
HAL Id: hal-02871157
https://hal.science/hal-02871157

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study and enhancement of DCCP over DiffServ Assured
Forwarding class

Emmanuel Lochin, Guillaume Jourjon, Laurent Dairaine

To cite this version:
Emmanuel Lochin, Guillaume Jourjon, Laurent Dairaine. Study and enhancement of DCCP over
DiffServ Assured Forwarding class. Fourth European Conference on Universal Multiservice Networks
(ECUMN’07), Feb 2007, Toulouse, France. pp.250-262, �10.1109/ECUMN.2007.51�. �hal-02871157�

https://hal.science/hal-02871157
https://hal.archives-ouvertes.fr

Study and enhancement of DCCP over DiffServ Assured Forwarding class

Emmanuel Lochin
National ICT Australia Ltd,

Locked Bag 9013,
Alexandria, NSW 1435

Australia

Guillaume Jourjon
National ICT Australia Ltd,

University of
New South Wales, Sydney

Australia

Laurent Dairaine
ENSICA - LAAS/CNRS,

1, place Emile Blouin
31056 Toulouse Cedex 5

France

{emmanuel.lochin, guillaume.jourjon}@nicta.com.au, laurent.dairaine@ensica.fr

Abstract

The Datagram Congestion Control Protocol (DCCP)
has been proposed as a transport protocol which sup-
ports real-time traffic. In this paper, we focus on the use
of DCCP/CCID3 (Congestion Control ID 3) over a Diff-
Serv/AF class. This class of service is used to build services
that provide only a minimum throughput guarantee with-
out any delay or jitter restrictions. This minimum through-
put guarantee is called the target rate. In this context, the
throughput obtained by DCCP/CCID3 mainly depends on
RTT and loss probability. As a result, the application does
not always get the negotiated target rate. To cope with this
problem, we propose to evaluate a simple adaptation of the
CCID3 congestion control mechanism, allowing the appli-
cation to reach its target rate whatever the RTT value of
the application’s flow is. As this adaptation can be seen
as an extension to the DCCP with CCID3 congestion con-
trol, we call it gDCCP for guaranteed DCCP. Results from
simulations are presented to illustrate the improvements of
the proposed modification in various situations. Finally, we
investigate the deployment of this proposal in terms of se-
curity.

1 Introduction

This paper studies the behaviour of DCCP protocol [12]
in a DiffServ/AF quality of service class. In particular,
we focus on the DCCP/CCID3 congestion control protocol
based on the TFRC mechanism. The aim is to explore the
feasibility of using DCCP protocol over a DiffServ network
and look at the service received from the DCCP user point
of view.

Still nowadays, the classical protocol used by real-time
applications is UDP. These time-constrained applications

(such as audio and video streaming, voice over IP (VoIP),
video on demand (VoD)) use UDP by default because TCP
is not adapted to their time constraints. The main prob-
lem with UDP remains the lack of congestion control com-
pelling the applications to implement congestion control
mechanisms. Nevertheless, many applications don’t inte-
grate any of these mandatory controls, leading to a bad pop-
ularity of the UDP protocol.

In Internet, UDP traffic is often filtered for security rea-
son. In the context of DiffServ network, it raises difficul-
ties when mixed with TCP. Indeed, when responsive TCP
flows and non-responsive UDP flows share the same class of
service, there is an unfair bandwidth distribution and TCP
flows throughput are affected [25]. Theoretically, the fair al-
location of excess bandwidth can be achieved by giving dif-
ferent treatments to out-profile traffic of both kinds of flows.
The general approach is to define two specific queues in the
core network in order to separate the non-responsive (UDP)
from the responsive (TCP) traffics [18].

In this context, the use of DCCP is particularly interest-
ing since it offers a way to avoid this traffic segregation,
allowing to mix both kinds of traffics. Moreover, since
the DCCP/CCID3 protocol is based on the TCP equation
defined in [5], we can expect to use the same DiffServ
conditioners designed for TCP traffic as those defined in
[2, 4, 8, 13]. Nevertheless, as TCP does, measurements
presented in this paper show that DCCP/CCID3 congestion
control doesn’t reach the target rate previously negotiated
by the application. To cope with this problem, we evaluate
in this paper a lightweight add-on to DCCP/CCID3 conges-
tion control in order to improve its behaviour in the context
of DiffServ/AF. As a results, extensive measurements show
its ability to provide the user a bandwidth in agreement with
the network QoS guarantee.

This paper is organized as follows. Section 2 presents
related work about DCCP. Section 3 points out the per-

formance problem associated with the use of DCCP into
the DiffServ/AF class and introduces the gDCCP proposal.
Section 4 presents the simulation testbed and comments re-
sults about the studied scenarios. We discuss about security
problem involved with this proposal in section 5. Finally,
section 6 concludes the paper.

2 Related Work

2.1 DCCP and congestion control

Nowadays, many real-time applications appear on the In-
ternet and give birth to new types of unreliable real-time
traffics. TCP is not appropriate to the quality of service re-
quirements of these applications. Then, due to its simplicity
and the lack of efficient alternative, UDP is currently largely
used for the transmission of real-time traffic. UDP does not
implement any traffic control and its use ideally requires
the application to implement such mechanisms. Multime-
dia developers prefer the use of UDP without congestion
control due to the complexity of implementing such mech-
anisms. This lack of congestion control mechanism leads
to an unfairness problem in case of mixing UDP with TCP
traffic.

The Real-time Transport Protocol (RTP) and its com-
panion protocol RTCP [24] have been proposed as a sup-
port for time constrained multimedia applications. RTP is
implemented as a library directly integrated into the appli-
cation. Currently, RTP is employed by a large number of
distributed multimedia applications over Internet (such as
VideoLan1). This protocol integrates information such as
timestamps and sequence numbers. These fields are used
to implement the appropriate mechanisms to detect and re-
cover losses, reorder data, discard obsolete data and syn-
chronize data flows. Nevertheless, RTP and RTCP do not
directly implement congestion control mechanism and user
still needs to implement or to use ad-hoc mechanism.

The Rate Adaptation Protocol (RAP) [23] is an end-
to-end TCP-friendly protocol using the Additive Increase
and Multiplicative Decrease (AIMD) algorithm [28] to en-
able fair sharing of the bandwidth with TCP traffic. Im-
plemented at user-level, these proposals raise some secu-
rity problems as users can easily modify them and eventu-
ally, involve great disorder in the network bandwidth dis-
tribution. In order to provide a congestion control func-
tion that cannot be modified by users, DCCP has been pro-
posed. DCCP is a transport protocol for real-time commu-
nications that supports a congestion control mechanism at
kernel level.

DCCP has two main objectives: first, its implementa-

1http://www.videolan.org/

tion is to remain as simple as possible 2. So unlike TCP, it
does not support reliable data delivery. The second objec-
tive is to provide a TCP-friendly congestion control mech-
anism because TCP traffic is still pervasive in the current
Internet. DCCP includes multiple congestion control algo-
rithms which can be selected in regards to the user needs.
An algorithm is identified through its Congestion Control
ID (CCID). Two CCIDs are now being standardized by the
Internet Engineering Task Force (IETF). CCID2 [6] is a
window based congestion control algorithm like TCP, and
CCID3 [7] is a TCP-Friendly Rate Control (TFRC) algo-
rithm. CCID2 is appropriate and particularly useful for
senders who would like to take advantage of the available
bandwidth in an environment with rapidly changing con-
ditions as bursty real-time traffic such as traffic from com-
pressed encoded video and network games. TFRC3 is a con-
gestion control mechanism for unicast flows operating in a
best-effort Internet environment [9]. CCID3 is suitable for
traffic with smooth changes in sending rates, such as tele-
phony or video streaming. This CCID3 is based on the TCP
throughput equation (1) and is designed to be reasonably
fair when competing with TCP flow.

X =
s

(RTT ·
√

p·2
3 + RTO ·

√
p·27
8 · p · (1 + 32 · p2))

(1)
Where X the sending rate depends on the packet lost rate

p, the mean packet size s and the Round Trip Time RTT .
RTO refers to the TCP retransmission timeout value. One
of the main TFRC properties is to generate a flow with a
much lower variation of throughput over time than TCP.
This is the reason why it is particularly suitable for mul-
timedia applications such as video streaming or telephony
over the Internet.

In contrast of best effort networks, QoS networks such as
DiffServ networks offers services guarantees. In the partic-
ular case of the DiffServ/AF class, a minimal bandwidth is
provided (in-profile traffic part) with the possibility to reach
higher bandwidth (out-profile traffic part) depending on the
level of congestion of the network. Multimedia applications
are natural candidates for the use of this service class. Un-
fortunately, as it is the case for classical TCP flows, the use
of DCCP/CCID3 over such a network service produces un-
expected results in terms of user expectations.

2.2 DCCP over DiffServ/AF

To our best knowledge, there are no study of DCCP be-
haviour over a DiffServ network. Nevertheless, in [11], the

2http://www3.ietf.org/proceedings/05aug/dccp.
html

3identified as Congestion Control ID 3 in DCCP protocol

authors investigate AF-TFRC performances and give a ser-
vice provisioning mechanism allowing an ISP4 to build a
feasible DiffServ system. As CCID3 should react in similar
manner to the TCP AIMD congestion control principle, a
good starting point is to look at the results obtained for TCP
in the DiffServ/AF class.

The problem of TCP throughput guarantee using Diff-
Serv/AF class is already well-known and not new. There
have been a number of studies that focused on assured ser-
vice for TCP flows. In [25], five factors have been studied
(RTT, number of flows, target rate, packet size, non respon-
sive flows) and their impact has been evaluated to provide a
predictable service.

As the TCP protocol uses the Additive Increase Multi-
ple Decrease (AIMD) congestion control algorithm which
aims to share fairly the available bandwidth, the only mean
to obtain a service differentiation with TCP is to use Diff-
Serv traffic conditioners such as the token bucket color
marker (TBCM) [10] or time sliding window color marker
(TSWCM) [3].

The behaviour of those traffic conditioners has a great
impact on the service obtained by TCP flows in terms of
bandwidth provided to the application. Several others con-
ditioners have been proposed to improve the efficiency of
the token bucket-like conditioners [2][19]. In the context of
multimedia flows, even if CCID3 congestion control mech-
anism efficiently replaces the AIMD congestion control al-
gorithm for multimedia applications, its behaviour remains
similar to TCP over the DiffServ/AF service class.

In the present study, the CCID3 congestion control
mechanism becomes aware of the target rate negotiated by
the application with the DiffServ network. Thanks to this
knowledge, the application’s flow is sent in conformance
with the negotiated QoS while staying TCP-friendly in the
out-profile traffic part.

3 Problem statement

In the assured service class, the throughput of a flow
breaks up into two parts: a fixed part which corresponds
to a minimum assured throughput and an elastic part which
corresponds to an opportunist flow of packets. Packet be-
longing to the first part are marked in-profile and packets
belonging to the second part are marked out-profile. In
the case of network congestion, the in-profile packets are
considered inadequate for loss. At the contrary, out-profile
packets are conveyed on the principle of ”best-effort” (BE)
service and are dropped first if a congestion occurs.

In case of excess bandwidth in the network, the appli-
cation could send more than its target rate and the network
should mark the excess traffic out-profile. Then, if the net-
work becomes congested, out-profile packets losses occur

4Internet Service Provider

and the optimal rate estimated by TFRC could fall down un-
der the target rate requested by the application. TCP would
react in the same way by halving its congestion window.

As for TCP in the AF class [25], the TFRC mechanism
is not aware that the loss corresponds to out-profile packet
and that it should not decrease its actual sending rate less
below the target rate negotiated. For TCP, the solution was
to introduce a conditioner able to better mark the TCP flows
by taking into account the sporadic nature of the TCP traffic
[2, 15]. But the proposed conditioners are not all really ef-
ficient in certain network conditions such as long RTT and
are sometimes complex to use.

In order to solve this problem, we propose to make the
mechanism QoS-aware following the proposal presented
in [16]. This previous study had shown the benefit of us-
ing a TFRC QoS-aware congestion control in a DiffServ
Assured Forwarding (AF) class. We extend this study by
firstly enhancing the way to compute the sending rate; sec-
ondly by tackling concrete protocol problems such as secu-
rity and congestion management; finally, by evaluating the
proposal inside a DCCP implementation.

In contrast to TCP, as TFRC explicitly computes the ac-
tual sending rate with (1), it is possible to directly act on
this rate in order to avoid the under-usage of the network
service. Therefore, the present proposal consists in mak-
ing the sending rate estimator aware of the target rate. This
scheme avoids the indirect processing of traffic condition-
ers while enhancing efficiently the performances in terms
of application throughput and TCP-friendliness.

We suppose the application is aware of the target rate,
next to a QoS negotiation. This target rate is then known by
the transport layer at socket creation time. The target rate
parameter can be set e.g., by the setsockopt() function.
We will discuss in section 5 of security issue concerning this
setting functionality.

After a classical slowstart phase, the gDCCP modifica-
tion consists in computing the maximum between the TFRC
rate estimation Xcalc and the target rate g. The rest of
the CCID3 mechanism follows entirely the DCCP/CCID3
specification and the slowstart phase remains active and un-
changed.

In the context of a DiffServ/AF class, a network can be
either over or exactly or under-provisioned. A network over
or exactly-provisioned means that the amount of in-profile
traffic is below or equal to the resource allocated to the
AF class. On the contrary, an under-provisioned network
means that this amount is higher. This case could occur
if the Bandwidth Broker [20] of a DiffServ network sends
or receives false information. In a DiffServ context, if the
gDCCP source emits below its target rate and if the gDCCP
flow gets losses, it means that the in-profile traffic is no
guaranteed anymore in the network. In order to tackle this
problem, two approaches are possible:

• The first one is to pursue to emit at the guarantee g.
This behaviour is legitimate since the service provider
must provide to the client the service which is paid;

• The second one is to react to this congestion. This can
be done by adding a second ratio (λ) to gDCCP. This
ratio can be applied as following: if the rate returned
by the TFRC equation Xcalc computed by the sender is
λ times below the target rate g, the sender must follow
the standard TFRC algorithm. Indeed, when Xcalc <
g/λ, it means that a bunch of losses has occurred in the
in-profile part and that the congestion could be due to
a wrong setting.

In the TFRC algorithm, when the loss probability p is
not nil, the update of the sending rate is basically computed
as follow5:

X = min(Xcalc, 2 ∗ Xrecv) (2)

With Xcalc the computed rate and Xrecv the estimated
received rate. We can see that the sending rate is limited to
at most twice Xrecv. If we add the guarantee g and take into
account the specific case of misconfiguration, the gDCCP
mechanism is now computed with (3):

X =
{

min(Xcalc, 2 ∗ Xrecv) if Xcalc < g/λ
min(max(Xcalc, g), 2 ∗ Xrecv) otherwise

(3)
At least, in case of wrong setting, the sender should not

emit above 2 ∗ Xrecv.
We believe that the selfish user problem and the miscon-

figuration problem should not be solved inside gDCCP it-
self and should remain under the responsibility of the ser-
vice provider. As a consequence, we do not evaluate the
under-provisioned network case in this paper as it doesn’t
give further information on gDCCP performances. Never-
theless, we will discuss about this issue in section 5.

We show in the next section that thanks to this adapta-
tion, the application’s flow is sent in conformance to the ne-
gotiated QoS while staying TCP-friendly in its out-profile
part.

4 Evaluation and analysis

gDCCP is evaluated over a DiffServ network using sim-
ulation. It has been implemented in ns-2.29 simulator and
the Nortel DiffServ model [22]. We achieved simulation
on the testbed illustrated in the figure 1 with the two fol-
lowing scenarios: when the network is exactly-provisioned

5For the sake of simplicity, we do not represent the maximum with
s/tmbi which means that at least, if the rate computed is very low, one
packet is emitted every 64 seconds

F

C

1 Mbits/s

10 Mbits/s

Traffics

E

D

B

A

Core Router Core Router

Edge/Core Router

Edge/Core Router

Edge/Core RouterEdge/Core Router

Figure 1. The simulation topology for DiffServ
experiments

(i.e. there is no excess bandwidth for the out-profile traffic)
and when the network is over-provisioned (i.e. there is ex-
cess bandwidth). When only two flows are emitted over the
testbed, they cross the paths (A, D) and (B, E). In case of
cross-traffic scenario, a flow is emitted between (C, F).

All experiments are achieved using the following condi-
tions:

• packet size is fixed to 1500 bytes;

• TCP version used is NewReno;

• the traffic QoS conditioner is a two-color token bucket
marker with a bucket size of 104 bytes;

• the queues size are 50 packets and RIO parameters
are:
(minout, maxout, pout, minin, maxin, pin) =
(10, 20, 0.1, 20, 40, 0.02);

• the bottleneck is fixed to 1000Kbits/s.

For each experiment, we evaluate the instantaneous
throughput at the server side. The results are presented in
the next section.

4.1 DCCP/CCID3 over DiffServ AF re-
sults

This first part presents the problem encountered with the
use of DCCP/CCID3 in the DiffServ/AF class. In order to
better understand which problem is tackled in this study, we
remind in figure 2 the behaviour of two TCP flows cross-
ing a DiffServ network. Both flows have a target rate of
300Kbits/s and a respective RTT of 300ms and 50ms.
These two flows are not in the worst condition to reach
their desired target rate since the network is not overloaded

(there is only two flows) and we have 40% of excess band-
width. We can see in figure 2 that both TCP flows reach
at least their target rate. On the other hand, this figure also
shows that the flow with the lowest RTT obtains the high-
est amount of bandwidth. This problem is due to the well-
known out-profile unfair sharing between both TCP flows
as explained in [25].

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TCP RTT=300ms TR=300Kbits/s
TCP RTT=50ms TR=300Kbits/s

Target Rate

Figure 2. Two TCP flows in an over-
provisioned network with same target rate
and different RTT

Both DCCP flows with the CCID2 congestion control
present a similar behaviour. This is a logical result as the
CCID2 congestion control reproduces a window based con-
gestion control algorithm TCP-like. As expected, we see in
figure 3 that the result obtained is similar to the figure 2.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

DCCP/CCID2 RTT=300ms TR=300Kbits/s
DCCP/CCID2 RTT=50ms TR=300Kbits/s

Target Rate

Figure 3. Two DCCP/CCID2 flows in an over-
provisioned network with same target rate
and different RTT

Finally, we made an experiment with two DCCP flows
with the CCID3 congestion control in the same condi-
tions. Figure 4 still shows that in a long term perspective,
both flows obtain on average the amount of bandwidth ob-
tained previously by TCP and CCID2. The instantaneous

throughput is smoother with the CCID3 congestion con-
trol mechanism than with CCID2 or with standard TCP
congestion control mechanism. This smoothing behaviour
is a well-known property of the TFRC congestion control
mechanism. Furthermore, the flow with the highest RTT
takes a long time to reach its target rate. Several studies
have demonstrated that TFRC reacts to transient congestion
slower than TCP [1] [26]. This characteristic is also deeply
detailed in Jorg Widmer thesis [27]. Even if both flows are
closer to their target rate compared to TCP or CCID2 mech-
anisms, the pace of convergence is unacceptable in case of
DiffServ context as the flow with the highest RTT can take
more than 100 seconds to reach its own target rate.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

DCCP RTT=300ms TR=300Kbits/s
DCCP RTT=50ms TR=300Kbits/s

Target Rate

Figure 4. Two DCCP/CCID3 flows in an over-
provisioned network with same target rate
and different RTT

To briefly summarize all these results, figure 5 gives the
cumulative average throughput of the three previous exper-
iments related in figures 2, 3, 4. The cumulative average
throughput allows to give the perception that the user has
in terms of final throughput. This confirms that the con-
vergence of the DCCP/CCID3 protocol in terms of average
throughput is not optimal.

gDCCP copes with this problem, as it is shown in the
figure 6. Both flows reach their target rate in the first sec-
ond of the experiments like for TCP or DCCP/CCID2 but
with a more stable instantaneous throughput. Thanks to the
knowledge of the target rate, the protocol is able to send
always above its negotiated target rate.

4.2 Exactly-provisioned network

In this part, we drive experiments in an exactly-
provisioned network. Both flows have different target rates
and RTT. One flow has the worst conditions to reach its own
target rate. Indeed, the flow with the highest target rate has
the highest RTT. As this is the case for TCP flows [25], we
see that a DCCP flow with a high RTT and target rate will

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TCP cumulative RTT=300ms TR=300Kbits/s
DCCP/CCID2 cumulative RTT=300ms TR=300Kbits/s
DCCP/CCID3 cumulative RTT=300ms TR=300Kbits/s

TCP cumulative RTT=50ms TR=300Kbits/s
DCCP/CCID2 cumulative RTT=50ms TR=300Kbits/s
DCCP/CCID3 cumulative RTT=50ms TR=300Kbits/s

Target Rate

Figure 5. Cumulative average throughput

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gDCCP RTT=300ms TR=300Kbits/s
gDCCP RTT=50ms TR=300Kbits/s

Target Rate

Figure 6. Two gDCCP flows in an over-
provisioned network with same target rate
and different RTT

always have the most difficulty to reach its target rate. But,
in case of an exactly-provisioned network, Park and Choi
[21] show that there is no more unfairness problem.

As the CCID3 congestion control mechanism is based
on the TFRC mechanism which models the TCP congestion
control mechanism, we can expect that the behaviour of the
DCCP/CCID3 flows is similar to the TCP flows on average.

In [27], it is shown that the TFRC mechanism obtains
a similar behaviour compared to TCP. Nevertheless, TFRC
is smoother than TCP, and TFRC takes longer to reach the
link bandwidth than TCP. Concerning DCCP/CCID3, this
pace convergence problem is still present as shown in figure
7 (a) since this convergence problem is only linked to the
RTT value and not to the network state [27].

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

DCCP RTT=300ms TR=600Kbits/s
DCCP RTT=50ms TR=400Kbits/s

Target Rate
Target Rate

(a) DCCP

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gDCCP RTT=300ms TR=600Kbits/s
gDCCP RTT=50ms TR=400Kbits/s

Target Rate
Target Rate

(b) gDCCP

Figure 7. Two flows in an exactly-provisioned
network with different target rate and RTT

Thanks to the gDCCP mechanism, figure 7 (b) shows
that both flows reach their target rate soon and that the con-
vergence problem disappears. Finally, we conclude this
case by sending ten DCCP/CCID3 and ten gDCCP flows
with the same target rate and various RTT. Figures 8 present
the obtained results and show the efficiency in terms of
target rate achievement and pace of convergence with the
gDCCP mechanism.

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

DCCP RTT=60ms TR=100Kbits/s
DCCP RTT=80ms TR=100Kbits/s

DCCP RTT=100ms TR=100Kbits/s
DCCP RTT=120ms TR=100Kbits/s
DCCP RTT=140ms TR=100Kbits/s
DCCP RTT=160ms TR=100Kbits/s
DCCP RTT=180ms TR=100Kbits/s
DCCP RTT=200ms TR=100Kbits/s
DCCP RTT=220ms TR=100Kbits/s
DCCP RTT=240ms TR=100Kbits/s

(a) DCCP

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gDCCP RTT=60ms TR=100Kbits/s
gDCCP RTT=80ms TR=100Kbits/s

gDCCP RTT=100ms TR=100Kbits/s
gDCCP RTT=120ms TR=100Kbits/s
gDCCP RTT=140ms TR=100Kbits/s
gDCCP RTT=160ms TR=100Kbits/s
gDCCP RTT=180ms TR=100Kbits/s
gDCCP RTT=200ms TR=100Kbits/s
gDCCP RTT=220ms TR=100Kbits/s
gDCCP RTT=240ms TR=100Kbits/s

(b) gDCCP

Figure 8. Ten flows in an exactly-provisioned
network with same target rate and different
RTT

4.3 Over-provisioned network with cross-
ing traffic

This section deals with the case of an over-provisioned
network with crossing traffic. Two flows are emitted on
the testbed 1 between (A, D) and (B, E) and a third one
is emitted between (C, F) as crossing traffic. We made ex-
periments with an increasing number of flows and crossing
traffic and obtained similar results. For the sake of read-
ability, we give in this section the results obtained with only
three flows. For all next simulations, (A, D) has an RTT
of 300ms and a target rate of 400Kbits/s; (B, E) has an
RTT of 200ms and a target rate of 300Kbits/s and (C, F)
has an RTT of 60ms and a target rate of 200Kbits/s. As
expected, the flow (A, D) with the highest RTT and target
rate has difficulty to reach its target rate as shown in figure
9 (a). This is also the case for the (B, E) flow. If we use
the gDCCP mechanism, we see in figure 9 (b) that all flows
reach their target rate at the same time.

In the next experiments, we replace one of these flows
with a TCP flow. In figures 10, the TCP flow is emitted be-
tween (C, F) and has the lowest RTT and target rate. Due

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200

K
bi

t/s

Time (sec)

DCCP RTT=300ms TR=400Kbits/s
DCCP RTT=200ms TR=300Kbits/s

DCCP RTT=60ms TR=200Kbits/s
TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(a) DCCP

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200
K

bi
t/s

Time (sec)

gDCCP RTT=300ms TR=400Kbits/s
gDCCP RTT=200ms TR=300Kbits/s
gDCCP RTT=60ms TR=200Kbits/s

TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(b) gDCCP

Figure 9. Three flows in an over-provisioned
network with different target rate and RTT

to the aggressive nature of TCP, figure 10 (a) shows more
oscillations than in the case of using only DCCP/CCID3
flows. We also see that TCP outperforms its target rate.
In the case of using gDCCP with TCP, as shown in fig-
ure 10 (b), TCP is not disturbed by these flows and al-
ways outperforms its target rate. Concerning the others
gDCCP flows, we can see that they reach both their target
rate. Moreover, the gDCCP flows stay close to their target
rate. Without gDCCP flows, in figure 10 (a), we can see that
sometimes, the (A, D) flow falls under its target rate as this
is the case between t = [200, 250].

In figures 11, the TCP flow crosses the (A, D) path and
is now in the worst conditions to achieve its target rate. In-
deed, it gets the highest RTT and the highest target rate.
Figures 11 show the results obtained in this case. Figure 11
shows that the TCP flow has no difficulty to reach its tar-
get rate with DCCP/CCID3 or with gDCCP . It means that
the gDCCP mechanism does not influence the behaviour of
TCP in the DiffServ/AF class when these flows are mixed
together.

Finally, in the last experiments, twenty flows cross the
testbed with a RTT ranging from 50ms to 1000ms. Ten
between (A, D) and ten between (C, F). Each flow has a

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200

K
bi

t/s

Time (sec)

DCCP RTT=300ms TR=400Kbits/s
DCCP RTT=200ms TR=300Kbits/s

TCP RTT=60ms TR=200Kbits/s
TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(a) DCCP

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200

K
bi

t/s

Time (sec)

gDCCP RTT=300ms TR=400Kbits/s
gDCCP RTT=200ms TR=300Kbits/s

TCP RTT=60ms TR=200Kbits/s
TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(b) gDCCP

Figure 10. One TCP with the lowest RTT
flow versus two DCCP flows in an over-
provisioned network

target rate of 50Kbits/s. The bottleneck in this experiment
is 1500Kbits/s. So there is 500Kbits/s of excess band-
width. Figure 12 compares the results obtained with twenty
DCCP and twenty gDCCP and give the average throughput
obtained for each flow at the end of the experiment. The x-
axis in figure 12 gives the RTT value of the measured flow.
The y-axis value is corresponding to the average through-
put. The test time is set to 100sec. As already seen before,
the DCCP flows with the highest RTT have difficulties to
reach the target rate and the flows with the lowest RTT oc-
cupy the most part of bandwidth. With gDCCP , we see that
all flows, whatever their RTT, are closed to the target rate.

5 Discussion about this proposal

In this section, we propose to discuss on security and
misconfiguration problems of the guarantee g. Two cases
can occur: the first one is a volunteer misconfiguration from
the user. In this case, the network provider controls the mis-
behaving user’s traffic as any other kind of traffic and the
network drops the excess part. Nevertheless, this case is
similar to mix UDP and TCP traffics in the same service

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200

K
bi

t/s

Time (sec)

TCP RTT=300ms TR=400Kbits/s
DCCP RTT=200ms TR=300Kbits/s

DCCP RTT=60ms TR=200Kbits/s
TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(a) DCCP

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120 140 160 180 200
K

bi
t/s

Time (sec)

TCP RTT=300ms TR=400Kbits/s
gDCCP RTT=200ms TR=300Kbits/s
gDCCP RTT=60ms TR=200Kbits/s

TR=400Kbits/s
TR=300Kbits/s
TR=200Kbits/s

(b) gDCCP

Figure 11. One TCP with the highest RTT
flow versus two DCCP flows in an over-
provisioned network

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

K
bi

t/s

RTT (ms)

DCCP
gDCCP

TR=Kbits/s

Figure 12. Twenty flows in an over-
provisioned network with same target
rate and different RTT

class and even if there is a marking strategy at the edge of
the network, others flows could suffer of this misbehaving
traffic. The second one is a misconfiguration from the QoS
provider. In this context, both conditioning method (i.e. the

target rate of the token bucket marker) and the guarantee
g are erroneous. In this specific case, it could be better that
the protocol reacts to the resulting congestion. The next two
parts deals with these problems.

5.1 Security concern

As we give the possibility to instantiate through a
setsockopt() function the target rate negotiated be-
tween the QoS network and the application, we can imagine
that a misbehaving person could abuse of this functionality
by giving an higher value to the guarantee g. In this case, the
misbehaving person sends an UDP-like traffic and increases
its out-profile traffic. In the context of a DiffServ/AF class,
the edge router will still mark in-profile the packets in re-
spect with the negotiated profile and out-profile the excess
part. As a result, in case of network congestion, the drop-
ping precedence set in the core router will drop this excess
traffic. The misbehaving person will not take advantage of
the situation as the number of losses of its own flow in-
creases as well. Then, the in-profile traffic remains pro-
tected in the network and the others out-profile traffics, shar-
ing the same link, perceives a kind of flooding attack. As
the out-profile traffic is a best-effort traffic, this case of use
does not disturb the management of the DiffServ network.
Furthermore, even if the in-profile part remains protected,
the behaviour of the out-profile part is not share in the same
manner. As underlined in [18], we obtain a better control
by separating non responsive to responsive traffic even over
a specific QoS service. Nevertheless, we believe that this
security concern is out of the transport level scope. As for
any kind of transport protocol, we claim that it is definitely
not the responsibility of the protocol to detect a selfish user
behaviour.

5.2 Misconfiguration from the QoS Ser-
vice Provider

This case is more problematic and occur when the net-
work configures and gives a wrong configuration both on
client side and network side. In the previous section, the
misbehaving traffic was the out-profile traffic. Now, the
in-profile becomes not legitimate and gets losses as the
QoS provider doesn’t manage this traffic in respect with the
bandwidth available. We are in an under-provisioned net-
work and the in-profile is not protected anymore. In section
3, we have proposed to add a second ratio to our compu-
tation proposal in order to deal with this case. This sec-
ond ratio allows the flow to react to an abnormal number
of losses in the in-profile part. The flow’s reaction to this
unexpected losses can be seen as in contradiction with the
DiffServ principles. Nevertheless, it could be in the end
system’s best interests to send in a congestion controlled

manner rather than getting losses. This problem is currently
under discussion [17] and is difficult to solve as it combines
users’ perception and network interests.

6 Conclusion

This paper studies the behaviour of DCCP over DiffServ
with Assured Forwarding class. TCP and DCCP with both
congestion control mechanisms appear to present limitation
in this context. To cope with these limitations, we propose
to evaluate an evolution of DCCP, named gDCCP integrat-
ing a QoS aware congestion control based on TFRC. Thanks
to this knowledge, we show that gDCCP reaches easily its
target rate whatever the RTT or the target rate of a flow. It
requires only the target rate negotiated by the application.
We have demonstrated through many experiments its use
over a standard AF/DiffServ class. Finally, we have dis-
cussed about problems related to security and real deploy-
ment over a DiffServ network of this proposal. We have
recently integrated this modification into a real DCCP im-
plementation originally developed at Lulea University of
Technology Sweden. Large number of measurements are
expected over a real network. See [14] for details.

Acknowledgments

This research work has been conducted in the framework
of the EuQoS European project (http://www.euqos.org).
Emmanuel Lochin and Guillaume Jourjon has been sup-
ported by funding from National ICT Australia (NICTA).
The authors thank Sebastien Ardon and the members of the
IETF’s TSVWG working group for their comments on this
mechanism.

References

[1] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenkerr. Dy-
namic Behavior of Slowly-Responsive Congestion Control
Algorithms. In Proc. of ACM SIGCOMM, San Diego, CA,
Aug. 2001.

[2] M. El-Gendy and K. Shin. Assured Forwarding Fairness Us-
ing Equation-Based Packet Marking and Packet Separation.
Computer Networks, 41(4):435–450, 2002.

[3] W. Fang, N. Seddigh, and AL. A Time Sliding Window
Three Colour Marker. Request For Comments 2859, IETF,
June 2000.

[4] A. Feroz, A. Rao, and S. Kalyanaraman. A TCP-Friendly
Traffic Marker for IP Differentiated Services. In Proc. of
IEEE/IFIP International Workshop on Quality of Service -
IWQoS, June 2000.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based Congestion Control for Unicast Applications. In
Proc. of ACM SIGCOMM, pages 43–56, Stockholm, Swe-
den, Aug. 2000.

[6] S. Floyd and E. Kohler. Profile for DCCP Congestion Con-
trol ID 2: TCP-like Congestion Control. Request For Com-
ments 4341, IETF, Mar. 2006.

[7] S. Floyd, E. Kohler, and J. Padhye. Profile for DCCP Con-
gestion Control ID 3: TRFC Congestion Control. Request
For Comments 4342, IETF, Mar. 2006.

[8] A. Habib, B. Bhargava, and S. Fahmy. A Round Trip Time
and Time-out Aware Traffic Conditioner for Differentiated
Services Networks. In Proc. of the IEEE International Con-
ference on Communications - ICC, New-York, USA, Apr.
2002.

[9] M. Handley, S. Floyd, J. Pahdye, and J. Widmer. TCP-
Friendly Rate Control (TFRC): Protocol Specification. Re-
quest For Comments 3448, IETF, Jan. 2003.

[10] J. Heinanen and R. Guerin. A Single Rate Three Color
Marker. Request For Comments 2697, IETF, Sept. 1999.

[11] Y.-G. Kim and C.-C. J. Kuo. TCP-Friendly Assured For-
warding (AF) Video Service in DiffServ Networks. In IEEE
International Symposium on Circuits and Systems (ISCAS),
Bangkok, Thailand, May 2003.

[12] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
Control Protocol (DCCP). Request For Comments 4340,
IETF, Mar. 2006.

[13] K. Kumar, A. Ananda, and L. Jacob. A Memory based Ap-
proach for a TCP-Friendly Traffic Conditioner in DiffServ
Networks. In Proc. of the IEEE International Conference
on Network Protocols - ICNP, Riverside, California, USA,
Nov. 2001.

[14] E. Lochin. A DCCP and gDCCP ker-
nel patch for FreeBSD 6.1, Aug. 2006.
http://mobqos.ee.unsw.edu.au/∼lochin/#coding.

[15] E. Lochin, P. Anelli, and S. Fdida. Penalty shaper to en-
force assured service for TCP flows. In IFIP Networking,
Waterloo, Canada, May 2005.

[16] E. Lochin, L. Dairaine, and G. Jourjon. gTFRC: a QoS-
aware congestion control algorithm. In Proc. of the Inter-
national Conference on Networking - ICN, Mauritius, Apr.
2006.

[17] E. Lochin, L. Dairaine, and G. Jourjon. Guaranteed TCP
Friendly Rate Control (gTFRC) for DiffServ/AF Network.
Internet Draft draft-lochin-ietf-tsvwg-gtfrc-02, IETF, Aug.
2006.

[18] B. Nandy, J. Ethridge, A. Lakas, and A. Chapman. Ag-
gregate Flow Control: Improving Assurances for Differenti-
ated Services Network. In Proc. of IEEE INFOCOM, pages
1340–1349, 2001.

[19] B. Nandy, P.Pieda, and J. Ethridge. Intelligent Traffic Con-
ditioners for Assured Forwarding based Differentiated Ser-
vices Networks. In IFIP High Performance Networking,
Paris, France, June 2000.

[20] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differ-
entiated services architecture for the internet. Request For
Comments 2638, IETF, July 1999.

[21] E.-C. Park and C.-H. Choi. Proportional Bandwidth Allo-
cation in DiffServ Networks. In Proc. of IEEE INFOCOM,
Hong Kong, Mar. 2004.

[22] P. Pieda, J. Ethridge, M. Baines, and F. Shallwani. A
network simulator differentiated services implementation.
Technical report, Open IP, Nortel Networks, 2000.

[23] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-
End Rate-Based Congestion Control Mechanism for Real-
time Streams in the Internet. In Proc. of IEEE INFOCOM,
pages 1337–1345, 1999.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A Transport Protocol for Real-Time Applications.
Technical Report 3550, IETF, July 2003.

[25] N. Seddigh, B. Nandy, and P. Pieda. Bandwidth Assurance
Issues for TCP Flows in a Differentiated Services Network.
In Proc. of IEEE GLOBECOM, page 6, Rio De Janeiro,
Brazil, Dec. 1999.

[26] M. Vojnovic and J. Boudec. The long-run behavior of
equation-based rate control. In Proc. of ACM SIGCOMM,
Pittsburgh, PA, Aug. 2002.

[27] J. Widmer. Equation-Based Congestion Control. Diploma
thesis, University of Mannheim, Germany, Feb. 2000.

[28] Y. Yang and S. Lam. General AIMD Congestion Control.
Technical Report TR-200009, Department of Computer Sci-
ence, University of Texas at Austin, May 2000.

