

Multiphysical couplings in polymer and composite manufacturing processes. Heat transfer, solidification, adhesion...

Arthur Levy

arthur.levy@univ-nantes.fr

September 2019

SU IMC - Sabanci University

2006 : Ingénieur Centrale Nantes, matériaux et procédés 2010 : PhD , Ecole Centrale - GeM, Nantes

> 2011 - 12 : Post-doctorate, University of Delaware

Montréal

Delaware

2012 - 14 : Research assistant McGill, Montreal

2014 - 19 : Assistant Professor, LTEN -Polytech, Nantes

Algérie J2>

Paris

France

Kingdo

Nantes

Madrid

Casablanca

- Nantes, France.
- Laboratoire de Thermique et Energie de Nantes
 - Polymer and composite manufacturing team
- Simulating composite manufacturing processes

Nantes

Nantes (600 000 inhab.)

University of Nantes

Second biggest university in France by number of students The largest University and second most important centre for research in the West of France.

> 20 Faculties, Schools ou Institutes 300 undergraduate and postgraduate degrees based on European model : Degree-Master-Doctorats

more than ${\bf 38,000}$ undergraduates and postgraduates

- 12,000 students in continuing education
 - 1,760 permanent teaching staff
 - 1,045 library, technical and administrative personnel
 - 1,400 part-time teachers including experienced professionals

Polytech' Nantes

LEN

7 engineering specialities

Laboratoire de Thermique et Energie de Nantes (LTEN)

Laboratoire de Thermique et Energie de Nantes (LTEN)

Composite team

Didier Delaunay

Jean-Luc Bailleul Vin

Vincent Sobotka

Nicolas Boyard

Steven Le Corre

A Composite hub in France

Multiphysical modeling of composite manufacturing processes

Composite use in aeronautical industry

Today's challenges

Increase part complexity

Ultra-thick laminate Airbus

Boeing assembly line

- Intricate / thick parts
- Large parts

Reduce cost

www.sabca.be

Plastic Omnium

- Fast and efficient cycles
- Out-of-autoclave

New forming processes

Motivation

Industrial goal: control and optimize forming/ assembling processes.

Method: develop predictive tools (simulation)

Scientific approach

Outlines

I - Introduction

Physical modeling

Complex morphology

Severe loading

Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework.

Arthur Levy, Steven Le Corre, Vincent Sobotka, Maxime Villière

Thermoplastic compression moulding

Study of the cooling phase

Motivation

Prediction of heat transfer and crystallization. Understanding / control / optimization of the process

Framework

II - Characterization

I'EN

 $\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (\mathbf{k} \nabla T) + L \frac{\partial \alpha}{\partial t}$

Anisotropic thermal conductivity characterization using the PIMS bench

Vincent Sobotka, Maxime Villière

Characterization

Example of inverse method: the PIMS bench

Characterization

Example of inverse method: the PIMS bench

Characterization

Example of inverse method: the PIMS bench

Numerical simulation $\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (\mathbf{k} \nabla T)$

Multiphysyical characterization: PVT-Family

Mael Peron, Vincent Sobotka, Nicolas Boyard, Steven Le Corre, Xavier Tardif, Didier Delaunay

Motivation

Existing PVT α

Multiphysical characterization of neat resin

Analytical data extraction: strong assumptions Incompressible, contact, hydrostatic

α, β, λ

Improved analysis

Multiphysical numerical resolution

Results

- Compressible material
- Possible loss of contact
- Good correlation

PVT - XT

PVT-HADDOC

Homogeneous Anisotropic Deformation and Degree of Cure

Procedure

 $\begin{array}{l} \mbox{Loading range} \\ T \in [20^{\circ} - 200^{\circ}], \quad \dot{T} < 5 {\rm K.min}^{-1} \\ p < 10 {\rm bars}(\pm 0.1 {\rm bar}) \\ F \leq 10 ({\rm kN}), f \leq 100 {\rm Hz} \quad : {\rm Instron \ Electropulse \ Press} \end{array}$

Measured data

2D dimensional variation (thickness & in-plane) Extraction over the **whole curing cycle** Heat flux sensor : évolution of **curing state**

105 mm x 105 mm thickness : up to 20mm

First test

- quasi UD glass-epoxy
- 16 plis prepreg
- Manual layup + precompaction
- hydrostatic 2 bars load

First results

LEN

	Results		
		Through thickness	In-plane
CTE raw	[K-1]	317.0 10 ⁻⁶ (±2.0 10 ⁻⁶)	117.0 10 ⁻⁶ (±7.0 10 ⁻⁶)
CTE cured	[K-1]	47.4 10 ⁻⁶ (±3.0 10 ⁻⁶)	90.4 10 ⁻⁶ (±6.0 10 ⁻⁶)
CCS	[%]	0.77 (±0.02 10 ⁻⁴)	0.12 (±0.02 10 ⁻⁴)

Flash DSC method for crystallization characterization

Baptiste Pignon, Nicolas Boyard, Vincent Sobotka, Didier Delaunay : LTN Xavier Tardif : IRT Jules Vernes

Classical DSC

Alternatives

Flash DSC apparatus

Working zone 150 x 150 µm²

ĽΞΝ

Membrane 1.6mm x1.6mm x 2µm

[V. Mathot 11, Pignon et al 15]

Difficulties

III - Simulation

Nakamura Robustness

COMSOL Implementation

New COMSOL module (open source GPL)

LEN

http://github.com/arthurlevy/ComsolPhysics

Difficulties

Implementation Framework

- Standard P1 finite elements
- Strong coupling using mixed field (T, α)
- Nonlinear solving
- Implicit time integration w/ adaptative time stepping

Numerical Methods

Parallel computation

- Partitioning (METIS)
- Parallel
 - assembly
 - solving (MUMPS)

Up to 4 million dofs

IV - RESULTS

Temperature

Crystallization

Extrema in the domain

Continuous cooling diagram

Slow cooling = solidification at higher temperature.

V - EXPERIMENT

Laser assisted tape placement process

Violaine Le Louet, Steven Le Corre, Nicolas Boyard

Procédé AFP (Automated Fiber Placement)

LEN

Challenge:

- Mimic the process at the lab scale
- Mesure surface température and heat flux
 - Short times / high power

•

Instrumented bench

First results

Heterogeneous medium Bulk heating Interfacial artifacts

Thermal modeling

Modified model :

- Equivalent homogeneous ply
- bulk heat source in a surface layer.
- thermal contact resistance

Conclusion

Multiphysical **modelling** of composite processing Heat transfer + phase change + mechanics

Specific material characterization techniques

Simulation tool 2D+3D

Specific methods (contact, mesh refinement...)

Better understanding of the process Parametric study

Acknowledgments

- Thomas Cender and Sabanci University
- C. Castelain (LTEN), B. Auvity (UN)
- IRT Jules Verne, Airbus Helicopter

arthur.levy@univ-nantes.fr