a positive constant C such that

‖u‖2 + ‖∂u
∂t
‖2 + ‖L(·)u(·)‖2 ≤ C [‖f‖2 + ‖u0‖V ] . (2.1)

2) Suppose (1.4). Then (P) with u0 = 0 has maximal Lp–regularity in L2(Ω) for all
p ∈ (1,∞). If in addition ω satisfies the p–Dini condition∫ τ

0

(
ω(t)

t

)p
dt <∞, (2.2)

then (P) has maximal Lp–regularity for all u0 ∈ (L2(Ω), D(L(0)))1− 1
p
,p.

There exists a positive constant C such that

‖u‖p + ‖∂u
∂t
‖p + ‖L(·)u(·)‖p ≤ C

[
‖f‖p + ‖u0‖(L2(Ω),D(L(0)))

1− 1
p ,p

]
. (2.3)

Recall that (P) has maximal Lp–regularity in L2(Ω) if for every f ∈ Lp(0, τ, L2(Ω))
there exists a unique u ∈ W 1,p(0, τ, L2(Ω)), u(t) ∈ D(L(t)) for a.e. t ∈ (0, τ) and u satisfies
(P) for a.e. t ∈ (0, τ). We recall that (L2(Ω), D(L(0)))1− 1

p
,p is the real interpolation space

and the Lp-norm in the apriori estimates (2.1) and (2.3) is the norm of Lp(0, τ, L2(Ω)).
Let us also mention that the maximal L2–regularity holds under the slightly weaker

regularity property that the map t 7→ L(t) is piecewise in H
1
2 (0, τ,B(V, V ′)), where V ′ is

the dual space of V . This is proved in [1] in an abstract setting. Whether the maximal
regularity holds for elliptic operators with measurable coefficients in the t-variable (and
in the x-variable as we do here) is an important open problem. An example of a family
of forms b(t, ·, ·) such that t 7→ b(t, u, v) is C

1
2 in (0, τ) but the corresponding family of

operators does not have the maximal regularity is given in [16]. Note however that these
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are not differential operators.
We shall apply the previous theorem in the case where u(0) = 0. In this case, we have
maximal Lp–regularity for every p ∈ (1,∞) provided a satisfies (1.4). If a is discontinuous,
we assume that it is piecewise Cα for some α > 1

2
and in addition (1.2) holds. For general

forms, the condition D
(√

L(t)
)

= V cannot be removed if a has (at least) one jump, see
[11].

Set H = L2(0, τ, L2(Ω)) and define ∂ = ∂
∂t

with domain

D(∂) = 0H
1 := {u ∈ H1(0, τ, L2(Ω)), u(0) = 0}.

Define also the operator L by (Lu)(t) = L(t)u(t) with domain

D(L) =
{
u ∈ L2(0, τ, L2(Ω)), u(t) ∈ D(L(t)) a.e. t and L(·)u(·) ∈ H

}
.

Lemma 2.2. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

Define the parabolic operator

L = ∂ + L with domain D(L) = 0H
1 ∩D(L).

Then L is invertible, maximal accretive and has dense domain. The operators ∂L−1 and
LL−1 are bounded on H.

Proof. Integration by parts shows that ∂ is accretive. Then L is accretive as the sum of two
accretive operators. It is invertible on H by Theorem 2.1. The fact that ∂L−1 and LL−1

are bounded operators on H is a consequence of the a priori estimate (2.1). A standard
duality argument shows that L is densely defined.

Next, for a given f ∈ H, then u(t) :=
∫ t

0
f(s) ds satisfies u ∈ D(∂) and ∂u = f .

Therefore ∂ is invertible and it is maximal accretive. In particular, this allows us to define
its square root

√
∂ as a maximal accretive operator. Similarly, L is maximal accretive since

one checks that ((I + L)−1u)(t) = (I + L(t))−1u(t). Therefore,
√
L is also well defined.

Lemma 2.3. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

We have
‖
√
∂ u‖H + ‖

√
Lu‖H ≤ C‖

√
Lu‖H (2.4)

for all u ∈ D(
√
L). In particular, D

(√
L
)
⊂ D

(√
∂
)
∩D

(√
L
)
.

Proof. Since ∂ and L are maximal accretive it is well known (see e.g. [17]) that they have
bounded imaginary powers

‖∂is‖B(H) ≤ e
π
2
|s| and ‖Lis‖B(H) ≤ e

π
2
|s|, s ∈ R. (2.5)

For the same reason, L also satisfies

‖Lis‖B(H) ≤ e
π
2
|s|, s ∈ R. (2.6)

Define T (z) := ∂zL−z. Then for z = is with s ∈ R, it follows from (2.5) and (2.6) that
T (is) is bounded on H with norm bounded by eπ|s|. Using Lemma 2.2, (2.5) and (2.6) we
see that that T (1 + is) is also bounded on H with norm bounded by C eπ|s|. This implies
that ∂1/2L−1/2 is a bounded operator on H. Applying the same reasoning with L in place
of ∂ shows that L1/2L−1/2 is also bounded on H. This proves the lemma.
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Lemma 2.4. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

Then there exists a constant c > 0 such that

c‖
√
Lu‖H ≤ ‖

√
∂ u‖H + ‖

√
Lu‖H (2.7)

for all u ∈ D(
√
L) ∩D(

√
∂). In particular, D

(√
∂
)
∩D

(√
L
)
⊂ D

(√
L
)
.

Proof. The proof uses a classical duality argument.
Firstly, one checks easily that the adjoint of ∂ is given by

∂∗v(t) = −∂v(t)

∂t
, D(∂∗) = {v ∈ H1(0, τ, L2(Ω)), v(τ) = 0}.

The adjoint operator L∗ is defined similarly to L with L(t) replaced by L(t)∗, i.e., A(x, t) is
replaced by its adjoint A∗(x, t). On the other hand it is clear that the maximal regularity
given by Theorem 2.1 holds for the retrograde problem{

−∂v(t)
∂t

+ L(t)∗ v(t) = f(t), t ∈ (0, τ ]
v(τ) = 0.

Using this we see as above that the operator ∂∗ + L∗, defined on the intersection of the
domains, is invertible and it is maximal accretive. It turns out that this operator is the
adjoint of L. Using the same proof as before, Lemma 2.3 applied to L∗ gives

‖
√
∂∗ v‖H + ‖

√
L∗ v‖H ≤ C‖

√
L∗ v‖H (2.8)

for all v ∈ D(
√
L∗).

Let u ∈ D(L) and v ∈ D(
√
L∗). Then∣∣∣(√Lu,√L∗ v)H

∣∣∣ = |(Lu, v)H|

=
∣∣∣(√∂ u,√∂∗ v)H + (

√
Lu,
√
L∗ v)H

∣∣∣
≤

(
‖
√
∂ u‖H + ‖

√
Lu‖H

)(
‖
√
∂∗ v‖H + ‖

√
L∗ v‖H

)
≤ C

(
‖
√
∂ u‖H + ‖

√
Lu‖H

)∥∥∥√L∗ v∥∥∥
H
.

Note that we have used (2.8) in the last inequality. Since
√
L∗ is invertible its range is H.

Now we take the supremum over
∥∥∥√L∗ v∥∥∥

H
≤ 1 and we obtain (2.7) for u ∈ D(L). Since

D(L) is a core for
√
L the inequality holds for all u ∈ D(

√
L).

Proof of Theorem 1.2. Under the sole assumption (1.4) or if a is piecewise Cα for some
α > 1

2
and (1.2) holds we obtain from the previous lemmas that

‖
√
Lu‖H ≈ ‖

√
∂ u‖H + ‖

√
Lu‖H (2.9)

for all u ∈ D(
√
L) = D(

√
L) ∩ D(

√
∂). On the other hand since the operator ∂ has

bounded imaginary powers it follows that D(
√
∂) coincides with the complex interpolation

space [0H
1,H] 1

2
. By [19], p. 68, this interpolation space coincides with

{u ∈ H
1
2 (0, τ, L2(Ω)),

∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t
<∞}.
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In addition, ‖
√
∂ u‖H is equivalent to ‖u‖

H
1
2 (0,τ,L2(Ω))

+
(∫ τ

0
‖u(t)‖2

L2(Ω)
dt
t

)1/2

.1 As men-

tioned in the introduction, (1.2) implies that the quantities ‖
√
L(t)u(t)‖L2(Ω) +‖u(t)‖L2(Ω)

and ‖∇xu(t)‖L2(Ω) + ‖u(t)‖L2(Ω) are equivalent with constants independent of t ∈ (0, τ).
Therefore, ‖

√
Lu‖H + ‖u‖H and ‖∇xu‖H + ‖u‖H are equivalent. We use this in (2.9) to

obtain
‖
√
Lu‖H + ‖u‖H ≈ ‖

√
∂ u‖H + ‖∇xu‖H + ‖u‖H.

From this and the fact that the operators ∂ and
√
L are invertible (cf. Lemma 2.2) we

obtain the theorem.

Remark 2.5. 1-The proofs of Lemmas 2.3 and 2.4 do not use any specific property of the
differential operators L(t). These lemmas are valid in an abstract setting of operators L(t)
which are associated with a family of sesquilinear forms

a : (0, τ)× V × V → C

which are quasi-coercive and bounded with uniform constants in t. Here V is a Hilbert space
that is densely and continuously embedded into another given Hilbert space H. We define
∂, L and L as before. Under the sole assumption (1.4) we obtain D(

√
L) = D(

√
L)∩D(

√
∂)

and
‖
√
Lu‖L2(0,τ,H) ≈ ‖

√
∂ u‖L2(0,τ,H) + ‖

√
Lu‖L2(0,τ,H).

If a is piecewise Cα for some α > 1
2
, we assume in addition that (1.2) holds and we obtain

the same conclusion.
2- The ideas used in this section can also be used to describe the domain of any fractional
power D (Lα) for α ∈ (0, 1).

3 Lp(L2)-estimates
During the proofs of the previous section we used the maximal L2-regularity given by
Theorem 2.1. We take advantage that this latter theorem gives also maximal Lp-regularity
for every p ∈ (1,∞). We use this in the proof of Lp(L2)-estimate of Theorem 1.3.
Throughout this section we take the assumptions of Theorem 1.3, that is, we assume (1.1),
(1.2) and (1.5).

Fix p ∈ (1,∞) with p 6= 2. Define on Lp(0, τ, L2(Ω)) the operator ∂ = ∂
∂t

with domain

D(∂) = 0W
1,p := {u ∈ W 1,p(0, τ, L2(Ω), u(0) = 0}.

It is well known that ∂ has bounded imaginary powers on Lp(0, τ, L2(Ω)) (see e.g. [12]). It
is not difficult to prove that ∂ is accretive and invertible. Hence, ∂ is maximal accretive.
As in the previous section, we define L by (Lu)(t) := L(t)u(t) with domain

D(L) =
{
u ∈ Lp(0, τ, L2(Ω)), u(t) ∈ D(L(t)) a.e. t and L(·)u(·) ∈ Lp(0, τ, L2(Ω))

}
.

1Remember that ∂ is invertible, hence the graph norm of
√
∂ equivalent to ‖

√
∂ u‖H.
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Then L is maximal accretive. Since for fixed t ∈ (0, τ),

‖L(t)is‖B(L2(Ω)) ≤ e
π
2
|s|

and (Lisu)(t) = L(t)isu(t),2 it follows that the operator L has bounded imaginary powers
on Lp(0, τ, L2(Ω)). We define L = ∂+L on the intersection of the domains. It follows from
Theorem 2.1 that the operator L is invertible. In particular, it is maximal accretive. In
contrast to the Hilbert space setting of Theorem 1.2, the boundedness of imaginary powers
of L is not a consequence of maximal accretivity. So we have to use a different argument.

Proposition 3.1. There exists a ν ≥ 0 such that the operator L + ν has a bounded holo-
morphic functional calculus on Lp(0, τ, L2(Ω)). In particular, L+ν has bounded imaginary
powers.

The proof is based on the following perturbation theorem (see Corollary 3.2 in [24]).

Theorem 3.2. Let A and B be two operators having holomorphic functional calculi with
angles φA and φB on a Banach space X. Suppose that 0 ∈ ρ(A), B is R-sectorial and
φA + φB < π. Suppose in addition that for some 0 ≤ α < β < 1 the Labbas-Terreni
commutator estimate∥∥A(λ+ A)−1

[
A−1(µ+B)−1 − (µ+B)−1A−1

]∥∥
B(X)
≤ C|λ|α−1|µ|−β−1 (3.1)

holds for all λ and µ with | arg(λ)| < π − φA and | arg(µ)| < π − φB. Then there exists a
ν ≥ 0 such that ν + A+B has a bounded holomorphic functional calculus on X.

Proof of Proposition 3.1. The operator L + ε is the sum of (non-commuting) operators
B = ∂ and A = L + ε. Each of these operators has a bounded holomorphic functional
calculus on Lp(0, τ, L2(Ω)) with angles φ∂ = π

2
+ ε and φL < π

2
, respectively. Next, the

functional calculus is R−bounded (for holomorphic functions with modulus ≤ 1). This
follows from [15], Theorem 10.3.4 (3) in combination with Proposition 7.5.3 (which shows
that Lp(0, τ, L2(Ω) has Pisier’s contraction principle since this is the case for the Hilbert
space L2(Ω)). The role of ε > 0 above is only to guarantee that L + ε is invertible. For
simplicity we forget ε and keep in mind that L has to be replaced by L + ε in the sequel.
We claim that (3.1) is satisfied with α = 1

2
and β as in (1.5). Once this is proved we can

apply Theorem 3.2 to obtain the proposition.
Let f ∈ Lp(0, τ, L2(Ω)) and set

I(t) :=
∥∥L(t)(λ+ L(t))−1

[
L(t)−1(µ+ ∂)−1 − (µ+ ∂)−1L(t)−1f(t)

]∥∥
L2(Ω)

.

Since

(µ+ ∂)−1f(t) =

∫ t

0

e−µ(t−s)f(s) ds (3.2)

2one starts from the resolvent formula ((λI + L)−1u)(t) = (λI + L(t))−1u(t) and then by integration
along an appropriate contour to define the holomorphic functional calculus one obtains such a formula.
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and Re(µ) ≈ |µ|, we have

I(t) =

∥∥∥∥∫ t

0

e−µ(t−s)L(t)(λ+ L(t))−1
[
L(t)−1 − L(s)−1

]
f(s) ds

∥∥∥∥
L2(Ω)

≤
∫ t

0

e−c|µ|(t−s)
∥∥L(t)(λ+ L(t))−1

[
L(t)−1 − L(s)−1

]
f(s)

∥∥
L2(Ω)

ds

for some constant c > 0. Now we argue exactly as in [22], p. 1675 to obtain∥∥L(t)(λ+ L(t))−1
[
L(t)−1 − L(s)−1

]
f(s)

∥∥
L2(Ω)

≤ C

|λ|1/2
ω(|t− s|)‖f(s)‖L2(Ω).

This gives

I(t) ≤ C

|λ|1/2

∫ t

0

e−c|µ|(t−s)ω(|t− s|)‖f(s)‖L2(Ω) ds. (3.3)

The term
∫ t

0
e−c|µ|(t−s)ω(|t−s|)‖f(s)‖L2(Ω) ds can be seen as an operator (acting on ‖f(s)‖L2(Ω))

with kernel
K(t, s) = χ(0,t)(s)e

−c|µ|(t−s)ω(t− s).

Using the assumption (1.5) we have for all t ∈ (0, τ)∫ τ

0

K(t, s) ds =
1

|µ|β+1

∫ t

0

e−c|µ|(t−s)(|µ|(t− s))β+1 ω(t− s)
(t− s)β+1

ds

≤ C

|µ|β+1

∫ τ

0

ω(r)

r1+β
dr ≤ C ′

|µ|β+1
.

Similarly, ∫ τ

0

K(t, s) dt ≤ C ′

|µ|β+1
,

uniformly in s ∈ (0, τ). This implies that the operator with kernel K(t, s) is bounded
on Lp(0, τ) with norm bounded by C′

|µ|β+1 . It follows from (3.3) that the operator L(λ +

L)−1 [L−1(µ+ ∂)−1 − (µ+ ∂)−1L−1] is bounded on Lp(0, τ, L2(Ω)) with norm bounded by
C

|λ|1/2|µ|1+β . This is exactly the condition (3.1).

We go back to the proof of Theorem 1.3. Since ∂ has imaginary powers, we have
D(
√
∂) = [0W

1,p, Lp(0, τ, L2(Ω))] 1
2
with equivalent norms. It follows from [2], Theorem

4.7.1 or [10], p. 41 that [0W
1,p, Lp(0, τ, L2(Ω))] 1

2
coincides with W

1
2
,p(0, τ, L2(Ω)) if p < 2

and with 0W
1
2
,p(0, τ, L2(Ω)) if p > 2.3 Hence

‖
√
∂ u‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
. (3.4)

3This is stated in [2] and [10] on the interval (0,∞) instead of (0, τ). One either uses a similar retraction
and coretraction argument used their to deal directly (0, τ) or use a cut-off argument around the point τ .
See also [7] for interpolation results in the scalar case.
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By Proposition 3.1, (L+ ν)is is bounded on Lp(0, τ, L2(Ω)), thus we can repeat the proof
of Lemma 2.3 and obtain

‖
√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) ≤ C‖

√
L+ ν u‖Lp(0,τ,L2(Ω)).

On the other hand since the operator L is invertible by Theorem 2.1, we can remove the
constant ν in the previous inequality and obtain

‖
√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) ≤ C ′‖

√
Lu‖Lp(0,τ,L2(Ω)).

Using the same estimate for the adjoint operator on Lp′(0, τ, L2(Ω)) we argue by duality
as in Lemma 2.4 and obtain the the reverse inequality. Therefore,

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖

√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) (3.5)

for all u ∈ D(
√
L) = D(

√
∂) ∩D(

√
L). Using (3.4) it follows that

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
+ ‖
√
Lu‖Lp(0,τ,L2(Ω)) (3.6)

for all u ∈ D(
√
L) = [0W

1,p(0, τ, L2(Ω), Lp(0, τ, L2(Ω))] 1
2
∩D(

√
L).

Thus we have proved Theorem 1.3.

As we already mentioned before, the method we employed in this paper can be used
in other circumstances. For example, the above Lp(L2)-estimate can be proved for elliptic
operators with lower order terms, some degenerate operators as well as parabolic systems.
We dot not write the details since they are essentially a simple repetition of what is
presented above.

4 Lp(Lr)-estimates
In this section we address the question whether the previous results can be extended to
Lp(0, τ, Lr(Ω)) for r 6= 2. When reproducing the arguments of the previous sections we
face two problems. The first is to have maximal Lp-regularity in Lr(Ω) since Theorem 2.1
is specific to the L2(Ω) case. The second one is to have boundedness of imaginary powers
of L (or ν+L for some constant ν ≥ 0). The arguments in the proof of Proposition 3.1 use
the sesqulinear form setting in order to check (3.1). Note that there are results on maximal
regularity outside the Hilbert space (and hence the sesquilinear form) setting. However
these results assume the domains of L(t) to be constant. See [3] and the references there.
In order to guarantee that the operators L(t) have the same domain on Lr(Ω) the natural
thing to do is to compute this domain and show that it coincides with some Sobolev space.
In order to do so one needs some regularity in the x-variable for A(x, t) and more regularity
for Ω. In order to stay with non-smooth coefficients in the x-variable we shall concentrate
on the case A(x, t) = A(x). We also assume that our elliptic operator is subject to the
Dirichlet boundary conditions. With the same notation as before, we have
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Theorem 4.1. Suppose (1.1), (1.2) and (1.5). Suppose that A(x, t) = A(x) has real-valued
coefficients. Let p ∈ (1,∞) and denote by p′ its conjugate. Then for r ∈ [min(p, p′),max(p, p′)],

‖
√
∂ u‖Lp(0,τ,Lr(Ω)) + ‖

√
Lu‖Lp(0,τ,Lr(Ω)) ≈ ‖

√
Lu‖Lp(0,τ,Lr(Ω)) (4.1)

for all u ∈ D(
√
L). In addition, for r ∈ [min(p, p′), 2], there exists a constant C such

‖
√
∂ u‖Lp(0,τ,Lr(Ω)) + ‖∇u‖Lp(0,τ,Lr(Ω)) ≤ C‖

√
Lu‖Lp(0,τ,Lr(Ω)). (4.2)

Proof. First since L has real-coefficients and subject to the Dirichlet boundary conditions,
the semigroup e−tL is sub-Markovian (cf. [21], Chapter 4). Therefore, by [18], L has
maximal Lp-regularity on Lr(Ω) for all p, r ∈ (1,∞). In particular, the operator L = ∂+L
defined on the intersection of the domains 0W

1,2(0, τ, Lr(Ω)) andD(L) is maximal accretive
(note that both ∂ and L are accretive on Lp(0, τ, Lr(Ω))). On the other hand, the two
maximal accretive operators ∂ and L are generators of positive semigroups. For positivity
of e−tL see [21], Chapter 4 and for e−t∂ this follows readily from the positivity of its resolvent
(see (3.2)). This and the Trotter product formula give the positivity of the contraction
semigroup e−tL on Lp(0, τ, Lr(Ω)). Since for r = p, Lp(0, τ, Lp(Ω)) ' Lp(Ω×(0, τ)) we may
use the transference method [9] to obtain that L has a bounded holomorphic functional
calculus on Lp(0, τ, Lp(Ω)) (with angle φ > π

2
). This is also true for ν + L for any ν ≥

0. Using this and Proposition 3.1 it follows by interpolation that ν + L has a bounded
holomorphic functional calculus on Lp(0, τ, Lr(Ω)) for r ∈ [p, 2] or [2, p]. What we did
here for L is also valid for L∗ = ∂∗ + L∗ by the same arguments. This gives that ν + L
has a bounded holomorphic functional calculus on Lp(0, τ, Lr(Ω)) for all p ∈ (1,∞) and
r ∈ [min(p, p′),max(p, p′)]. In particular, the imaginary powers (ν + L)is are bounded on
these spaces. The rest of the proof of (4.1) is exactly the same as for Theorem 1.3.

Suppose now that r ∈ [min(p, p′), 2]. Then the Riesz transform ∇L− 1
2 is bounded on

Lr(Ω) (see [21], Section 7.7). This gives ‖∇f‖Lr(Ω) ≤ C‖
√
Lf‖Lr(Ω). Thus, (4.2) follows

from (4.1).

Remark 4.2. The idea of using the transference method on Lp(0, τ, Lp(Ω)) was already
used in [23] in the context of parabolic Schrödinger operators.
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