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Introduction

The reduction of pore pressure during reservoir production changes the initial stress state within the reservoir, which results in increased net stress on reservoir and the surrounding rock [START_REF] Holt | Permeability reduction induced by a nonhydrostatic stress field[END_REF][START_REF] Ruistuen | Influence of reservoir stress path on deformation and permeability of weakly cemented sandstone reservoirs[END_REF].

The net stress can cause strain and compaction of reservoir, if it is sufficient to overcome the strength of rock. The strain can have a large impact on the microstructures and alters the petrophysical properties of the reservoir rock.

The most common petrophysical properties are porosity and permeability, which are affected by the change in net stress [START_REF] Dautriat | Stress-dependent permeabilities of sandstones and carbonates: Compression experiments and pore network modelings[END_REF]. Many researches have been done to show the impact of net stress on the porosity and permeability of the reservoirs. In most researches, with increase of net stress, the permeability reduces because of rock compaction [START_REF] David | Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust[END_REF]. However, in some cases with an increase the net stress, permeability increases because of the stress paths [START_REF] Rhett | Stress path dependence of matrix permeability of north sea sandstone reservoir rock[END_REF].

Permeability is one of the fundamental physical properties of rocks which uses to transport hydrocarbons [START_REF] Lim | Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks[END_REF]. This property can indicate different behaviors, such as permeability hysteresis behavior [START_REF] Teklu | Experimental investigation on permeability and porosity hysteresis in low-permeability formations[END_REF], stress-dependent permeability [START_REF] Dautriat | Stress-dependent permeabilities of sandstones and carbonates: Compression experiments and pore network modelings[END_REF], and straindependent permeability [START_REF] Shin | On computation of straindependent permeability of rocks and rock-like porous media[END_REF] which can play a key role in the productivity of wells during the depletion of the reservoir. [START_REF] Teklu | Experimental investigation on permeability and porosity hysteresis in low-permeability formations[END_REF] expressed that permeability shows hysteresis behavior, which permeability decreases with increasing net stress in both consolidated and unconsolidated porous media and increases with decreasing net stress. Stress-dependent permeability has been noticed by production engineers in oil industry, which the pressure depletion can alter the net stress that can cause the change of permeability [START_REF] Yale | Plasticity and permeability in carbonates: Dependence on stress path and porosity[END_REF][START_REF] Han | Description of fluid flow around a wellbore with stress-dependent porosity and permeability[END_REF]. [START_REF] Shin | On computation of straindependent permeability of rocks and rock-like porous media[END_REF] presented that permeability behaves as the strain-dependent permeability, which the quantity of permeability can change with the variation of strain.

Permeability evolution models have been studied by several researchers in terms of porosity, stress, strain, etc [START_REF] Morris | A constitutive model for stress-induced permeability and porosity evolution of berea sandstone[END_REF][START_REF] Ma | Review of permeability evolution model for fractured porous media[END_REF]. Previous studies such as [START_REF] Shin | On computation of straindependent permeability of rocks and rock-like porous media[END_REF] showed that permeability is indirectly related to the porosity, pore size distribution, and pore architecture of the porous media. These parameters can be altered when a strain field is imposed on the porous media. Then, due to the strain-dependent porosity and the direct relation of porosity with both deformation and pore pressure, the permeability evolution model based on porosity is selected in order to present strain-dependent permeability. The relation between permeability and porosity is usually investigated based on the laboratory experiments, and quite a few theories have been proposed to express this relation [START_REF] Schutjens | Compaction-induced porosity/permeability reduction in sandstone reservoirs: Data and model for elasticity-dominated deformation[END_REF].

To understand the effect of strain-dependent permeability on hydrocarbon production, the coupled reservoir geomechanical modelling is required.

Previous studies emphasized that they are a remarkable difference in reservoir response during production between uncoupled reservoir simulations and coupled reservoir simulator with elastic deformation [START_REF] Yale | Coupled geomechanics-fluid flow modeling in petroleum reservoirs: Coupled versus uncoupled response[END_REF] and plastic deformation [START_REF] Yale | Coupled geomechanics-fluid flow modeling: Effects of plasticity and permeability alteration[END_REF]. Originally, the coupled fluid flow and deformation in porous media was first described by [START_REF] Terzaghi | Erdbaumechanik auf bodenphysikalischer grundlage[END_REF] with proposing the concept of effective stress for incompressible solid grains. Later, the extension of the Terzaghi's work to the three-dimensional was formulated by Biot (1941b,a). Subsequently, the development of poroelasticity theory for anisotropic materials and its extension to poro-elastoplasticity was developed by [START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF][START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF][START_REF] Coussy | Mechanics of Porous Continua[END_REF]. In recent years, several researchers have been published in porous media to find coupled geomechanics and reservoir flow such as, [START_REF] Phillips | A coupling of mixed and continuous galerkin finite element methods for poroelasticity i: the continuous in time case[END_REF]; [START_REF] Wei | Coupled fluid-flow and geomechanics for tripleporosity/dual-permeability modeling of coalbed methane recovery[END_REF]; [START_REF] Sanei | Finite element modeling of a nonlinear poromechanic deformation in porous media[END_REF]; [START_REF] Jiang | Coupled fluid flow and geomechanics modeling 55 of stress-sensitive production behavior in fractured shale gas reservoirs[END_REF]; [START_REF] Duŕan | An enhanced sequential fully implicit scheme for reservoir geomechanics[END_REF].

There are four methods that are currently employed in the coupling reservoir and geomechanics: full coupled, iterative coupled, loose coupled, and explicit coupled [START_REF] Settari | Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction[END_REF][START_REF] Dean | A comparison of techniques for coupling porous flow and geomechanics[END_REF]. In the full coupled scheme, the governing equations of reservoir and rock deformation are solved simultaneously at every time step. This method is unconditionally stable but it is computationally expensive [START_REF] Gutierrez | Coupling of fluid flow and deformation in underground formations[END_REF][START_REF] Pan | A new solution procedure for a fully coupled geomechanics and compositional reservoir simulator[END_REF]. In the iterative coupled scheme, there exit different types depending on which variables are kept constant. For instance, by fixing the variation of total volumetric stress for reservoir equations and the fluid pressure for geomechanics, one solves the flow problem first, and then uses computed pressure approximation to solve the deformation problem. This method is iterated until the solution converges to the desired tolerance [START_REF] Tran | Improved iterative coupling of geomechanics with reservoir simulation[END_REF][START_REF] Wheeler | Iteratively coupled mixed and galerkin finite element methods for poro-elasticity[END_REF]. In the loose coupled scheme, the coupling between reservoir and geomechanics is solved only after a certain number of flow time steps and it is only conditionally stable [START_REF] Minkoff | Coupled fluid flow and geomechanical deformation modeling[END_REF]. The explicit coupled scheme is a special case of the iterative coupled method, where only one iteration is taken and it is only conditionally stable [START_REF] Park | Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis[END_REF][START_REF] References Armero | Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions[END_REF]. Due to the high computational cost of the full coupled scheme, it is desirable to develop iterative solution schemes that can be competitive with the fully coupled approach. Kim et al. (2011a,b) proposed four types of iterative coupled procedures, such as drained split, undrained split, fixed strain split, and fixed stress split. Kim et al. (2011c) concluded that among iterative schemes, the fixed stress split strategy is unconditionally stable and has better convergence properties.

In this article, the strain-dependent permeability is analyzed using coupled reservoir geomechanical modeling. To develop the coupled reservoir and geomechanics, a fixed stress iterative coupled scheme is used. To represent fluid flow, the conservation of mass and Darcy's law by considering nonlinear permeability models are employed. To define the rock deformation, the conservation of momentum, Biot's law and DiMaggio-Sandler elastoplastic model are used. The numerical approximation is done by a mixed finite element for pore pressure and a continuous Galerkin finite element for displacement. Solutions from this coupling have been verified using analytical solutions and also experimental test data. The implementation of this study is done using the NeoPZ library, which is an object-oriented scientific computational environment, providing a framework for developing finite element schemes [START_REF] Devloo | PZ: An object oriented environment for scientific programming[END_REF][START_REF] Devloo | Object oriented tools for scientific computing[END_REF].

Model Formulation

The governing equations for coupled reservoir geomechanical modeling are combined for a set of conservation laws and constitutive laws. The conservation equations are: mass and momentum.

Mass Conservation

For a slightly compressible fluid, the mass conservation is presented as [START_REF] Rudnicki | Fluid mass sources and point forces in linear elastic diffusive solids[END_REF]:

∂ (m f ) ∂t + div (q) = 0 (1) 6 where m f is the fluid content [kg m -3 ], q = ρ f v f is the flux [kg s -1 m -2 ],
and v f [m s -1 ] is the fluid velocity. The corresponding initial and boundary conditions of mass conservation are:

I.C. = p = p • on Ω B.C. =          q • n = q n on Γ q N p = p D on Γ p D (2)
The fluid velocity in equation ( 1) is defined by the Darcy's law, as:

v f = - K η ∇p (3) 
where η is the fluid dynamic viscosity [Pa s], K is the absolute permeability tensor [m -2 ]. The absolute permeability is considered isotropic and described in terms of a scalar value κ [m -2 ], as:

K = κ I (4)
The total fluid content in equation ( 1) is expressed by:

m f = φρ f (5)
The equation ( 5) can be linearized using the expression for the Lagrangian porosity. Without loss of generality the porosity change δφ can be decomposed in two parts δφ = φ -φ • as [START_REF] Kim | Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits[END_REF]:

                   δφ = δφ matrix + δφ pore δφ matrix = α ( ev -• ev ) + φ p -φ • p δφ pore = S (p -p • ) (6)
The Lagrangian porosity is defined as follows [START_REF] Kim | Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits[END_REF][START_REF] Coussy | Poromechanics[END_REF]:

φ = φ • + α ( ev -• ev ) + φ p -φ • p + S (p -p • ) (7)
where [MPa] is the elastic rock bulk modulus in drained conditions. φ p is the plastic porosity and written as:

S = ((1 -α) (α -φ • )) /K dr , in which K dr
φ p = α p pv ( 8 
)
where pv is the plastic volumetric strain. The parameter α p is the nonlinear Biot's coefficient and shares the same restrictions of Biot's coefficient α, i.e. φ • ≤ α p ≤ 1 [START_REF] Coussy | Poromechanics[END_REF][START_REF] Bui | A coupled poroplastic damage model accounting for cracking effects on both hydraulic 52 and mechanical properties of unsaturated media[END_REF][START_REF] Da Silva | A new fixed-stress split scheme in poroplastic media incorporating general plastic porosity constitutive theories[END_REF]. There are experimental results that support the fact that α = α p [START_REF] Xie | An experimental study and constitutive modeling of saturated porous rocks[END_REF]. However, some researchers [START_REF] Zhou | A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks[END_REF]Kim et al., 2011b,c) assume that α = α p . In this research, for simplicity α = α p is considered.

The volumetric elastic strain ev can be related to volumetric total stress σ tv = tr (σ t ) /3 as follows:

(σ tv -σ • tv ) + α (p -p • ) = K dr ( ev -• ev ) (9) 
By inserting equation ( 9) into equation ( 7) and considering S e = S +φ • c f , an alternative expression for (φρ f ) is obtained as [START_REF] Kim | Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials[END_REF][START_REF] Duŕan | An enhanced sequential fully implicit scheme for reservoir geomechanics[END_REF]:

φρ f = ρ • f φ • + α K dr (σ tv -σ • tv ) + φ p -φ • p + S e + α 2 K dr (p -p • ) (10)
where S e is the inverse of Biot's modulus M [MPa], c f is the fluid compressibility. ρ • f and ρ f are the initial and current fluid density [kg m -3 ], respectively. σ • tv and σ tv are the initial and current volumetric total stress [MPa], respectively.

Momentum Conservation

The conservation of momentum under the quasi-static assumption is expressed as [START_REF] Rudnicki | Fluid mass sources and point forces in linear elastic diffusive solids[END_REF]:

div (σ t -σ • t ) = 0 (11)
where div(•) [m -1 ] is the divergence operator on the deform configuration. σ • t and σ t [MPa] are the initial and the current Cauchy total stress tensor, respectively. The corresponding initial (referred with the superscript (•) • ) and boundary conditions of momentum conservation are:

I.C. =          p = p • on Ω u = u • on Ω B.C. =          σ t • n = t on Γ σt N u = u D on Γ u D ( 12 
)
The momentum conservation in equation ( 11) can be expressed in terms of Cauchy effective stress tensor as follows:

div (σ -σ • -α (p -p • ) I) = 0 ( 13 
)
where I is the second rank identity tensor. p • and p are the initial and current fluid pressure [MPa], respectively. σ • and σ are the initial and current Cauchy effective stress [MPa], respectively. The effective stress σ is determined by linear stress-strain relationship, as:

σ-σ • = 2µ ( e -• e ) + λtr ( e -• e ) I ( 14 
)
where e is the elastic strain. The parameters µ and λ are the Lamé constants [MPa].

Elastoplastic Constitutive Models

Nonlinear elastoplastic model is defined by the theory of elastoplasticity, when a material undergoes an irreversible deformations. The total strain tensor is decomposed into two components as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

= e + p ( 15 
)
where e is the elastic strain component and p is the plastic strain component. The elastic component is reversible and the plastic component represents a permanent deformation [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The total strain is defined in terms of displacement u as:

= 1 2 ∇u + ∇ T u (16)
The elastoplastic deformation is mathematically described by four fundamental axioms as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

Elastic law. The elastic law can be defined by using the linear stress-strain relationship expressed by equation ( 14).

Yield criterion. Describes the elastic limit and the plastic part through a plasticity yield function Φ = Φ (σ, A), where A = ρ∂F p /∂χ is the hardening thermodynamic force, F p is the plastic part of Helmholtz free energy F, and χ is the hardening variable. The plasticity function assumes negative values in the elastic part and null values in the plastic part [START_REF] Kossa | Exact stress integration schemes for elastoplasticity[END_REF]. Hardening law. Specifies how the internal damage variable

. χ = .
γH evolves, in which, H (σ, A) = -∂Ψ/∂A is the hardening modulus.

Numerical integration algorithm for the elastoplastic model

The numerical integration is divided into two main steps: the elastic trial step and the plastic corrector step (or return-mapping algorithm). If the elastic trial state lies within the elastic domain or on the yield surface, the solution is accepted. Otherwise, if the trial stress in the first step fails to verify the plastic admissible condition, it is projected onto the yield surface by the return-mapping algorithm [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF].

The incremental constitutive model is formed by giving the elastic strain n-1 e

, the plastic strain n-1 p , and the hardening variable χ n-1 at a (pseudo) time step t n-1 , and also given a prescribed incremental strain tensor ∆ for the time interval [t n-1 , t n ] in order to find the following system of algebraic equations at a time-step t n (de Souza [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

n e = n-1 e + ∆ -∆γ N (σ n , A n ) χ n = χ n-1 + ∆γ H (σ n , A n ) (17)
for the unknowns n e , χ n and incremental of plastic multiplier ∆γ, it is subjected to the restrictions:

∆γ ≥ 0, Φ (σ n , A n ) ≤ 0, ∆γ Φ (σ n , A n ) = 0 (18)
Solving the elastoplastic problem occurs in two steps. First an elastic response is computed (i.e. elastic trial step), where ∆γ = 0 leading to the elastic trial stress n e trial = n-1 e + ∆ and hardening variable χ n trial = χ n-1 . Next, σ n trial and Φ (σ n trial , A n trial ) are computed as a function of n e trial . If Φ (σ n trial , A n trial ) ≤ 0, the elastic response is a valid solution and the elasto plastic variables are updated from the trial values (• ) n := (• ) n trial . Otherwise, the return-mapping algorithm is applied and a set of nonlinear equations needs to be solved [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

n e = n e trial -∆γ N (σ n , A n ) χ n = χ n trial + ∆γ H (σ n , A n ) ∆γ > 0, Φ (σ n , A n ) = 0 (19)
Once the solution n e has been calculated, the plastic strain at a time step t n can be computed as:

n p = n-1 p + ∆ -∆ e (20)

DiMaggio-Sandler Elastoplasticity Model

The original DiMaggio-Sandler elastoplasticity model was presented in [START_REF] Dimaggio | Material model for granular soils[END_REF]. It was initially applied for granular soils, and currently is used in the oil industry to present the behavior of rocks at depth [START_REF] Cecílio | An improved numerical integration algorithm for elastoplastic constitutive equations[END_REF]. The yield function Φ of DiMaggio-Sandler model is defined by a failure function F f (I 1 , √ J 2 , β), and a cap function

F c (I 1 , √ J 2 , L, β),
as follows:

Φ =          F f (I 1 , √ J 2 , β), F c (I 1 , √ J 2 , L, β), I 1 > L L I 1 X ( 21 
)
where

β is the Lode angle [°], L (χ) is the cap position parameter [MPa],
X (χ) is the current cap surface position [MPa], I 1 is the first invariant of the stress tensor [MPa], and J 2 is the second deviatoric stress tensor [MPa 2 ].

A typical 2D profile of DiMaggio-Sandler yield surface is plotted in Fig. 1 (left).

                   F f (I 1 , √ J 2 , β) = √ J 2 -Fs(I 1 ) Γ(β) F c (I 1 , √ J 2 , L, β) = ( I 1 -L RFs(L) ) 2 + ( √ J 2 Γ(β) Fs(L) ) 2 -1 (22)
with,

L (χ) =          χ 0 if χ < 0 if χ ≥ 0 (23) F s (ι) = A -C exp (B ι) X = L -RF s (L) (24) 
where

A [MPa], B [MPa -1 ], C [MPa] are material property constants and R
is the ratio of principal ellipse radii of the cap surface, and the factor Γ(β) is given by:

Γ(β) = 1 2 [(1 + sin (3β)) + 1 ψ (1 -sin (3β))] (25) 
where, ψ has the range from 7/9 to 9/7, as shown in Fig. 1 (right). The original DiMaggio-Sandler model refers to ψ = 1, such that Γ(β) = 1.

The hardening parameter χ of DiMaggio-Sandler cap model is defined through a functional of X(χ) and volumetric plastic strain pv as follows [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF]:

pv = W (exp[D (X -X • )] -1) (26)
where X • is the initial cap position [MPa]. D [MPa -1 ] and W are the material properties constants. 

Strong Statement of Coupled Reservoir Geomechanics

The strong statement of the coupled reservoir geomechanics is presented using the conservation laws given in equations ( 1) and ( 13), as follows:

                   div (σ -σ • -α (p -p • ) I) = 0 ∂(m f ) ∂t + div (q) = 0 (27)
It is completed by considering the equations ( 3) and ( 14), namely:

                   σ-σ • = 2µ ( e -• e ) + λtr ( e -• e ) I v f = -K η ∇p (28) 
The strong statement is incorporated with Dirichlet and Neumann boundary conditions in the equations ( 2) and (12).

Weak Statement of Coupled Reservoir Geomechanics

The weak statement of the coupled reservoir geomechanics is presented by using one field u as state variable for the geomechanics problem and two fields q and p for the reservoir flow problem, as:

                                       Ω (σ n -σ • -α (p n -p • ) I) • (φ u ) dΩ -Γ N (t n -t • ) • φ u dΓ = 0 Ω ρ n f κ n I η -1 q n • φ q dΩ + Γ D p n • φ q • n dΓ -Ω p n • div φ q dΩ = 0 Ω div (q n ) • φ p dΩ + Ω φρ f | n -φρ f | n-1 δt • φ p dΩ = 0 ( 29 
)
where Ω is the domain, Γ is the boundary and φ u , φ q , φ p are the test functions. The weak statement is incorporated with Dirichlet and Neumann boundary conditions in the equations ( 2) and ( 12).

Iterative Coupled Scheme

The fixed stress iterative coupled scheme is as a robust method to approximate solutions of nonlinear equations. The schematic of the solution procedures by using the fixed-stress splits is illustrated in the Figure 2. The iterative coupled scheme computes a new state (u, q, p) m in a time step of size ∆t, by applying an external loop with counter m → 1 to execute a sequence of two nonlinear solvers (a reservoir module and a geomechanics module with internal loops that counter n).

Figure 2. Iterative coupled scheme with fixed-stress split [START_REF] Kim | Sequential Methods for Coupled Geomechanics and Multiphase Flow[END_REF].

In order to describe the implementation of iterative coupled scheme, the change in porosity in equation ( 6) is rewritten as:

φ = φ • + δφ (30)            δφ = δφ pore + δφ * r +δφ * g δφ matrix δφ = δφ pore + δφ * r + δφ * g (31)
where

                 δφ pore = S (p -p • ) δφ matrix = α 2 K dr (p -p • ) δφ * r + α K dr (σ tv -σ • tv ) + φ p -φ • p δφ * g ( 32 
)
where δφ * r and δφ * g are the matrix parts of porosity change. The variation of the fluid content expressed by equations ( 10) and ( 32) is computed using two stages [START_REF] Settari | A coupled reservoir and geomechanical simulation system[END_REF][START_REF] Mikelić | Convergence of iterative coupling for coupled flow and geomechanics[END_REF][START_REF] Duŕan | An enhanced sequential fully implicit scheme for reservoir geomechanics[END_REF]:

1. For the reservoir module the variation of δφ pore and δφ * r are computed and the δφ * g is considered constant;

2. For the geomechanics module δφ * g is updated.

At the first step, it is set to δφ * m-1 g → 0 and add the (α n-1 ) 2 /K dr to the reservoir module, and the equation is solved as follows:

• Reservoir Module: by allowing to compute implicitly p n,m , while the total volumetric stress and the plastic porosity are constant during solving the reservoir flow iterations, the porosity φ n,m is approximated as:

                         φ n,m ≈ φ • + δφ n,m pore + δφ * n-1,m r + δφ * m-1 g φ n,m ≈ φ • + S (p n,m -p • ) δφpore + α n-1 2 /K dr (p n,m -p • ) δφ * r + δφ * m-1 g δφ * g (33)
Consecutively, the pressure is transferred to the geomechanics module and the equation is solved as follows:

• Geomechanics Module: Once the pressure p n,m is determined, then the term δφ * m g is computed implicitly using the expression:

δφ * m g = (α n-1 ) 2 K dr (σ n,m tv -σ • tv ) + φ n,m p -φ • p (34)
It is considered to maintain the Biot coefficient constant during a timestep iteration and only between timesteps is updated using the following expression [START_REF] Kim | Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials[END_REF]:

α = 1 - K drep Ks ; K drep = δσv δ v ( 35 
)
where

K drep [MPa] is the elastoplastic tangent bulk modulus, K s [MPa]
is the solid bulk modulus, δσ v [MPa] is volumetric effective stress variation, and δ v is the volumetric total strain variation.

The iteration between both reservoir and geomechanics module is repeated until a desired stopping criteria is reached.

Permeability evolution models

To be able to describe the strain-dependent permeability properly, it is required to review the available permeability models, in order to choose an appropriate one. Permeability evolution models have been studied by several researchers in terms of porosity, stress, strain, temperature, chemical process, etc. [START_REF] Zhu | The transition from brittle faulting to cataclastic flow: Permeability evolution[END_REF][START_REF] Morris | A constitutive model for stress-induced permeability and porosity evolution of berea sandstone[END_REF][START_REF] Ma | Review of permeability evolution model for fractured porous media[END_REF]. Generally, there are three main types of permeability evolution models under mechanical condition in porous media, i.e. based on (i) porosity, (ii) stress, and (iii)

strain, that can be applied to specific conditions. The purpose of this section is to review the permeability models and choose the suitable ones.

Permeability evolution models based on porosity

Several semi-empirical equations have been proposed to estimate rock permeability κ based on the porosity φ. The Table 1 summarizes some permeability-porosity models found in the literature.

Table 1. Permeability-porosity models [START_REF] Kozeny | Uber kapillare leitung des wassers im boden[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF][START_REF] Walsh | The effect of pressure on porosity and the transport properties of rock[END_REF][START_REF] Costa | Permeability-porosity relationship: A reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption[END_REF][START_REF] Petunin | An experimental study for investigating the stress dependence of permeability in sandstones and carbonates[END_REF][START_REF] Nelson | Permeability-porosity relationships in sedimentary rocks[END_REF][START_REF] Davies | Stress-dependent permeability: Characterization and modeling[END_REF].

Model Formulation Comments

Kozeny

-Carman κ = φ 3 Bcτ 2 c Sc 2 S c m -1 is specific surface area, τ c is tortuosity, B c is pore shape coefficient. Costa κ = c φ Zc 1-φ c and Z c are the constant coefficient. Petunin κ κ • = φ φ • Zg Z g is the constant coefficient.
Nelson log 10 (κ) = Z n φ + n Z n and n are the constant coefficient.

Davies κ = κ • exp Z d φ φ • -1 Z d is the constant coefficient.

Permeability evolution models based on stress

Many studies have been done to investigate a relationship between permeability κ and stress σ in porous media. The Table 2 summarizes some permeability-stress models found in the literature.

Table 2. Permeability-stress models [START_REF] Ghabezloo | Effective stress law for the permeability of a limestone[END_REF][START_REF] Zhou | Stress-dependent permeability of carbonate rock and its implication to co2 sequestration[END_REF][START_REF] David | Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust[END_REF][START_REF] Xu | A coupled model for brittle porous rocks with stress dependent of permeability[END_REF][START_REF] Raghavan | Productivity changes in reservoirs with stress-dependent permeability[END_REF]. 

Model

= κ • exp (a d (σ a -σ • a )) a d is the constant coefficient. Raghavan κ = κ • exp (a r (σ m ))
σ m is the effective mean stress, a r is the constant coefficient.
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Permeability evolution models based on strain

Few researches have been published to show the relation between permeability κ and strain in porous media. The Table 3 summarizes some permeability-strain models found in the literature.

Table 3. Permeability-strain models [START_REF] Main | Fault sealing during deformation-band growth in porous sandstone[END_REF][START_REF] Minkoff | Coupled fluid flow and geomechanical deformation modeling[END_REF][START_REF] Ni | Experimental investigation of the influence of differential stress, confining pressure and strain on aquifer sandstone permeability[END_REF].

Model Formulation Comments Main κ = κ 0 exp [a mn ( a -• a )]
• a and a are the initial and current axial strain, a mn is the constant coefficient.

Minkoff or Ni κ = a m exp (b m ( v ))
v is the volumetric strain, a m and b m are the constant coefficient.

Strain-dependent permeability models

During the depletion of hydrocarbon reservoirs, porosity and permeability may change in response to an increase of the effective stress, which can alter the pore geometry of the reservoir rock [START_REF] Zimmerman | Compressibility of Sandstones (Developments in Petroleum Science)[END_REF][START_REF] Schatz | Reservoir performance changes due to inelastic deformation[END_REF]. The variation of pore volume due to increase effective stress has an impact on both porosity and permeability [START_REF] Santos | Stress-dependent permeability measurement of indiana limestone and silurian dolomite samples in 59 hydrostatic tests[END_REF]. In addition, previous studies such as [START_REF] Shin | On computation of straindependent permeability of rocks and rock-like porous media[END_REF] showed that permeability is indirectly related to the porosity, pore size distribution, and pore architecture of the porous media. These parameters are induced when a strain field is imposed on the porous media. Then, due to the strain-dependent porosity and the direct relation of porosity with both deformation and pore pressure, the permeability evolution model based on porosity is selected in order to present strain-dependent permeability. In this study, various permeability-porosity models (reported in Table 1) are used and modified to consider the initial permeability κ • and porosity φ • which are given in Table 4.

Table 4. The modified permeability-porosity models [START_REF] Costa | Permeability-porosity relationship: A reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption[END_REF][START_REF] Petunin | An experimental study for investigating the stress dependence of permeability in sandstones and carbonates[END_REF][START_REF] Nelson | Permeability-porosity relationships in sedimentary rocks[END_REF][START_REF] Davies | Stress-dependent permeability: Characterization and modeling[END_REF].

Model Formulation Comments

Costa

κ κ • = 1-φ • 1-φ φ φ • Z
and Z are the constant coefficient.

Petunin

κ κ • = φ φ • Z Z is the constant coefficient. Nelson log 10 κ κ • = Z (φ -φ • ) + Z and are the constant coefficient. Davies κ = κ • exp Z φ φ • -1 Z is the constant coefficient.

Numerical Model Verification

Numerical implementation of the iterative coupled scheme is accomplished through the finite element method. Several numerical examples are done to verify the iterative coupled reservoir geomechanical modeling. They are included: a comparison between experimental data and numerical results for DiMaggio-Sandler plasticity model, a comparison between analytical solution and numerical results of a vertical wellbore for a linear case, and a comparison between reference solution and numerical results of a vertical wellbore for a nonlinear case.

Implementation of DiMaggio-Sandler model

The implementation of DiMaggio-Sandler elastoplasticity model has been done using the plastic return-mapping in the rotated principal stresses and it is presented in Fig. 3 (left). The numerical integration scheme for DiMaggio-Sandler is verified by comparing the numerical results with two different ex-perimental test data. The experimental data are included a uniaxial compressive loading on the McCormic sand sample provided by [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF]) and a triaxial loading on a salem limestone sample provided by [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF]. The material parameters of these two tests are presented in Table 5. Fig. 3 presents a comparison between the DiMaggio-Sandler implementation and the experimental results from articles [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF] and [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] displaying the verification of the implementation. [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF]; the arrow with a blue color in the left shows the evolution of elastoplastic model which is represented here by a point with a red color, and (right) a comparison between numerical model of DiMaggio-Sandler with the experimental data provided by [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] for the specimen SL1255.

Vertical wellbore for linear case

For a vertical wellbore drilled in an isotropic elastic rock, analytical solutions for displacement and pore pressure are given by [START_REF] Coussy | Poromechanics[END_REF], as follows:

For the pressure expression:

p (r) = p wb + p • -p wb ln re rw ln r r w (36)
For the displacement expression:

u (r) = σ wb + σ • 2µ r 2 w r ( 37 
)
The two-dimensional numerical mesh is performed by quadratic polynomial order for displacement and linear polynomial order for flux and pore pressure. The domain and boundary conditions for a vertical wellbore drilled is displayed in Fig. 4 (left). The material parameters are presented in Table 6. Fig. 5 shows the comparison of distributions of displacements, pressure, and flux. A good approximation is obtained using quadratic-linear elements. 

Vertical wellbore for nonlinear case

In this study, we develop a reference solution for a vertical wellbore (boundary is shown in Fig. 4 (left) by reducing an axisymmetric boundary value problem (BVP) to an initial value problem (IVP) using Runge-Kutta solver. To construct a Runge-Kutta approximation, it is hypothesized that the coordinate is cylindrical (r, θ, z), the approximation is axisymmetric, and the condition is steady state. The Runge-Kutta is defined as:

dy dx = f (y) (38) 
The expression ( 38) is rewritten for coupled reservoir geomechanical modeling in terms of stress σ rr and pressure p, as follows:

dy dx =                        dur dr dσrr dr dp dr dqr dr                        and f (y) =                        rσrr-λur r(λ+2µ) -σrr+( 2µur r +λ( ur r + rσrr -λur r(λ+2µ) )) r -α η k q r -η κ q r -qr r                        (39)
The approximation above can be solved as an elastoplastic problem. The initial value problem y • is evaluated at the reservoir radius r e . The detail of the reference solution by using Runge-Kutta solver can be found in [START_REF] Duŕan | An enhanced sequential fully implicit scheme for reservoir geomechanics[END_REF].

In this section, the iterative coupled reservoir geomechanical modeling for analyzing strain-dependent permeability is verified using a reference solution of axisymmetric Runge-Kutta (RK ). The geomechanics is presented by DiMaggio-Sandler elastoplastic model and the reservoir permeability is described using the permeability evolution models given in Table 4. The parameters employed to perform the simulations are presented in Table 7. All the subfigures in the Figures 6,7, 8, and 9 present a comparison for the sequential approximation with the Runge-Kutta approximation, showing verification of the models. A good approximation is obtained using a quadratic polynomial order for displacement and linear polynomial order for flux and pore pressure. The Fig. 6 (left) presents the variation of pore pressure, and (right) the variation of radial effective stress using a Costa permeability model with the coefficient = 1 and Z = 10. The Fig. 8 (left) presents the variation of pore pressure, and (right) the variation of radial effective stress using the Nelson permeability model with

Results and Discussions

The strain-dependent permeability (SDP) and its impact on production are analyzed using coupled reservoir and geomechanical modeling. The strain is represented using DiMaggio-Sandler elastoplastic model and permeability is defined using the nonlinear permeability models provided in Table 4.

The following numerical tests are implemented, such as: (1) homogeneous stress state of uniaxial compression test, (2) two-dimensional model of vertical reservoir production, (3) three-dimensional model of vertical reservoir.

Uniaxial compression test

The strain-dependent permeability is analyzed numerically by implementing a uniaxial compression test. The numerical model is done using a homogeneous stress states. The material properties for the uniaxial test are given in Table 8. Fig. 4 (right) is representative of the equivalent loading condition. The uniaxial test is modeled in a stress-rate control where the vertical stress on the top of the specimen is increased from (-1 MPa to -20 MPa).

The bottom and lateral displacement are restricted to zero displacement.

Hydraulic boundary conditions are set as follows: the initial pore pressure boundary and a constant pressure p = 1 MPa are applied on the top of specimen and the impermeable boundaries on the bottom and lateral boundaries of specimen. The evolution of loading applied on the sample to reach the final stresses is done in 20 states. 

c f MPa -1 0 Fluid dynamic viscosity η Pa s 1 × 10 -3 Initial porosity φ • 0.12 Initial Abs. permeability κ • m 2 1 × 10 -13 Petunin coefficient Z 20 A MPa 40.0 B MPa -1 0.02 C MPa 35.0 D MPa -1 0.006 R 3.0 W 0.025 X • MPa -45.0 Initial vertical total stress σ • v MPa -1.0 Initial pressure excess p • MPa 1.0 Vertical total stress σ v MPa -1.0 to -20.0
To represent the strain-dependent permeability using coupled DiMaggio-Sandler plasticity and Petunin permeability model, the results of a material point subject to evolving stresses is studied. The results of the uniaxial compression test to analyze strain-dependent permeability is shown in Fig. 10.

The results in Fig. 10 illustrate that the strain-dependent permeability can be described using coupled reservoir geomechanical modeling. The results demonstrate that porosity and permeability decrease with increasing the strain. 

Two-dimensional model of vertical reservoir production

Generally, the use of open-hole completions in the design of production wells is a specially appealing choice for oil companies because its profitable compared to the standard cased hole [START_REF] Capasso | Long-term stability study of open-hole completions in a producing hydrocarbon field[END_REF]. To analyze the impact of strain-dependent permeability on reservoir productivity, a 2D nu- Next, the stress around wellbore is changed to a reservoir pressure of 50.0

[MPa] to simulate the open-hole completion. Finally, a series of decreasing fluid pressure with the same length of time for a total time span of 10 days is applied at the inner boundary of the wellbore, as given in Table 9. The numerical model is implemented using coupled DiMaggio-Sandler elastoplastic model and four types of permeability models, including Costa, Petunin, Nelson, and Davies. To evaluate the impact of strain-dependent permeability on the various reservoir rocks, two different quantities of coefficient Z, namely 20, 40 are used. The model parameters are given in Table 10. the productivity index associated with the case when is considered a constant permeability and no geomechanical effects.

Three-dimensional model of vertical reservoir

The petroleum industry uses a large number of well production and injection to produce and enhance hydrocarbon recovery. Consequently, the purpose of this section is to describe the effect of strain-dependent permeability on the field variables when the wellbore in reservoir receives both the decrease and increase of fluid pressure.

The implementation of the 3D numerical test is similar to last section with considering a vertical wellbore with the radius r w = 0.1 m and extending the outer boundary of reservoir to r o = 10.0 m. The numerical mesh is composed of quadratic polynomial order elements for displacement and linear Raviart Thomas flux/pore pressure pairs for the fluid approximation. The model parameters are given in Table 11. The simulation is conducted as follows. First, the initial state of reservoir is computed based on a pore pressure of 50.0 [MPa] and an external stress of 60 [MPa] is imposed on both inner and outer boundaries of the reservoir.

Then, the stress around wellbore is changed to a reservoir pressure of 50.0

[MPa] to simulate the open-hole completion. Afterwards, a series of decreasing fluid pressure with the same length of time for a total time span of 10 days is applied at the inner boundary of the wellbore. Finally, a series of increasing pressure with the same length of time for a total time span of 10 days is applied at the inner boundary of the wellbore, as given in Table 12. associated with the case when is considered a constant permeability and no geomechanical effects. In addition, the distribution of variables near to the wellbore are presented in Fig. 17. 

Flow rule .

 rule Assumes the existence of a plastic potential function Ψ = Ψ (σ, A), which specifies how the plastic deformation tensor evolves in the plasticity process . p = . γN, in which N (σ, A) = ∂Ψ/∂σ is the flow direction and . γ is the plastic multiplier. The flow rule is called associative if the plastic potential function equals to yield function, namely Ψ = Φ (Davis & Selvadurai, 2002).

Figure 1 .

 1 Figure 1. (left) DiMaggio-Sandler plastic yield profile in the (I 1 , √ J 2 ) plane (Sandler & Rubin, 1979), (right) yield surface cross section of DiMaggio-Sandler model for ψ = 7/9, ψ = 1, ψ = 9/7 (Cecílio et al., 2015).

  the axial effective stress, a g and b g are the constant coefficient. Zhou κ = a z -b z ln (σ a ) a z and b z are the constant coefficient. David or Xu κ

Figure 3 .

 3 Figure 3. (left) DiMaggio-Sandler plasticity yield criterion in which failure function part is with a green color and cap function is with a red color, (middle) a comparison between numerical model of DiMaggio-Sandler with the experimental data reported by[START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF]; the arrow with a blue color in the left shows the evolution of elastoplastic model which is represented here by a point with a red color, and (right) a comparison between numerical model of DiMaggio-Sandler with the experimental data provided by[START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] for the specimen SL1255.

Figure 4 .

 4 Figure 4. Domain and boundary conditions for: (left) vertical wellbore, and (right) uniaxial compression test.

Figure 5 .

 5 Figure 5. (left) Plot of displacement, (middle) pressure, and (right) flux.

Figure 6 .

 6 Figure 6. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler and Costa permeability model. (left) pressure, and (right) effective stress.

Figure 7 .

 7 Figure 7. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler and Petunin permeability model with the coefficient Z = 10. (left) pressure, and (right) effective stress.

Figure 10 .

 10 Figure 10. 2D model of uniaxial test to see strain-dependent permeability using a Petunin model with Z = 20: (top-left) relation between porosity and total strain, (top-right) relation between porosity and plastic strain, (middle-left) relation between permeability and total strain, (middle-right) relation between permeability and plastic strain, (bottomleft) distribution of porosity, and (bottom-right) distribution of permeability at t = 1.0 s.

  merical model is implemented. The numerical mesh is composed of quadratic polynomial order elements for displacement and linear Raviart Thomas flux/pore pressure pairs for the fluid approximation. The model of cylindrical reservoir includes a vertical well with the radius r w = 0.1 m in open hole completion and the outer boundary of reservoir, extending to r o = 10.0 m. The simulation is conducted as follows. First, the initial state of the reservoir is calculated based on a pore pressure of 50.0 [MPa] and an external stress of 60 [MPa] is imposed on both inner and outer boundaries of the reservoir.

  To analyze the field variable profiles due to drawdown in open hole completion, the 2D numerical test of coupled reservoir geomechanical by considering Costa permeability in the cylindrical reservoir is implemented. The quantity of coefficient is 1 and coefficient Z is 20 and 40. The impact of strain-dependent permeability on reservoir productivity using a Costa model is shown in Fig. 11, in which the results belong to time t = 2, 6, 10 [d]. All the subfigures in the Fig. 11 present a comparison of the variables due to the various quantities of Z. Near to the wellbore, it can be observed less increments of radial flux and more reduction of porosity and permeability because of the increase the Z value from 20 to 40. In addition, the Fig. 11 at middle-right and bottom-left illustrate that the porosity and permeability are decreased by reducing the fluid pressure. The Fig. 11 at bottom-right shows the variation of radial flux near the wellbore. It can be seen that from only geomechanical effects the wellbore region deteriorates the productivity index associated with the case when is considered a constant permeability and no geomechanical effects.

Figure 11 .

 11 Figure 11. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent permeability on productivity using the Costa model. (top-left) fluid pressure, (top-right) effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity, (bottom-left) absolute permeability, and (bottom-right) flux.

Fig. 13

 13 Fig. 13 presents a comparison of the variables because of the various

Figure 12 .

 12 Figure 12. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent permeability on productivity using the Petunin model. (top-left) fluid pressure, (top-right) effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity, (bottom-left) absolute permeability, and (bottom-right) flux.

Figure 13 .

 13 Figure 13. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent permeability on productivity using the Nelson model. (top-left) fluid pressure, (top-right) effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity, (bottom-left) absolute permeability, and (bottom-right) flux.

Figure 14 .

 14 Figure 14. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent permeability on productivity using the Davies model. (top-left) fluid pressure, (top-right) effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity, (bottom-left) absolute permeability, and (bottom-right) flux.

Figure 15 .

 15 Figure 15. 3D model of the vertical reservoir to analyze the effect of strain-dependent permeability on productivity using the Petunin model. (top-left) variation of fluid pressure after 10 days production, (top-right) variation of fluid pressure after 20 days, (middle-left) variation of effective stress in z direction after 10 days production, (middle-right) variation of effective stress in z direction after 20 days, (bottom-left) variation of strain in z direction after 10 days production, (bottom-right) variation of strain in z direction after 20 days.

Figure 16 .

 16 Figure 16. 3D model of the vertical reservoir to analyze the effect of strain-dependent permeability on productivity using the Petunin model. (top-left) variation of porosity after 10 days production, (top-right) variation of porosity after 20 days, (middle-left) variation of permeability after 10 days production, (middle-right) variation of permeability after 20 days, (bottom-left) variation of flux in z direction after 10 days production, (bottom-right) variation of flux in z direction after 20 days.

Figure 17 .

 17 Figure 17. Distribution of variables in a 3D cylindrical reservoir after 10 days. (topleft) fluid pressure, (top-right) effective stress, (middle-left) strain, (middle-right) porosity, (bottom-left) permeability, and (bottom-right) flux.

Table 5 .

 5 Parameters employed for verification of DiMaggio-Sandler plasticity model.

	Test data	E	ν	A	B	C	D	W	X•	R
	Sandler 1979	100.0	0.25	0.25	0.67	0.18	0.67	0.066	0.0	2.5
	Unit [unit]	ksi		ksi	ksi -1	ksi	ksi -1		ksi	
	Fossum 1995	23456.9	0.267	209.61	1.787 × 10 -3	198.49	3.909 × 10 -4	0.189	-442.56	5.63
	Unit [unit]	MPa		MPa	MPa -1	MPa	MPa -1		MPa	

Table 6 .

 6 Parameters employed for a vertical wellbore drilled.

	Parameter	Variable [unit]	Value
	Young's modulus	E MPa	1000.0
	Poisson's ratio	ν	0.2
	Biot coefficient	α	0
	Fluid compressibility	c f MPa -1	0
	Fluid dynamic viscosity	η Pa s	1 × 10 -3
	Initial porosity	φ •	0.1
	Initial Abs. permeability	κ • m 2	1 × 10 -13
	Initial hydrostatic total stress	σ • MPa	-50
	Initial pressure excess	p • MPa	30
	Mud pressure	p wb MPa	20
	Internal BC normal stress	σ wb	-20
	Tolerance for stop criterion	ε	

u = ε p 1 × 10 -7

Table 7 .

 7 Parameters employed for axisymmetric Runge-Kutta and vertical wellbore.

	Parameter	Variable [unit]	Value
	Young's modulus	E MPa	8000.0
	Poisson's ratio	ν	0.2
	Biot's coefficient	α	1
	Fluid compressibility	c f MPa -1	0
	Fluid dynamic viscosity	η Pa s	1 × 10 -3
	Initial porosity	φ •	0.12
	Initial Abs. permeability	κ • m 2	4 × 10 -13
	Permeability coefficient	Z	10
	A	MPa	40.5
	B	MPa -1	0.00028
	C	MPa	18.0
	D	MPa -1	0.00001
	R		2.0
	W		0.00001
	X •	MPa	-40.0
	Initial hydrostatic total stress	σ • MPa	-40.0
	Initial pressure excess	p • MPa	30.0
	Wellbore pressure	p w MPa	20.0
	Internal BC normal stress	σ w	-20.0
	Final time	t end s	100000000

Table 8 .

 8 Parameters employed for uniaxial test to analyze strain-dependent permeability.

	Parameter	Variable [unit]	Value
	Young's modulus	E MPa	3800.0
	Poisson's ratio	ν	0.2
	Biot's coefficient	α	1
	Fluid compressibility		

Table 9 .

 9 A series of decreasing fluid pressure for a 2D cylindrical reservoir.

	Time [d]	1	2	3	4	5	6	7	8	9 10
	Well pressure MPa 50 47 44 41 38 35 32 29 26 23

Table 10 .

 10 Parameters employed for strain-dependent permeability on a 2D reservoir productivity.

	Parameter	Variable [unit]	Value
	Young's modulus	E MPa	8000.0
	Poisson's ratio	ν	0.2
	Biot's coefficient	α	1
	Fluid compressibility	c f MPa -1	0
	Fluid dynamic viscosity	η Pa s	1 × 10 -3
	Initial porosity	φ •	0.12
	Initial Abs. permeability	κ • m 2	4 × 10 -13
	Permeability coefficient	Z	20 and 40
	A	MPa	40.5
	B	MPa -1	0.00028
	C	MPa	18.0
	D	MPa -1	0.00001
	R		2.0
	W		0.00001
	X •	MPa	-40.0
	Initial hydrostatic total stress	σ • MPa	-60.0
	Initial pressure excess	p • MPa	50.0
	Time step size	∆t d	1.0
	Final time	t end d	10.0
	6.2.1. 2D model of vertical reservoir using Costa permeability model

Table 11 .

 11 Material parameters employed for strain-dependent permeability in a 3D reservoir.

	Parameter	Value	Variable [unit]
	Young's modulus	5000.0	E MPa
	Poisson's ratio	0.2	ν
	Biot's coefficient	1	α
	Fluid compressibility	0	c f MPa -1
	Fluid dynamic viscosity	1 × 10 -3	η Pa s
	Initial porosity	0.12	φ •
	Initial Abs. permeability	1 × 10 -13	κ • m 2
	Permeability coefficient	10.0 and 25.0	Z
	A	50.0	MPa
	B	0.027	MPa -1
	C	40.0	MPa
	D	0.0005	MPa -1
	W	0.0012	
	R	3.0	
	X •	-74.0	MPa

the coefficient = 0 and Z = 10. near the wellbore. It can be seen that from only geomechanical effects the wellbore deteriorates the productivity index associated with the case when is considered a constant permeability and no geomechanical effects. 

2D model of vertical reservoir using Davies permeability model

Conclusions

The strain-dependent permeability on the productivity of reservoirs is analyzed using the coupled reservoir geomechanical modeling, in which the DiMaggio-Sandler elastoplasticity model and four nonlinear permeability models, e.g., Costa, Petunin, Nelson, and Davies are applied. The results show that by decreasing fluid pressure, the effective stress increases, and then the quantity of porosity and permeability decrease. The results also indicate that by increasing the permeability coefficient Z, less increments of radial flux and more reduction of porosity and permeability near to the wellbore can be observed. In addition, the strain-dependent permeability in a 3D cylindrical reservoir that receives a decrease and an increase of wellbore pressure is analyzed. The results emphasize that the wellbore lost some percent of porosity and permeability by decreasing and increasing of fluid pressure because of elastoplastic deformation. Finally, the results of strain-dependent permeability illustrate that from only geomechanical effects the wellbore region deteriorates the productivity index associated with the case when is considered a constant permeability and no geomechanical effects.
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