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Predictor-based control of LTI remote systems with
estimated time-varying delays

Yang Deng, Vincent Léchappé, Emmanuel Moulay, and Franck Plestan, Member, IEEE

Abstract—This paper provides a practical control solution to
remote control systems with unknown time-varying delays. An
external signal which can be considered as a specific communi-
cation loop is added to estimate the unknown round-trip delay
in finite time. Then the system is stabilized with the practical
delay estimation technique and a predictor-based controller. The
main results of this paper also provide an alternative way to
design predictor-based controller for systems with known input
and output time-varying delays. The theoretical results of this
paper are illustrated by simulation results.

Index Terms—Delay systems, Lyapunov methods, Estimation

I. INTRODUCTION

CONTROL systems involving wireless communications,
called “remote control systems (RCS)” [1, Chapter 3.3]

are widely studied by the control community for the last
decades (e.g. remote flight control [2], wireless power grid
[3]). In such systems, the sensors and controllers are no longer
physically connected to each others, they share information
through telecommunications networks in order to reduce the
costs. However, such communications often introduce laten-
cies caused by protocols or communication channels. Thus, a
RCS can be modeled as a time-delay system [4] with input
and output delays.
In applications, the transmission delays are often time-varying,
which makes the control design challenging. The work in [5,
Chapter 6] considers the control of systems with a single
input time-varying delay, and the authors of [6] study the
output-feedback of systems with a single output time-varying
delay, but these two methods can only cope with single slow-
varying delay. For systems with both time-varying input and
output delays, the results in [7] provide a predictor-based
control solution and this method is extended in [8] in order to
deal with the output-feedback case. However, [5], [6], [7], [8]
cannot deal with unknown time-varying delays, the delays are
supposed to be known or practically known (i.e. the known
nominal delay values are sufficiently close to the real time-
delays). In [9], the passification-based adaptive controller is
adopted to stabilize a class of hyper–minimum–phase systems
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with unknown time-varying delays. This method is simple, but
it also has two main drawbacks:
• it cannot stabilize system with arbitrarily long delays;
• it cannot deal with non-minimum–phase systems.

Although the control of RCS with unknown time-varying
delays is challenging, some practical solutions can be

made to simplify this problem. In [10], a specific communi-
cation loop is introduced to measure the round-trip delay of
the system, the system clock is sent along with the control
signal to the plant and along with the plant’s output back
to the controller, then one can measure the delay value by
using the current clock and the received delayed clock. At
the meantime, the delay measurement value is used in an
adaptive Smith predictor [11] to stabilize the system. With
this method, the unknown round-trip time-varying delay is
technically measured thanks to the physical nature of the
system. Inspired by the technique [10], another practical delay
estimator [12] is introduced to estimate the round-trip delay,
it is more robust than the delay measurement method in
the presence of channel inherent noises [13], the detailed
comparison between them are given in [12, Section IV-E].
The main objective of this work is to combine the practical
delay estimation algorithm [12] and the predictor-based con-
troller [5] to provide a practical control solution to the RCS
with time-varying input and output delays. The theoretical
results will show that the proposed practical control solution
can stabilize systems with fast-varying output delays.
This paper is organized as follows, the frameworks of the
control loop and the practical delay estimation loop are in-
troduced in Section II, then the control problem is formulated
in Section III in details. The main stability and convergence
results are provided in Section IV, and the theoretical results
are illustrated by simulation results given in Section V. Finally,
a conclusion ends this paper with Section VI.

II. FRAMEWORK OF THE CONTROLLER AND THE
PRACTICAL DELAY ESTIMATOR

In this section, the frameworks of the controller and the
practical delay estimator are introduced, see Figure 1. The
control solution presented in Figure 1 is comprised of two
different loops:
• Control loop (black loop of Figure 1): This loop is the

standard control loop of the system, the control signal
u(t) is transmitted to the plant through a channel that is
subject to a time-varying delay hi(t). Thus, the delayed
control signal u(t − hi(t)) is applied to the plant at the
current instant, and then the state measurement x(t) is
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Fig. 1: Control and practical delay estimation of RCS with
time-varying delays.

sent back to the controller. Due to the transmission delay
ho(t), only the delayed state information x(t − ho(t)) is
available to the controller.

• Delay estimation loop (green loop of Figure 1): This
loop is a specific communication loop of the system, of
which the only use is to estimate the unknown round-
trip delay, as done in [10], [12]. An external signal s(t)
is generated by the controller and transmitted to the
plant along with the control signal u(t). Therefore, the
delayed signal s(t − hi(t)) is received by the plant of
Figure 1. When the delayed control input u(t− hi(t)) is
injected into the plant, the signal s(t−hi(t)) is transferred
to the plant’s transmitter, then the transmitter sends the
state measurement x(t) and the delayed signal s(t−hi(t))
back to the controller. Consequently, the delayed state
y(t) = x(t − ho(t)) and the delayed signal s(t − h(t)) =
s(t− ho(t)− hi(t− ho(t))) are available to the controller
at the same time, and s(t − h(t)) is used to compute
the delay estimation ĥ(t) which will be plugged into the
control algorithm. In real applications, an additional DSP
(Digital Signal Processor) is attached to the plant to build
this specific communication loop, please see [10, Fig. 7]
for details about the configuration.

The delay estimation loop has the following benefits:
• The delay estimation loop is isolated from the control

loop, the external signal does not depend on the state
or input information of the system. Moreover, the delay
identifiability [14] of the system is no longer required.
For instance, the work of [10] uses the system clock to
measure the round-trip delay, the system clock s(t) = t is
independent of the system.

• It is not necessary to estimate hi(t) and ho(t) separately,
only the round-trip delay is required by the controller.
The synchronization between the controller and the plant
is not required [10, Section III-A] since all of the com-
putations are done on the controller.

III. PROBLEM FORMULATION

Throughout this paper, the following notations are used, the
identity matrix with size n×n writes as In, and the Euclidean

norm of a matrix is defined as ‖ · ‖. The maximum and
minimum eigenvalues of a matrix P read as λ̄ (P) and λ (P),
respectively. According to [15], the notation xt(θ) represents
x(t + θ), with θ ∈ [−h,0]. The right-hand time-derivative of
a function f (·) at instant t − h(t) reads as ḟ (t − h(t)), and
d
dt ( f (t − h(t))) denotes the right-hand time-derivative of the
function composition t 7→ f (t − h(t)). Recall the chain rule
given in [16, Theorem 5.5], the relation between d

dt f (t−h(t))
and ḟ (t−h(t)) is given as

d
dt

f (t−h(t)) = ḟ (t−h(t))(1− ḣ(t)). (1)

The sign-function [17, eqs. (1.13)-(1.14)] satisfies

sign(x) =

{
1, if x > 0
−1, if x < 0

(2)

and sign(0) ∈ (−1,1). Consider the frameworks given in
section II, the RCS is supposed to be linear time-invariant
(LTI) and with full-state measurement:{

ẋ(t) = Ax(t)+Bu(t−hi(t)),
y(t) = x(t−ho(t)).

(3)

The round-trip delay of the system (3) reads as

h(t) = ho(t)+hi(t−ho(t)). (4)

System (3) is controlled by the predictor-based controller

u(t) = K

eAĥ(t)x(t−ho(t))+
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds︸ ︷︷ ︸

z(t)

 (5)

where ĥ(t) is an estimation of the round-trip delay (4).

Remark 1. The predictor-based controller (5) has an integral
term, which is an infinite-dimensional term that must be
computed by numerical approaches. However, inappropriate
numerical approach may lead to instability [18]. In order
to overcome this issue, the trapezoid method given in [19,
p.1548] is adopted in this paper.

The initial condition of the system (3) reads as

x(θ) = φx(θ), u(θ) = φu(θ), θ ∈ [−h̄,0) (6)

where h̄ is the upper bound of the round-trip delay (4). In
order to simplify the stability analysis, one chooses the initial
condition of z(t) such that

‖φu(θ)‖ ≤ ‖K‖‖φz(θ)‖, θ ∈ [−h̄,0),
‖φ̇u(θ)‖ ≤ ‖K‖‖φ̇z(θ)‖, θ ∈ [−h̄,0),
u(0) = Kz(0).

(7)

The super-twisting algorithm based delay estimator [12] is

˙̂h(t) = 1− 1
ṡ(t− ĥ(t))

w(t) (8)

where w(t) satisfies that

w(t) =−λ |σ(t)|0.5sign(σ(t))+w1(t). (9)



The term σ(t) = s(t− ĥ(t))− s(t−h(t)) is called the “sliding
variable”, and w1(t) given in (9) is determined by the following
dynamics

ẇ1(t) =

{
−w(t), if |w(t)|> W̄
−α · sign(σ(t)), if |w(t)| ≤ W̄

. (10)

According to [17, Theorem 4.5] and [12, Theorem 1], if λ ,
α , W̄ are sufficiently large, then after a finite time tF , the
convergences σ(t) = σ̇(t) = 0 and ĥ(t) = h(t) are established.
The following assumptions are necessary to the controller
design, the delay estimation, and the stability analysis.

Assumption 1. The round-trip delay (4) is upper bounded (as
stated after (6)) as well as its first and second derivatives. The
derivatives of the time-delays are bounded with

|ḣi(t)| ≤ δi, |ḣo(t)| ≤ δo. (11)

Assumption 1 is not restrictive since the transmission delays
of the real communication networks are usually bounded and
slow-varying [20, Section 4].

Assumption 2. The external signal s(t) is monotonic, it has
bounded first and second derivatives, and its first derivative
satisfies that

ε ≤ |ṡ(t)| ≤ ε̄, t ≥−h̄. (12)

Since s(t) is generated by the user, it is always possible to
find an appropriate s(t) satisfying (12) (e.g. if one sets s(t) =
kt, then one has ε = ε̄ = k).

Assumption 3. The system (3) is stabilizable, and the matrix
K given in (5) makes A+BK is Hurwitz. For all cu > 0, there
always exists a symmetric positive definite matrix P, such that

(A+BK)T P+P(A+BK) =−cuIn. (13)

IV. MAIN RESULTS

The main results of this article are stated as follows.

Theorem 1. Consider the framework displayed in Figure 1,
the RCS (3) is controlled by the control solution composed
of the approximated predictor-based controller (5) and the
practical delay estimator (8)-(9)-(10) based on the external
signal s(t). There exists a finite time tF > 0 such that the round-
trip delay (4) is perfectly estimated, and then the closed-loop
system of z(t) is globally uniformly exponentially stable

‖z(t)‖ ≤M1 max
s∈[−h̄,0]

‖z(s)‖e−ηt , t ≥ 0 (14)

with positive constants M1, η . Moreover, there also exists a
positive constant M2 such that the state of the system x(t)
globally converges to zero with decay rate η:

‖x(t)‖ ≤M2 max
s∈[−h̄,0]

‖z(s)‖e−ηt , t ≥ 0 (15)

Proof. The proof is divided into 3 parts: the first part studies
the system behavior on the transient phase t ∈ [0, tF); the
second part deals with the Lyapunov-Krasovskii analysis for
all t ≥ tF ; the third part derives the stability and convergence
results (14)-(15) for all t ≥ 0.

Part 1: Consider the derivative of σ(t) and Assumption 1,
then substitute (8) into the derivative gives that

σ̇(t) = ṡ(t− ĥ(t))(1− ˙̂h(t))− d
dt

s(t−h(t))

=− d
dt

s(t−h(t))+w(t).
(16)

The proof begins with the bound on σ(0): according to
Assumption 1 and the mean value theorem [16, Theorem 5.11],
there exists a constant r ∈

[
min{ĥ(0),h(0)},max{ĥ(0),h(0)}

]
,

such that

|σ(0)|= |s(t− ĥ(0)− s(t−h(0)))|= |ṡ(t− r)||ĥ(0)−h(0)|
≤ 2ε̄ h̄

(17)
with the help of |ṡ(t)| ≤ ε̄ , |h(0)| ≤ h̄, and well-chosen initial
condition |ĥ(0)| ≤ h̄. Therefore, w(0) is bounded as follows:

|w(0)| ≤ λ

√
2ε̄ h̄+ |w1(0)|, (18)

then one sets W̄ ≥ λ
√

2ε̄ h̄+ |w1(0)| ≥ |w(0)|, the statements
given in [17, Theorem 4.5] and [12, Theorem 1] ensure that:
• Delay estimation ĥ(t) converges to the round-trip delay

(4) in a finite time tF with sufficiently large λ and α .
• Since |w(0)| ≤ W̄ , then the trajectories of w(t) never

leaves the segment [−W̄ ,W̄ ] for all t ≥ 0.
Then the delay estimation dynamic satisfies that

| ˙̂h(t)| ≤ 1+W̄/ε , δ̄ , t ≥ 0. (19)

Differentiating z(t) along the trajectories of the system (3)
leads to

ż(t) =(A+BK)z(t)+( ˙̂h(t)− ḣo(t))Az(t)

− ( ˙̂h(t)− ḣo(t))A
∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

+(1− ḣo(t))eAĥ(t)Bu(t−h(t))

− (1− ˙̂h(t))eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.

(20)

Consider the dynamic (20), the boundedness |ḣo(t)| ≤ δo,
| ˙̂h(t)| ≤ δ̄ , then as done in [21, Lemma A.1], study the scalar
function

N(t) =

{
zT (t)z(t), t ≥ 0
φ T

z (θ)φz(θ), t ∈ [−h̄,0)
(21)

its dynamic along the trajectories of (20) satisfies that

Ṅ(t) = 2zT (t)ż(t)≤ 2‖A+BK‖‖z(t)‖2 +2(δ̄ +δo)‖A‖‖z(t)‖2

+2(δ̄ +δo)e‖A‖h̄‖BK‖‖A‖h̄‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖

+2(1+δo)e‖A‖h̄‖BK‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖

+2(1+ δ̄ )e‖A‖h̄‖BK‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖

≤ 2b

(
max

s∈[t−h̄,t]
‖z(s)‖

)2

= 2b max
s∈[t−h̄,t]

N(s), t ≥ 0

(22)



with

b =‖A+BK‖+(δo + δ̄ )‖A‖
+ e‖A‖h̄‖BK‖

[
(δo + δ̄ )‖A‖h̄+(2+δo + δ̄ )

]
.

(23)

The analysis given in [22, Appendix B, p.232-233] and [21,
Lemma A1] ensure that the trajectories of z(t) and ż(t) satisfy

max
s∈[t−h̄,t]

‖z(s)‖ ≤ max
s∈[−h̄,0]

‖z(s)‖ebt , t ∈ [0, tF),

max
s∈[t−h̄,t]

‖ż(s)‖ ≤ b max
s∈[−h̄,0]

‖z(s)‖ebt , t ∈ [0, tF).
(24)

The proof of this part indicates that the trajectories of z(t) and
ż(t) are bounded during the transient phase t ∈ [0, tF).
Part 2: Recall the previous work given in [12, Theorem 1], for
all t ≥ tF , the practical delay estimator (8)-(9)-(10) establishes
the 2-ideal sliding mode σ(t)≡ σ̇(t)≡ 0. Then the following
finite time delay estimation is obtained:

ĥ(t)≡ h(t), ˙̂h(t)≡ ḣ(t), t ≥ tF . (25)

By virtue of (25), the dynamic of z(t) given in (20) now reads
as

ż(t) =(A+BK)z(t)+δ (t)Az(t)

+δ (t)eAh(t)B
[

u(t)−
∫ t

t−h(t)
u̇(s)ds

]
−δ (t)A

∫ t

t−h(t)
eA(t−s)Bu(s)ds, t ≥ tF

(26)

with δ (t) , ḣ(t)− ḣo(t). Consider the Lyapunov-Krasovskii
functional

V (z,ut , u̇t , t) =V1(z)+βV2(ut , t)+ γV3(u̇t , t) (27)

with
V1(z) = zT (t)Pz(t),

V2(ut , t) =
∫ t

t−h̄
(s− t + h̄)‖u(s)‖2ds,

V3(u̇t , t) =
∫ t

t−h̄
(s− t + h̄)‖u̇(s)‖2ds.

(28)

Differentiating V1(z) along the trajectories of (26), taking the
norm of the derivative, and considering the fact t− h̄≤ t−h(t)
yields to

V̇1(z)≤−(cu−|δ (t)|c1−|δ (t)|c2)‖z(t)‖2

+
|δ (t)|

2
[
c3(‖z(t)‖2 +‖v(t)‖2)+ c4(‖z(t)‖2 +‖w(t)‖2)

]
(29)

for all t ≥ tF , with c1 = 2‖PA‖, c2 = 2e‖A‖h̄‖BK‖‖P‖,
c3 = 2‖A‖e‖A‖h̄‖B‖‖P‖, c4 = 2e‖A‖h̄‖B‖‖P‖, ‖v(t)‖ =∫ t

t−h̄ ‖u(s)‖ds, and ‖w(t)‖=
∫ t

t−h̄ ‖u̇(s)‖ds. Next, consider the
time-derivative of V2(ut , t), by using the Jensen’s inequality
[23, Proposition B.8], it leads to

V̇2(ut , t)≤ h̄‖K‖2‖z(t)‖2− 1
2h̄
‖v(t)‖2− 1

2

∫ t

t−h̄
‖u(s)‖2ds

(30)
for all t ≥ tF . Similarly, the derivative of V3(u̇t , t) satisfies that

V̇3(u̇t , t)≤ h̄‖u̇(t)‖2− 1
2h̄
‖w(t)‖2− 1

2

∫ t

t−h̄
‖u̇(s)‖2ds, t ≥ tF .

(31)

For all t ≥ tF , taking the norm of (26), and squaring the
right-hand side of the inequality, then using the power mean
inequality [24, p.203, Theorem 1] gives

‖ż(t)‖2 ≤c5‖z(t)‖2 + |δ (t)|2c6‖z(t)‖2

+ |δ (t)|2c7‖v(t)‖2 + |δ (t)|2c8‖w(t)‖2 (32)

where c5 = 4‖A + BK‖2, c6 = 4(‖A‖+ e‖A‖h̄‖BK‖)2, c7 =
4‖A‖2e2‖A‖h̄‖B‖2, and c8 = 4e2‖A‖h̄‖B‖2. After computing the
upper bounds of V̇1(z), V̇2(ut , t), and V̇3(u̇t , t), the upper bound
of the Lyapunov-Krasovskii functional (27) reads as

V (z,ut , u̇t , t)≤ λ̄ (P)‖z(t)‖2 +β h̄
∫ t

t−h̄
‖u(s)‖2ds

+ γ h̄
∫ t

t−h̄
‖u̇(s)‖2ds.

(33)

Combine (29), (30), (31), (32), and (33), the functional V +
2ηV is upper bounded by

V̇ +2ηV ≤−[cu−|δ (t)|(c1 + c2 +
1
2

c3 +
1
2

c4)

− γ h̄‖K‖2(c5 + c6|δ (t)|2)−β h̄‖K‖2−2ηλ̄ (P)]‖z(t)‖2

−
[

β

2h̄
− |δ (t)|

2
c3− γ h̄‖K‖2c7|δ (t)|2

]
‖v(t)‖2

−
[

γ

2h̄
− |δ (t)|

2
c4− γ h̄‖K‖2c8|δ (t)|2

]
‖w(t)‖2

−
[

β

2
−2β h̄η

]∫ t

t−h̄
‖u(s)‖2ds−

[
γ

2
−2γ h̄η

]∫ t

t−h̄
‖u̇(s)‖2ds

(34)
for all t ≥ tF . Indeed, the inequality V̇ +2ηV ≤ 0 holds when
• the parameters β , γ , and η are sufficiently small;
• |δ (t)| is sufficiently small.

Remind that the parameters β , γ , and η are the parameters
of the Lyapunov-Krasovskii functionnals so they can be taken
sufficiently small. By virtue of the chain rule [16, Theorem
5.5], the following boundedness is obtained:

|δ (t)| ≤
∣∣∣∣ d
dt

hi(t−ho(t))
∣∣∣∣= |(1− ḣo(t))ḣi(t−ho(t))|

≤ δi(1+δo).

(35)

Thus, for all given bound δo, there always exists a sufficiently
small δi, such that |δ (t)| is small enough to ensure that (34)
is negative definite, which leads to the following convergence:

V (t)≤V (tF)e−2η(t−tF ), t ≥ tF . (36)

Consequently, if the parameter δi is sufficiently small (i.e. hi(t)
varies sufficiently slow), then the closed-loop system of z(t)
is exponential stable with decay rate η .
Part 3. Consider the bounds given in (24), it is possible to
derive that

V (tF)≤ λ̄ (P)‖z(tF)‖2 +β h̄2‖K‖2

(
max

s∈[tF−h̄,tF ]
‖z(s)‖

)2

+ γ h̄2‖K‖2

(
max

s∈[tF−h̄,tF ]
‖ż(s)‖

)2

=
[
λ̄ (P)+(β + γb2)h̄2‖K‖2]e2btF︸ ︷︷ ︸

M2
0

·

(
max

s∈[−h̄,0]
‖z(s)‖

)2

.

(37)



Combining (36) and (37) implies that

‖z(t)‖ ≤ M0√
λ (P)

eηtF︸ ︷︷ ︸
M1

max
s∈[−h̄,0]

‖z(s)‖e−ηt (38)

for all t ≥ tF . During the transient phase t ∈ [0, tF), the term
eη(tF−t) is always larger than 1, then (24) implies that

‖z(t)‖ ≤ max
s∈[−h̄,0]

‖z(s)‖e(b+η)tF e−ηt , t ∈ [0, tF). (39)

Indeed, the right-hand side of (39) is smaller than
M1 maxs∈[−h̄,0] ‖z(s)‖e−ηt since

M1 ≥

√
λ̄ (P)
λ (P)

e(b+η)tF ≥ e(b+η)tF . (40)

Thus, inequality (38) hold s for all t ≥ 0, and then the closed-
loop system of z(t) is globally uniformly exponentially stable
(GUES) with decay rate η for all t ≥ 0. Moreover, the stability
of z(t) implies the following inequality

max
s∈[t−h̄,t]

‖z(s)‖ ≤M1eη h̄ max
s∈[−h̄,0]

‖z(s)‖e−ηt , t ≥ 0. (41)

Now, move on to the state x(t) of the original system, it is
used to compute the predictor z at a future instant t + h̃ with
h̃∈ [0, h̄]. If h̃> h̄, then t+ h̃−ho(t+ h̃)> t that contradicts the
expression of the predictor (5). Thus, the following equality
is available

x(t) = e−Ah(t+h̃)

[
z(t + h̃)−

∫ t+h̃

t+h̃−h(t+h̃)
eA(t+h̃−s)Bu(s)ds

]
.

(42)
Taking the norm of (42), and applying (38), (41) gives that

‖x(t)‖ ≤ e‖A‖h̄
[
‖z(t + h̃)‖+ e‖A‖h̄‖BK‖h̄ max

s∈[t+h̃−h̄,t+h̃]
‖z(s)‖

]
≤
[
e‖A‖h̄ + e2‖A‖h̄‖BK‖h̄eη h̄

]
M1︸ ︷︷ ︸

M2

max
s∈[−h̄,0]

‖z(s)‖e−ηt

(43)
for all t ≥ 0. Thus, the closed-loop system of x(t) converges
exponentially to zero that ends the proof.

Theorem 1 ensures that the practical delay estimator [12]
and the predictor-based controller (5) can stabilize RCS with
unknown time-varying delays, even if the output delay is fast-
varying (i.e. large δo is endured). The main results of Theorem
1 can also be extended to the predictor-feedback of systems
with known time-varying delays.

Proposition 1. Consider the system (3) with known time-
varying delays hi(t), ho(t), and the round-trip delay h(t)
shown in (4). The predictor-based controller

u(t) = K
[

eAh(t)x(t−ho(t))+
∫ t

t−h(t)
eA(t−s)Bu(s)ds

]
(44)

leads to the global uniform exponential stable closed-loop
system, if the input-delay hi(t) varies sufficiently slowly.

Proposition 1 is similar to the main results of [7, The-
orem 1], in which another version of the round-trip delay

h(t) = hi(t)+ ho(t) is used to computed the controller (44).
The stability conditions of them are similar, but the round-trip
delay given in [7] is more difficult to measure or to estimate
in application than the alternative one (4). Thus, Proposition
1 emphasizes another theoretical contribution of this work.

V. SIMULATION RESULTS

In this section, the double integrator system given in [7]:ẋ(t) =

[
0 1
0 0

]
x(t)+

[
0

0.7

]
u(t−hi(t)),

y(t) = x(t−ho(t))

(45)

with unknown time-varying delays

hi(t) = 0.5+0.4sin(t), ho(t) = 0.5+0.45sin(25 · t) (46)

is considered. The three control schemes are tested:
• Without delay estimation: one does not estimate the

time-varying delays, and uses the constant mean value of
the round-trip delay ĥ(t) = hm = 1.0s to build the control
law (5);

• With delay estimator introduced in [25]: one uses
the combination of the gradient descent based delay
estimator ˙̂h(t) = ρh

[
u(t− ĥ(t))−u(t−h(t))

]
u̇(t − ĥ(t))

and controller (5) to stabilize the system.
• With proposed method: one uses the technique of

Theorem 1 to estimate the unknown round-trip delay
(with practical delay estimator (8)-(9)-(10)) and stabilize
the system (with controller (5)).

The parameters of the simulations are chosen as:
• Parameters of the controller (5): the feedback ma-

trix reads as K =
[
−4.2857 −5.7143

]
, and the initial

conditions are defined by φx(θ) = φz(θ) =
[
1 2

]T , and
φu(θ) =−1 for all θ ∈ [−h̄,0);

• Parameters of the delay estimator given in [25]: the
gain ρh is set to 1.5×10−4;

• Parameters of the delay estimator (8)-(9)-(10): the
external signal is set to s(t) = t, the parameters read as
λ = 180, W̄ = 200, α = 20, ĥ(0) = 0.5, and w1(0) = 0.

The sampling period of the simulation is set to Ts = 0.001s,
and the results are presented in Figure 2, it is observed that
the control schemes of Theorem 1 and [25] have good control
performances on the system, whereas the curve with control
law (5) and constant ĥ(t) = hm = 1.0s diverges. Thus, the
proposed delay estimation technique is effective to the control
of system (45) with time-varying delays (46). Moreover,
Figure 2a shows that the practical solution given in Theorem 1
has better control performances (i.e. x(t) converges exactly to
the origin without oscillations) than the existing method [25].
Next, Figure 2b claims that the round-trip delay is accurately
estimated by the practical delay estimator (8)-(9)-(10), but the
gradient descent method [25] has large estimation errors since
the round-trip delay is fast-varying. The slight fluctuation of
the estimation error (with the proposed delay estimator) is
caused by the imperfect numerical implementation of the sign-
function (2), please refer to [17], [12] for details.
Finally, although the output delay ho(t) and the round-trip
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(a) State evolution of system (45) with three control schemes.
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(b) Delay estimation error of the proposed method and [25].

Fig. 2: State evolution and delay estimation of different control
solutions.

delay h(t) are fast-varying (with derivative bound δo = 11.25),
they cannot affect the closed-loop stability if the input-delay
hi(t) is sufficiently slow-varying (with derivative bound δo =
0.4). Thus, the theoretical results provided by Proposition 1
are also illustrated by Figure 2.

VI. CONCLUSION

In this article, the practical delay estimation method given
in [12] is combined with predictor-feedback to stabilize a
class of remote control systems. The theoretical and numerical
results illustrate that the round-trip delay estimated by [12]
can be used to build control law for such systems. More-
over, Proposition 1 also provides an alternative choice of the
predictor-based control with known time-varying input and
output delays, which is more feasible in practice. The main
results of this paper will be extended to the output feedback
case (with partial state knowledge) for future works.
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