
HAL Id: hal-02871148
https://hal.science/hal-02871148

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of TFRC Loss History Initialization
Guillaume Jourjon, Emmanuel Lochin, Laurent Dairaine

To cite this version:
Guillaume Jourjon, Emmanuel Lochin, Laurent Dairaine. Optimization of TFRC Loss History Initial-
ization. IEEE Communications Letters, 2007, 11 (3), pp.276-278. �10.1109/LCOMM.2007.061707�.
�hal-02871148�

https://hal.science/hal-02871148
https://hal.archives-ouvertes.fr

Optimization of TFRC Loss History Initialization
Guillaume Jourjon, Emmanuel Lochin, and Laurent Dairaine

Abstract— This letter deals with the initialization of the loss
history structure in the TFRC (TCP-Friendly Rate Control)
mechanism. This initialization occurs after the detection of the
first loss event after every slowstart phase. The loss history is
crucial for the algorithm since it returns the packet loss rate
estimation. This estimation is used in the TFRC equation to
compute the sending rate. In this letter, we propose a new method
to compute the packet loss rate which is more computationally
efficient and remains as accurate as the classical commonly used
method. The motivation of this work is to reduce the computation
time and formulate a unified computation scheme. This method is
based on the Newton’s algorithm issued from numerical analysis
of the TCP throughput equation. This proposal is evaluated
analytically and the results show a significant improvement in
terms of the computation time.

Index Terms— Optimization, TFRC, transport.

I. INTRODUCTION

TFRC is a congestion control mechanism for unicast
flows operating in a best-effort Internet environment and

competing with TCP traffic [1]. This mechanism has been
integrated into DCCP [2] as one of the possible congestion
control method. The main characteristic of TFRC is the use
of a TCP equation model which provides a much lower
throughput variation over time than TCP. As a result, it is
more suitable for multimedia applications such as audio/video
streaming or voice over IP.

In addition to round trip time and received estimated
throughput,TFRC algorithm needs an estimation of the packet
loss rate. This loss estimation is computed at the receiver side
and sent periodically to the sender where the rate control is
performed. The initial packet loss estimation is crucial as it
allows the sender to compute the sending rate as described
in [1] and the receiver to correctly initialize its loss history
events. Indeed, the subsequent estimations of the packet loss
rate are based on a weighted moving average using this
history. As a consequence, the initialization of this structure
has an impact on the sending throughput and on TFRC overall
performances (for further details see section 6 in [1]).

Since TFRC equation can not be analytically solved due
to the higher exponent, the method proposed in [3] is based
on a binary search process. In every iteration, this process
computes the solution of the initialization by halving the
range of study; by the end, the result will be chosen as the
middle of the last range. This method is used by all the early
available TFRC implementations such as in ns-2 or DCCP

implementation. To the best of our knowledge, no efficient
method has been formulated. In this letter, we show that the
binary search is not efficient and needs a large number of
iterations to achieve the 5% accuracy required by the TFRC
RFC [1]. Then, we propose a method which computes faster
than the binary search method.

This letter is structured as follows. Section II states the prob-
lem and explains our proposed method. Section III provides
numerical results and analytical analysis of them. Finally,
section IV provides conclusions and perspectives.

II. OPTIMIZATION OF THE LOSS RATE COMPUTATION

In this section, we present the initialization problem and
provide the algorithm of our solution.

A. Problem statement

TFRC uses a TCP throughput model given by the following
equation (1).

X =
s

(RTT ·
√

p·2
3 + RTO ·

√
p·27
8 · p · (1 + 32 · p2))

(1)

The sending rate (X) depends on the packet loss rate (p),
the mean packet size (s) and the Round Trip Time. RTO
refers to the TCP retransmission timeout value.

During the initialization phase, TFRC acts like the TCP
slow start algorithm. This slow start phase can also occur
during the transfer if the RTO timeout expires [1]. This phase
is followed by a congestion avoidance phase as soon as the
receiver detects a loss. In order to compute the sending rate
X , TFRC needs an estimation of the current loss event rate.
This estimation is achieved using a loss history structure which
records the number of packets between successive loss events.
From this structure, the loss rate can be computed, as described
in [1].

When the slow start phase is over, the loss history has
to be initialized. The number of packets transmitted during
the slow start phase cannot be used to estimate the loss
event rate since it does not reflect the underlying packet drop
rate of the connection [3]. For this reason, existing TFRC
implementations use a simple binary search process in which
the receiver measures the receiving rate (Xmeasured) and then
starts the estimation of the corresponding loss event rate.
This estimation is performed by computing the packet loss
rate that should have allowed the sender to transmit at the
rate Xmeasured using (1). We claim that the loss history’s
initialization can be improved with the use of a numerical
analysis based on Newton’s algorithm of the TFRC equation.

B. Newton’s algorithm rate estimation method

The binary search algorithm is well known for its easily
programmable properties but also for its slow convergence.
Usually, numerical problems are solved using more complex
algorithms, such as the gradient method or Newton’s algorithm
or primal-dual method. Because of the relatively simple equa-
tion used by TFRC, we propose to set a Newton’s algorithm
in order to estimate the packet loss rate. To compute this
algorithm, during the loss history initialization phase, (1) has
to be used as a simple function of p as follows:

F (p) = RTT ·
√

p · 2
3

+ RTO ·
√

p · 27
8

· p · (1 + 32 · p2)

− s

Xmeasured
(2)

Then, the problem becomes to solve F (p) = 0. (2) is a
polynomial function which can be derived as follows:

F ′(p) =
RTT ·

√
2
3

2 · √p
+RTO ·

√
27
8
·(1.5 ·√p+112 ·p 5

2) (3)

Newton’s algorithm is known to converge to the solution
in a O(n2) compared to a O(log(n)) for the binary search
algorithm [4]. Thanks to (3), we propose using Newton’s
algorithm starting with an under solution (value of p for the
first iteration). Newton’s iterative process is performed while
the convergence criterion is not reached and is computed as
follows:

pi+1 = pi − F (pi)
F ′(pi)

(4)

Newton’s algorithm is constrained by the existence of F (pi)
and F ′(pi) for all pi ∈ [a, b], where [a, b] is the study
interval with a = 0 and b = 1. This constraint leads us to
exclude values pi ≤ 0. In our method, we claim that we
have to start the process with the value a = 10−7. This
value comes from the analysis of the function F (p). Indeed,
F (p) has a double concavity. This double concavity can result
in a negative value for the next iteration of the algorithm.
Nevertheless, this double concavity has a stationary point for
p0 = 2.84 ∗ 10−2, for all RTT , s, and Xmeasured under
the hypothesis RTO = 4RTT [1]. In an obvious way, the
stationary point is no longer identical for all RTT , s, and
Xmeasured if RTO �= 4RTT . According to this stationary
point and the restriction p > 0 due to the square root, we
have to take a starting point inferior to p0. Thanks to the
convergence property of Newton’s algorithm [4], we know
that it will find the result from any starting point.

In order to compare the two methods, we introduce the
following convergence criterion:

∣∣∣∣Xmeasured − Xcomputed

Xmeasured

∣∣∣∣ � α (5)

where Xmeasured is the rate measured by the receiver,
Xcomputed is the rate computed with (1) and α is the com-
putation accuracy criterion (also called stopping criterion).
According to [1], this accuracy is recommended to be at least

TABLE I

SUMMARY OF THE NUMBER OF ITERATIONS FOR BOTH ALGORITHMS

average min max standard deviation

Binary search 21.7379 1 29 4.1656998

Newton 5.00034 3 13 0.0688248

TABLE II

EXAMPLE OF α′ VALUE

RTT Xmeasured s α′

100ms 1Mbit/s 8Kbits 0.0006 (n = 11)

400ms 2Mbit/s 8Kbits 0.000015 (n = 17)

5%, meaning that when Xcomputed equals to Xmeasured more
or less 5% the process stops. The 5% tolerance is introduced
for two main reasons: firstly (1) is difficult to invert, and
secondly the numerical computation cost of p [1]. The next
section will evaluate the convergence pace of both algorithms.

III. NUMERICAL RESULTS AND INTERPRETATION

A. Numerical results

This section presents the numerical results of our proposed
loss rate computation method compared to the classical binary
search method. We have implemented these two algorithms
in C++ and evaluated analytically the number of iterations to
compute p for given X and RTT values. All the computations
have been performed on a Pentium IV processor. The study is
performed over a large scale of bandwidth and delay values,
with an RTT ranging from 1ms to 1000ms and a bandwidth
ranging from 1KB/s to 100MB/s.

Table I shows the summary of the number of iterations
required to reach the 5% accuracy in this context.

The results concerning the binary search are expected as
this method tends to converge with a number of iterations n
[4] with:

n =
⌈
log2(

|b − a|
α

)
⌉

(6)

where [a, b] is the study interval with a = 0 and b = 1, α is the
convergence criterion and �x� denotes the ceiling of x (i.e.,
the smaller integer ≥ x). Nevertheless in (6), the convergence
criterion α is supposed to be function of the iterative parameter
(in our case p). In this study the convergence criterion is
function of Xcomputed. In order to explain the number of
iterations needed by the binary search, we have to use the
equation (7).

n =
⌈
log2(

|b − a|
α′)

⌉
(7)

where α′ is the equivalent convergence criterion on p for α =
0.05. For the same reason, as it is impossible to solve directly
the equation, the translation from α to α′ cannot be done with
a simple function. In order to illustrate this translation, we give
two examples as shown in Table II.

Our large range of numerical experiments tends to show
that there is a correlation between RTT , Xmeasured and the
new accuracy on p. Indeed, in our experiments, the number of
iterations needed to compute the binary search increase with
the RTT and Xmeasured.

278 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 3, MARCH 2007

0

 0.5

1

 1.5

2

 2.5

3

 3.5

0 1 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy

Mbytes/s

RTT=400ms
RTT=30ms
RTT=1ms

Fig. 1. Comparison of binary search and Newton’s algorithm efficiency.

The results concerning Newton’s algorithm are also linked
to the properties of this algorithm. Indeed, Newton’s algorithm
converges monotonically from any starting point [4]. Never-
theless, there is no general inferior or superior boundary for
Newton’s algorithm.

Obviously, the number of iterations is linked to the com-
putation time needed by both methods. However, even if
Newton’s algorithm requires a stable number of iterations,
we need to verify if it is more computationally efficient. In
the next section, we therefore compare the computation time
of both algorithms. We focus on the range where the binary
search algorithm is efficient.

B. Interpretation and discussion

In this section, we study the efficiency of Newton’s algo-
rithm over the binary search algorithms in terms of compu-
tation time. We define the efficiency criterion ε as the ratio
of the binary search algorithm computation time (tdicho) to
Newton’s algorithm computation time (tNewton):

ε =
tdicho

tNewton
(8)

The results are shown in Fig. 1. When the efficiency criterion
is lower than one it corresponds to a better efficiency of the
binary search algorithm.

In Fig. 1, we represent the same study case as in Table I.
We focus on the smaller range of bandwidth than in Table I
as this range is less favorable to Newton’s algorithm. In this
study range, our study shows that Newton’s algorithm is more
efficient for more than 95% of the cases, as efficient for less
than 4% and less efficient for less than 1% of the cases.

In addition, we propose to study the correlation between the
number of iterations and the number of CPU cycles needed to
reach the 5% of accuracy. In order to explore the way these
two characteristics interact, we proceed to an algorithmic study
of both algorithms. We present in Table III the number of
elementary operations in both algorithms and the theoretical
number of CPU cycles for every operation1.

Usually, the division and the square root need the highest
number of CPU cycles. We see that Newton’s algorithm

1According to Intel PIV documentation.

TABLE III

LIST OF THE NUMBER OF ELEMENTARY OPERATIONS

(n = number of iterations)

+ ∗ / sqrt

Binary search 4n + 4 8n + 8 2n + 2 n

Newton 5n 14n 3n n

Number of CPU cycles 0.5 15 70 70

TABLE IV

WORST CASE STUDY

Iterations CPU cycles

Binary search 30 10222

Newton 13 6402.5

needs more elementary operations per iteration. But as shown
previously, it also needs less iteration for a given accuracy.
Next we study these two algorithms for the worst case. For
the binary search, the worst case is when the result of the
computation is outside the range [0, 1]2. In this case, the
maximum number of iterations should be fixed a-priori as a
static variable. According to results obtained and summarized
in Table I, this variable is equal to 30. The Newton’s worst
case has been evaluated to 13 iterations by our computation
scheme. In these conditions the worst case study results are
presented in Table IV.

We show that the number of cycles needed in both cases is
largely in favor of Newton’s algorithm.

IV. CONCLUSION

In this letter, we present an efficient method to compute
the packet loss rate of the TFRC equation. We show that this
method outperforms the 5% accuracy in terms of number of
iterations and computation time. The initial results presented
in this letter show the efficiency of the proposed method. Due
to its low computation needs, it is particularly well-suited to
mobile devices with low processing power. Furthermore, due
to the low standard deviation of the number of iterations, it
is well-suited to real time processing. In future work, we will
evaluate the performance implications of using this mechanism
in a TFRC implementation.

ACKNOWLEDGMENT

We thank Jean-Luc Lamotte for his advice concerning the
algorithmic study of both algorithms. We would like to thank
anonymous reviewers and Sébastien Ardon for their valuable
remarks.

REFERENCES

[1] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate
control TFRC: protocol specification,” IETF, Request for Comments.

[2] E. Kohler, M. Handley, and S. Floyd, “Datagram congestion control
protocol (DCCP),” IETF, Request for Comments 4340, Mar. 2006.

[3] J. Widmer, “Equation-based congestion control,” Ph.D. dissertation, Uni-
versity of Mannheim, Feb. 2000.

[4] W. Gautschi, Numerical Analysis: An Introduction. Boston: Birkhäuser,
1997.

2These rare cases have been voluntary excluded from the Table I.

