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Study and enhancement of DCCP over DiffServ Assured Forwarding class

The Datagram Congestion Control Protocol (DCCP) has been proposed as a transport protocol which supports real-time traffic. In this paper, we focus on the use of DCCP/CCID3 (Congestion Control ID 3) over a Diff-Serv/AF class. This class of service is used to build services that provide only a minimum throughput guarantee without any delay or jitter restrictions. This minimum throughput guarantee is called the target rate. In this context, the throughput obtained by DCCP/CCID3 mainly depends on RTT and loss probability. As a result, the application does not always get the negotiated target rate. To cope with this problem, we propose to evaluate a simple adaptation of the CCID3 congestion control mechanism, allowing the application to reach its target rate whatever the RTT value of the application's flow is. As this adaptation can be seen as an extension to the DCCP with CCID3 congestion control, we call it gDCCP for guaranteed DCCP. Results from simulations are presented to illustrate the improvements of the proposed modification in various situations. Finally, we investigate the deployment of this proposal in terms of security.

Introduction

This paper studies the behaviour of DCCP protocol [START_REF] Kohler | Datagram Congestion Control Protocol (DCCP). Request For Comments 4340[END_REF] in a DiffServ/AF quality of service class. In particular, we focus on the DCCP/CCID3 congestion control protocol based on the TFRC mechanism. The aim is to explore the feasibility of using DCCP protocol over a DiffServ network and look at the service received from the DCCP user point of view.

Still nowadays, the classical protocol used by real-time applications is UDP. These time-constrained applications (such as audio and video streaming, voice over IP (VoIP), video on demand (VoD)) use UDP by default because TCP is not adapted to their time constraints. The main problem with UDP remains the lack of congestion control compelling the applications to implement congestion control mechanisms. Nevertheless, many applications don't integrate any of these mandatory controls, leading to a bad popularity of the UDP protocol.

In Internet, UDP traffic is often filtered for security reason. In the context of DiffServ network, it raises difficulties when mixed with TCP. Indeed, when responsive TCP flows and non-responsive UDP flows share the same class of service, there is an unfair bandwidth distribution and TCP flows throughput are affected [START_REF] Seddigh | Bandwidth Assurance Issues for TCP Flows in a Differentiated Services Network[END_REF]. Theoretically, the fair allocation of excess bandwidth can be achieved by giving different treatments to out-profile traffic of both kinds of flows. The general approach is to define two specific queues in the core network in order to separate the non-responsive (UDP) from the responsive (TCP) traffics [START_REF] Nandy | Aggregate Flow Control: Improving Assurances for Differentiated Services Network[END_REF].

In this context, the use of DCCP is particularly interesting since it offers a way to avoid this traffic segregation, allowing to mix both kinds of traffics. Moreover, since the DCCP/CCID3 protocol is based on the TCP equation defined in [START_REF] Floyd | Equationbased Congestion Control for Unicast Applications[END_REF], we can expect to use the same DiffServ conditioners designed for TCP traffic as those defined in [START_REF] El-Gendy | Assured Forwarding Fairness Using Equation-Based Packet Marking and Packet Separation[END_REF][START_REF] Feroz | A TCP-Friendly Traffic Marker for IP Differentiated Services[END_REF][START_REF] Habib | A Round Trip Time and Time-out Aware Traffic Conditioner for Differentiated Services Networks[END_REF][START_REF] Kumar | A Memory based Approach for a TCP-Friendly Traffic Conditioner in DiffServ Networks[END_REF]. Nevertheless, as TCP does, measurements presented in this paper show that DCCP/CCID3 congestion control doesn't reach the target rate previously negotiated by the application. To cope with this problem, we evaluate in this paper a lightweight add-on to DCCP/CCID3 congestion control in order to improve its behaviour in the context of DiffServ/AF. As a results, extensive measurements show its ability to provide the user a bandwidth in agreement with the network QoS guarantee. This paper is organized as follows. Section 2 presents related work about DCCP. Section 3 points out the per-formance problem associated with the use of DCCP into the DiffServ/AF class and introduces the gDCCP proposal. Section 4 presents the simulation testbed and comments results about the studied scenarios. We discuss about security problem involved with this proposal in section 5. Finally, section 6 concludes the paper.

Related Work

DCCP and congestion control

Nowadays, many real-time applications appear on the Internet and give birth to new types of unreliable real-time traffics. TCP is not appropriate to the quality of service requirements of these applications. Then, due to its simplicity and the lack of efficient alternative, UDP is currently largely used for the transmission of real-time traffic. UDP does not implement any traffic control and its use ideally requires the application to implement such mechanisms. Multimedia developers prefer the use of UDP without congestion control due to the complexity of implementing such mechanisms. This lack of congestion control mechanism leads to an unfairness problem in case of mixing UDP with TCP traffic.

The Real-time Transport Protocol (RTP) and its companion protocol RTCP [START_REF] Schulzrinne | RTP: A Transport Protocol for Real-Time Applications[END_REF] have been proposed as a support for time constrained multimedia applications. RTP is implemented as a library directly integrated into the application. Currently, RTP is employed by a large number of distributed multimedia applications over Internet (such as VideoLan 1 ). This protocol integrates information such as timestamps and sequence numbers. These fields are used to implement the appropriate mechanisms to detect and recover losses, reorder data, discard obsolete data and synchronize data flows. Nevertheless, RTP and RTCP do not directly implement congestion control mechanism and user still needs to implement or to use ad-hoc mechanism.

The Rate Adaptation Protocol (RAP) [START_REF] Rejaie | RAP: An End-to-End Rate-Based Congestion Control Mechanism for Realtime Streams in the Internet[END_REF] is an endto-end TCP-friendly protocol using the Additive Increase and Multiplicative Decrease (AIMD) algorithm [START_REF] Yang | General AIMD Congestion Control[END_REF] to enable fair sharing of the bandwidth with TCP traffic. Implemented at user-level, these proposals raise some security problems as users can easily modify them and eventually, involve great disorder in the network bandwidth distribution. In order to provide a congestion control function that cannot be modified by users, DCCP has been proposed. DCCP is a transport protocol for real-time communications that supports a congestion control mechanism at kernel level.

DCCP has two main objectives: first, its implementa-1 http://www.videolan.org/ tion is to remain as simple as possible 2 . So unlike TCP, it does not support reliable data delivery. The second objective is to provide a TCP-friendly congestion control mechanism because TCP traffic is still pervasive in the current Internet. DCCP includes multiple congestion control algorithms which can be selected in regards to the user needs. An algorithm is identified through its Congestion Control ID (CCID). Two CCIDs are now being standardized by the Internet Engineering Task Force (IETF). CCID2 [START_REF] Floyd | Profile for DCCP Congestion Control ID 2: TCP-like Congestion Control[END_REF] is a window based congestion control algorithm like TCP, and CCID3 [START_REF] Floyd | Profile for DCCP Congestion Control ID 3: TRFC Congestion Control[END_REF] is a TCP-Friendly Rate Control (TFRC) algorithm. CCID2 is appropriate and particularly useful for senders who would like to take advantage of the available bandwidth in an environment with rapidly changing conditions as bursty real-time traffic such as traffic from compressed encoded video and network games. TFRC 3 is a congestion control mechanism for unicast flows operating in a best-effort Internet environment [START_REF] Handley | TCP-Friendly Rate Control (TFRC): Protocol Specification. Request For Comments 3448[END_REF]. CCID3 is suitable for traffic with smooth changes in sending rates, such as telephony or video streaming. This CCID3 is based on the TCP throughput equation [START_REF] Bansal | Dynamic Behavior of Slowly-Responsive Congestion Control Algorithms[END_REF] and is designed to be reasonably fair when competing with TCP flow.

X = s (RT T • p•2 3 + RT O • p•27 8 • p • (1 + 32 • p 2 )) (1) 
Where X the sending rate depends on the packet lost rate p, the mean packet size s and the Round Trip Time RT T . RT O refers to the TCP retransmission timeout value. One of the main TFRC properties is to generate a flow with a much lower variation of throughput over time than TCP. This is the reason why it is particularly suitable for multimedia applications such as video streaming or telephony over the Internet.

In contrast of best effort networks, QoS networks such as DiffServ networks offers services guarantees. In the particular case of the DiffServ/AF class, a minimal bandwidth is provided (in-profile traffic part) with the possibility to reach higher bandwidth (out-profile traffic part) depending on the level of congestion of the network. Multimedia applications are natural candidates for the use of this service class. Unfortunately, as it is the case for classical TCP flows, the use of DCCP/CCID3 over such a network service produces unexpected results in terms of user expectations.

DCCP over DiffServ/AF

To our best knowledge, there are no study of DCCP behaviour over a DiffServ network. Nevertheless, in [START_REF] Kim | TCP-Friendly Assured Forwarding (AF) Video Service in DiffServ Networks[END_REF], the authors investigate AF-TFRC performances and give a service provisioning mechanism allowing an ISP 4 to build a feasible DiffServ system. As CCID3 should react in similar manner to the TCP AIMD congestion control principle, a good starting point is to look at the results obtained for TCP in the DiffServ/AF class.

The problem of TCP throughput guarantee using Diff-Serv/AF class is already well-known and not new. There have been a number of studies that focused on assured service for TCP flows. In [START_REF] Seddigh | Bandwidth Assurance Issues for TCP Flows in a Differentiated Services Network[END_REF], five factors have been studied (RTT, number of flows, target rate, packet size, non responsive flows) and their impact has been evaluated to provide a predictable service.

As the TCP protocol uses the Additive Increase Multiple Decrease (AIMD) congestion control algorithm which aims to share fairly the available bandwidth, the only mean to obtain a service differentiation with TCP is to use Diff-Serv traffic conditioners such as the token bucket color marker (TBCM) [START_REF] Heinanen | A Single Rate Three Color Marker[END_REF] or time sliding window color marker (TSWCM) [START_REF] Fang | A Time Sliding Window Three Colour Marker[END_REF].

The behaviour of those traffic conditioners has a great impact on the service obtained by TCP flows in terms of bandwidth provided to the application. Several others conditioners have been proposed to improve the efficiency of the token bucket-like conditioners [START_REF] El-Gendy | Assured Forwarding Fairness Using Equation-Based Packet Marking and Packet Separation[END_REF] [START_REF] Nandy | Intelligent Traffic Conditioners for Assured Forwarding based Differentiated Services Networks[END_REF]. In the context of multimedia flows, even if CCID3 congestion control mechanism efficiently replaces the AIMD congestion control algorithm for multimedia applications, its behaviour remains similar to TCP over the DiffServ/AF service class.

In the present study, the CCID3 congestion control mechanism becomes aware of the target rate negotiated by the application with the DiffServ network. Thanks to this knowledge, the application's flow is sent in conformance with the negotiated QoS while staying TCP-friendly in the out-profile traffic part.

Problem statement

In the assured service class, the throughput of a flow breaks up into two parts: a fixed part which corresponds to a minimum assured throughput and an elastic part which corresponds to an opportunist flow of packets. Packet belonging to the first part are marked in-profile and packets belonging to the second part are marked out-profile. In the case of network congestion, the in-profile packets are considered inadequate for loss. At the contrary, out-profile packets are conveyed on the principle of "best-effort" (BE) service and are dropped first if a congestion occurs.

In case of excess bandwidth in the network, the application could send more than its target rate and the network should mark the excess traffic out-profile. Then, if the network becomes congested, out-profile packets losses occur 4 Internet Service Provider and the optimal rate estimated by TFRC could fall down under the target rate requested by the application. TCP would react in the same way by halving its congestion window.

As for TCP in the AF class [START_REF] Seddigh | Bandwidth Assurance Issues for TCP Flows in a Differentiated Services Network[END_REF], the TFRC mechanism is not aware that the loss corresponds to out-profile packet and that it should not decrease its actual sending rate less below the target rate negotiated. For TCP, the solution was to introduce a conditioner able to better mark the TCP flows by taking into account the sporadic nature of the TCP traffic [START_REF] El-Gendy | Assured Forwarding Fairness Using Equation-Based Packet Marking and Packet Separation[END_REF][START_REF] Lochin | Penalty shaper to enforce assured service for TCP flows[END_REF]. But the proposed conditioners are not all really efficient in certain network conditions such as long RTT and are sometimes complex to use.

In order to solve this problem, we propose to make the mechanism QoS-aware following the proposal presented in [START_REF] Lochin | gTFRC: a QoSaware congestion control algorithm[END_REF]. This previous study had shown the benefit of using a TFRC QoS-aware congestion control in a DiffServ Assured Forwarding (AF) class. We extend this study by firstly enhancing the way to compute the sending rate; secondly by tackling concrete protocol problems such as security and congestion management; finally, by evaluating the proposal inside a DCCP implementation.

In contrast to TCP, as TFRC explicitly computes the actual sending rate with (1), it is possible to directly act on this rate in order to avoid the under-usage of the network service. Therefore, the present proposal consists in making the sending rate estimator aware of the target rate. This scheme avoids the indirect processing of traffic conditioners while enhancing efficiently the performances in terms of application throughput and TCP-friendliness.

We suppose the application is aware of the target rate, next to a QoS negotiation. This target rate is then known by the transport layer at socket creation time. The target rate parameter can be set e.g., by the setsockopt() function. We will discuss in section 5 of security issue concerning this setting functionality.

After a classical slowstart phase, the gDCCP modification consists in computing the maximum between the TFRC rate estimation X calc and the target rate g. The rest of the CCID3 mechanism follows entirely the DCCP/CCID3 specification and the slowstart phase remains active and unchanged.

In the context of a DiffServ/AF class, a network can be either over or exactly or under-provisioned. A network over or exactly-provisioned means that the amount of in-profile traffic is below or equal to the resource allocated to the AF class. On the contrary, an under-provisioned network means that this amount is higher. This case could occur if the Bandwidth Broker [START_REF] Nichols | A two-bit differentiated services architecture for the internet[END_REF] of a DiffServ network sends or receives false information. In a DiffServ context, if the gDCCP source emits below its target rate and if the gDCCP flow gets losses, it means that the in-profile traffic is no guaranteed anymore in the network. In order to tackle this problem, two approaches are possible:

• The first one is to pursue to emit at the guarantee g.

This behaviour is legitimate since the service provider must provide to the client the service which is paid;

• The second one is to react to this congestion. This can be done by adding a second ratio (λ) to gDCCP. This ratio can be applied as following: if the rate returned by the TFRC equation X calc computed by the sender is λ times below the target rate g, the sender must follow the standard TFRC algorithm. Indeed, when X calc < g/λ, it means that a bunch of losses has occurred in the in-profile part and that the congestion could be due to a wrong setting.

In the TFRC algorithm, when the loss probability p is not nil, the update of the sending rate is basically computed as follow 5 :

X = min(X calc , 2 * X recv ) (2) 
With X calc the computed rate and X recv the estimated received rate. We can see that the sending rate is limited to at most twice X recv . If we add the guarantee g and take into account the specific case of misconfiguration, the gDCCP mechanism is now computed with (3):

X = min(X calc , 2 * X recv ) if X calc < g/λ min(max(X calc , g), 2 * X recv ) otherwise
(3) At least, in case of wrong setting, the sender should not emit above 2 * X recv .

We believe that the selfish user problem and the misconfiguration problem should not be solved inside gDCCP itself and should remain under the responsibility of the service provider. As a consequence, we do not evaluate the under-provisioned network case in this paper as it doesn't give further information on gDCCP performances. Nevertheless, we will discuss about this issue in section 5.

We show in the next section that thanks to this adaptation, the application's flow is sent in conformance to the negotiated QoS while staying TCP-friendly in its out-profile part.

Evaluation and analysis

gDCCP is evaluated over a DiffServ network using simulation. It has been implemented in ns-2.29 simulator and the Nortel DiffServ model [START_REF] Pieda | A network simulator differentiated services implementation[END_REF]. We achieved simulation on the testbed illustrated in the figure 1 with the two following scenarios: when the network is exactly-provisioned 5 For the sake of simplicity, we do not represent the maximum with s/t mbi which means that at least, if the rate computed is very low, one packet is emitted every 64 seconds (i.e. there is no excess bandwidth for the out-profile traffic) and when the network is over-provisioned (i.e. there is excess bandwidth). When only two flows are emitted over the testbed, they cross the paths (A, D) and (B, E). In case of cross-traffic scenario, a flow is emitted between (C, F ).

All experiments are achieved using the following conditions:

• packet size is fixed to 1500 bytes;

• TCP version used is NewReno;

• the traffic QoS conditioner is a two-color token bucket marker with a bucket size of 10 4 bytes;

• the queues size are 50 packets and RIO parameters are:

(min out , max out , p out , min in , max in , p in ) = (10, 20, 0.1, 20, 40, 0.02);

• the bottleneck is fixed to 1000Kbits/s.

For each experiment, we evaluate the instantaneous throughput at the server side. The results are presented in the next section.

DCCP/CCID3 over DiffServ AF results

This first part presents the problem encountered with the use of DCCP/CCID3 in the DiffServ/AF class. In order to better understand which problem is tackled in this study, we remind in figure 2 the behaviour of two TCP flows crossing a DiffServ network. Both flows have a target rate of 300Kbits/s and a respective RTT of 300ms and 50ms. These two flows are not in the worst condition to reach their desired target rate since the network is not overloaded (there is only two flows) and we have 40% of excess bandwidth. We can see in figure 2 that both TCP flows reach at least their target rate. On the other hand, this figure also shows that the flow with the lowest RTT obtains the highest amount of bandwidth. This problem is due to the wellknown out-profile unfair sharing between both TCP flows as explained in [START_REF] Seddigh | Bandwidth Assurance Issues for TCP Flows in a Differentiated Services Network[END_REF]. Finally, we made an experiment with two DCCP flows with the CCID3 congestion control in the same conditions. Figure 4 still shows that in a long term perspective, both flows obtain on average the amount of bandwidth obtained previously by TCP and CCID2. The instantaneous throughput is smoother with the CCID3 congestion control mechanism than with CCID2 or with standard TCP congestion control mechanism. This smoothing behaviour is a well-known property of the TFRC congestion control mechanism. Furthermore, the flow with the highest RTT takes a long time to reach its target rate. Several studies have demonstrated that TFRC reacts to transient congestion slower than TCP [1] [26]. This characteristic is also deeply detailed in Jorg Widmer thesis [START_REF] Widmer | Equation-Based Congestion Control[END_REF]. Even if both flows are closer to their target rate compared to TCP or CCID2 mechanisms, the pace of convergence is unacceptable in case of DiffServ context as the flow with the highest RTT can take more than 100 seconds to reach its own target rate. To briefly summarize all these results, figure 5 gives the cumulative average throughput of the three previous experiments related in figures 2, 3, 4. The cumulative average throughput allows to give the perception that the user has in terms of final throughput. This confirms that the convergence of the DCCP/CCID3 protocol in terms of average throughput is not optimal.

gDCCP copes with this problem, as it is shown in the figure 6. Both flows reach their target rate in the first second of the experiments like for TCP or DCCP/CCID2 but with a more stable instantaneous throughput. Thanks to the knowledge of the target rate, the protocol is able to send always above its negotiated target rate.

Exactly-provisioned network

In this part, we drive experiments in an exactlyprovisioned network. Both flows have different target rates and RTT. One flow has the worst conditions to reach its own target rate. Indeed, the flow with the highest target rate has the highest RTT. As this is the case for TCP flows [START_REF] Seddigh | Bandwidth Assurance Issues for TCP Flows in a Differentiated Services Network[END_REF], we see that a DCCP flow with a high RTT and target rate will always have the most difficulty to reach its target rate. But, in case of an exactly-provisioned network, Park and Choi [START_REF] Park | Proportional Bandwidth Allocation in DiffServ Networks[END_REF] show that there is no more unfairness problem.

As the CCID3 congestion control mechanism is based on the TFRC mechanism which models the TCP congestion control mechanism, we can expect that the behaviour of the DCCP/CCID3 flows is similar to the TCP flows on average.

In [START_REF] Widmer | Equation-Based Congestion Control[END_REF], it is shown that the TFRC mechanism obtains a similar behaviour compared to TCP. Nevertheless, TFRC is smoother than TCP, and TFRC takes longer to reach the link bandwidth than TCP. Concerning DCCP/CCID3, this pace convergence problem is still present as shown in figure 7 (a) since this convergence problem is only linked to the RTT value and not to the network state [START_REF] Widmer | Equation-Based Congestion Control[END_REF]. 

Over-provisioned network with crossing traffic

This section deals with the case of an over-provisioned network with crossing traffic. Two flows are emitted on the testbed 1 between (A, D) and (B, E) and a third one is emitted between (C, F ) as crossing traffic. We made experiments with an increasing number of flows and crossing traffic and obtained similar results. For the sake of readability, we give in this section the results obtained with only three flows. For all next simulations, (A, D) has an RTT of 300ms and a target rate of 400Kbits/s; (B, E) has an RTT of 200ms and a target rate of 300Kbits/s and (C, F ) has an RTT of 60ms and a target rate of 200Kbits/s. As expected, the flow (A, D) with the highest RTT and target rate has difficulty to reach its target rate as shown in figure 9 (a). This is also the case for the (B, E) flow. If we use the gDCCP mechanism, we see in figure 9 (b) that all flows reach their target rate at the same time.

In the next experiments, we replace one of these flows with a TCP flow. In figures 10, the TCP flow is emitted between (C, F ) and has the lowest RTT and target rate. Due In figures 11, the TCP flow crosses the (A, D) path and is now in the worst conditions to achieve its target rate. Indeed, it gets the highest RTT and the highest target rate. Figures 11 show the results obtained in this case. Figure 11 shows that the TCP flow has no difficulty to reach its target rate with DCCP/CCID3 or with gDCCP . It means that the gDCCP mechanism does not influence the behaviour of TCP in the DiffServ/AF class when these flows are mixed together.

Finally, in the last experiments, twenty flows cross the testbed with a RTT ranging from 50ms to 1000ms. Ten between (A, D) and ten between (C, F ). Each flow has a target rate of 50Kbits/s. The bottleneck in this experiment is 1500Kbits/s. So there is 500Kbits/s of excess bandwidth. Figure 12 compares the results obtained with twenty DCCP and twenty gDCCP and give the average throughput obtained for each flow at the end of the experiment. The xaxis in figure 12 gives the RTT value of the measured flow. The y-axis value is corresponding to the average throughput. The test time is set to 100sec. As already seen before, the DCCP flows with the highest RTT have difficulties to reach the target rate and the flows with the lowest RTT occupy the most part of bandwidth. With gDCCP , we see that all flows, whatever their RTT, are closed to the target rate.

Discussion about this proposal

In this section, we propose to discuss on security and misconfiguration problems of the guarantee g. Two cases can occur: the first one is a volunteer misconfiguration from the user. In this case, the network provider controls the misbehaving user's traffic as any other kind of traffic and the network drops the excess part. Nevertheless, this case is similar to mix UDP and TCP traffics in the same service class and even if there is a marking strategy at the edge of the network, others flows could suffer of this misbehaving traffic. The second one is a misconfiguration from the QoS provider. In this context, both conditioning method (i.e. the target rate of the token bucket marker) and the guarantee g are erroneous. In this specific case, it could be better that the protocol reacts to the resulting congestion. The next two parts deals with these problems.

Security concern

As we give the possibility to instantiate through a setsockopt() function the target rate negotiated between the QoS network and the application, we can imagine that a misbehaving person could abuse of this functionality by giving an higher value to the guarantee g. In this case, the misbehaving person sends an UDP-like traffic and increases its out-profile traffic. In the context of a DiffServ/AF class, the edge router will still mark in-profile the packets in respect with the negotiated profile and out-profile the excess part. As a result, in case of network congestion, the dropping precedence set in the core router will drop this excess traffic. The misbehaving person will not take advantage of the situation as the number of losses of its own flow increases as well. Then, the in-profile traffic remains protected in the network and the others out-profile traffics, sharing the same link, perceives a kind of flooding attack. As the out-profile traffic is a best-effort traffic, this case of use does not disturb the management of the DiffServ network. Furthermore, even if the in-profile part remains protected, the behaviour of the out-profile part is not share in the same manner. As underlined in [START_REF] Nandy | Aggregate Flow Control: Improving Assurances for Differentiated Services Network[END_REF], we obtain a better control by separating non responsive to responsive traffic even over a specific QoS service. Nevertheless, we believe that this security concern is out of the transport level scope. As for any kind of transport protocol, we claim that it is definitely not the responsibility of the protocol to detect a selfish user behaviour.

Misconfiguration from the QoS Service Provider

This case is more problematic and occur when the network configures and gives a wrong configuration both on client side and network side. In the previous section, the misbehaving traffic was the out-profile traffic. Now, the in-profile becomes not legitimate and gets losses as the QoS provider doesn't manage this traffic in respect with the bandwidth available. We are in an under-provisioned network and the in-profile is not protected anymore. In section 3, we have proposed to add a second ratio to our computation proposal in order to deal with this case. This second ratio allows the flow to react to an abnormal number of losses in the in-profile part. The flow's reaction to this unexpected losses can be seen as in contradiction with the DiffServ principles. Nevertheless, it could be in the end system's best interests to send in a congestion controlled manner rather than getting losses. This problem is currently under discussion [START_REF] Lochin | Guaranteed TCP Friendly Rate Control (gTFRC) for DiffServ/AF Network[END_REF] and is difficult to solve as it combines users' perception and network interests.

Conclusion

This paper studies the behaviour of DCCP over DiffServ with Assured Forwarding class. TCP and DCCP with both congestion control mechanisms appear to present limitation in this context. To cope with these limitations, we propose to evaluate an evolution of DCCP, named gDCCP integrating a QoS aware congestion control based on TFRC. Thanks to this knowledge, we show that gDCCP reaches easily its target rate whatever the RTT or the target rate of a flow. It requires only the target rate negotiated by the application. We have demonstrated through many experiments its use over a standard AF/DiffServ class. Finally, we have discussed about problems related to security and real deployment over a DiffServ network of this proposal. We have recently integrated this modification into a real DCCP implementation originally developed at Lulea University of Technology Sweden. Large number of measurements are expected over a real network. See [START_REF] Lochin | A DCCP and gDCCP kernel patch for FreeBSD 6[END_REF] for details.

Figure 1 .

 1 Figure 1. The simulation topology for DiffServ experiments

Figure 2 .

 2 Figure 2. Two TCP flows in an overprovisioned network with same target rate and different RTT

Figure 3 .

 3 Figure 3. Two DCCP/CCID2 flows in an overprovisioned network with same target rate and different RTT

Figure 4 .

 4 Figure 4. Two DCCP/CCID3 flows in an overprovisioned network with same target rate and different RTT

Figure 5 Figure 6 .

 56 Figure 5. Cumulative average throughput

Figure 7 .

 7 Figure 7. Two flows in an exactly-provisioned network with different target rate and RTT

Figure 8 .

 8 Figure 8. Ten flows in an exactly-provisioned network with same target rate and different RTT

Figure 9 .

 9 Figure 9. Three flows in an over-provisioned network with different target rate and RTT

Figure 10 .

 10 Figure 10. One TCP with the lowest RTT flow versus two DCCP flows in an overprovisioned network

Figure 11 .Figure 12 .

 1112 Figure 11. One TCP with the highest RTT flow versus two DCCP flows in an overprovisioned network

http://www3.ietf.org/proceedings/05aug/dccp. html

Acknowledgments

This research work has been conducted in the framework of the EuQoS European project (http://www.euqos.org). Emmanuel Lochin and Guillaume Jourjon has been supported by funding from National ICT Australia (NICTA). The authors thank Sebastien Ardon and the members of the IETF's TSVWG working group for their comments on this mechanism.