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Abstract

Permeability as an important property plays a key role in reservoir perfor-

mance, numerical reservoir simulation, drilling and production planning. In

such reservoirs, stress and strain alters induced by extraction and injection

of fluid may substantially change permeability in an irreversible manner.

With regard to this phenomenon, several reservoirs may require to consider

strain-dependent permeability, in order to have an accurate performance.

In this paper, the strain-dependent permeability is analyzed using cou-

pled reservoir geomechanical modeling. This coupling is implemented using

a fixed stress iterative coupled scheme. In this coupling, the fluid flow is pre-

sented by Darcy’s law with considering nonlinear permeability models. The
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geomechanical analysis includes the linear part based on Biot’s theory and

the nonlinear part based on an elastoplastic model. The numerical approx-

imation is done by employing mixed finite element for reservoir flow and a

continuous Galerkin finite element for geomechanics. Several numerical simu-

lations are performed to analyze the impact of strain-dependent permeability

on reservoir productivity.
Keywords: Strain-dependent permeability, Reservoir productivity,

Iterative coupled scheme, Finite element analysis, Reservoir geomechanical

modeling.

1. Introduction

The reduction of pore pressure during reservoir production changes the

initial stress state within the reservoir, which results in increased net stress

on reservoir and the surrounding rock (Holt, 1990; Ruistuen et al., 1999).

The net stress can cause strain and compaction of reservoir, if it is sufficient

to overcome the strength of rock. The strain can have a large impact on the

microstructures and alters the petrophysical properties of the reservoir rock.

The most common petrophysical properties are porosity and permeability,

which are affected by the change in net stress (Dautriat et al., 2007). Many

researches have been done to show the impact of net stress on the porosity

and permeability of the reservoirs. In most researches, with increase of net

stress, the permeability reduces because of rock compaction (David et al.,

1994). However, in some cases with an increase the net stress, permeability
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increases because of the stress paths (Rhett, 1992).

Permeability is one of the fundamental physical properties of rocks which

uses to transport hydrocarbons (Lim & Kim, 2004). This property can in-

dicate different behaviors, such as permeability hysteresis behavior (Teklu

et al., 2016), stress-dependent permeability (Dautriat et al., 2007), and strain-

dependent permeability (Shin et al., 2014) which can play a key role in the

productivity of wells during the depletion of the reservoir. Teklu et al. (2016)

expressed that permeability shows hysteresis behavior, which permeability

decreases with increasing net stress in both consolidated and unconsolidated

porous media and increases with decreasing net stress. Stress-dependent

permeability has been noticed by production engineers in oil industry, which

the pressure depletion can alter the net stress that can cause the change of

permeability (Yale & Crawford, 1998; Han & Dusseault, 2003). Shin et al.

(2014) presented that permeability behaves as the strain-dependent perme-

ability, which the quantity of permeability can change with the variation of

strain.

Permeability evolution models have been studied by several researchers

in terms of porosity, stress, strain, etc (Morris et al., 2003; Ma, 2015). Previ-

ous studies such as Shin et al. (2014) showed that permeability is indirectly

related to the porosity, pore size distribution, and pore architecture of the

porous media. These parameters can be altered when a strain field is im-

posed on the porous media. Then, due to the strain-dependent porosity and

the direct relation of porosity with both deformation and pore pressure, the
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permeability evolution model based on porosity is selected in order to present

strain-dependent permeability. The relation between permeability and poros-

ity is usually investigated based on the laboratory experiments, and quite a

few theories have been proposed to express this relation (Schutjens et al.,

2004).

To understand the effect of strain-dependent permeability on hydrocar-

bon production, the coupled reservoir geomechanical modelling is required.

Previous studies emphasized that they are a remarkable difference in reser-

voir response during production between uncoupled reservoir simulations and

coupled reservoir simulator with elastic deformation (Yale et al., 2000) and

plastic deformation (Yale, 2002). Originally, the coupled fluid flow and defor-

mation in porous media was first described by Terzaghi (1925) with proposing

the concept of effective stress for incompressible solid grains. Later, the ex-

tension of the Terzaghi’s work to the three-dimensional was formulated by

Biot (1941b,a). Subsequently, the development of poroelasticity theory for

anisotropic materials and its extension to poro-elastoplasticity was developed

by (Biot, 1955, 1962; Coussy, 1995). In recent years, several researchers have

been published in porous media to find coupled geomechanics and reservoir

flow such as, Phillips & Wheeler (2007); Wei & Zhang (2010); Sanei et al.

(2017); Jiang & Yang (2018); Duŕan et al. (2019).

There are four methods that are currently employed in the coupling reser-

voir and geomechanics: full coupled, iterative coupled, loose coupled, and ex-

plicit coupled (Settari & Walters, 2001; Dean et al., 2006). In the full coupled
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scheme, the governing equations of reservoir and rock deformation are solved

simultaneously at every time step. This method is unconditionally stable

but it is computationally expensive (Gutierrez & Lewis, 2002; Pan et al.,

2009). In the iterative coupled scheme, there exit different types depending

on which variables are kept constant. For instance, by fixing the variation

of total volumetric stress for reservoir equations and the fluid pressure for

geomechanics, one solves the flow problem first, and then uses computed

pressure approximation to solve the deformation problem. This method is

iterated until the solution converges to the desired tolerance (Tran et al.,

2005; Wheeler & Gai, 2007). In the loose coupled scheme, the coupling be-

tween reservoir and geomechanics is solved only after a certain number of

flow time steps and it is only conditionally stable (Minkoff et al., 2003). The

explicit coupled scheme is a special case of the iterative coupled method,

where only one iteration is taken and it is only conditionally stable (Park,

1983; Armero, 1999). Due to the high computational cost of the full coupled

scheme, it is desirable to develop iterative solution schemes that can be com-

petitive with the fully coupled approach. Kim et al. (2011a,b) proposed four

types of iterative coupled procedures, such as drained split, undrained split,

fixed strain split, and fixed stress split. Kim et al. (2011c) concluded that

among iterative schemes, the fixed stress split strategy is unconditionally

stable and has better convergence properties.

In this article, the strain-dependent permeability is analyzed using cou-

pled reservoir geomechanical modeling. To develop the coupled reservoir and
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geomechanics, a fixed stress iterative coupled scheme is used. To represent

fluid flow, the conservation of mass and Darcy’s law by considering nonlin-

ear permeability models are employed. To define the rock deformation, the

conservation of momentum, Biot’s law and DiMaggio-Sandler elastoplastic

model are used. The numerical approximation is done by a mixed finite

element for pore pressure and a continuous Galerkin finite element for dis-

placement. Solutions from this coupling have been verified using analytical

solutions and also experimental test data. The implementation of this study

is done using the NeoPZ library, which is an object-oriented scientific com-

putational environment, providing a framework for developing finite element

schemes (Devloo, 1997, 2000).

2. Model Formulation

The governing equations for coupled reservoir geomechanical modeling

are combined for a set of conservation laws and constitutive laws. The con-

servation equations are: mass and momentum.

2.1. Mass Conservation

For a slightly compressible fluid, the mass conservation is presented as

(Rudnicki, 1986):

∂ (mf )
∂t

+ div (q) = 0 (1)
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where mf is the fluid content [kg m−3], q = ρfvf is the flux [kg s−1 m−2],

and vf [m s−1] is the fluid velocity. The corresponding initial and boundary

conditions of mass conservation are:

I.C. =
{
p = p◦ on Ω B.C. =


q · n = qn on Γ q

N

p = pD on Γ p
D

(2)

The fluid velocity in equation (1) is defined by the Darcy’s law, as:

vf = −K
η
∇p (3)

where η is the fluid dynamic viscosity [Pa s], K is the absolute permeability

tensor [m−2]. The absolute permeability is considered isotropic and described

in terms of a scalar value κ [m−2], as:

K = κ I (4)

The total fluid content in equation (1) is expressed by:

mf = φρf (5)

The equation (5) can be linearized using the expression for the Lagrangian

porosity. Without loss of generality the porosity change δφ can be decom-

posed in two parts δφ = φ− φ◦ as (Kim et al., 2011b):
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

δφ = δφmatrix + δφpore

δφmatrix = α (εev − ε◦ev) + φp − φ◦p

δφpore = S (p− p◦)

(6)

The Lagrangian porosity is defined as follows (Kim et al., 2011b; Coussy,

2004):

φ = φ◦ + α (εev − ε◦ev) + φp − φ◦p + S (p− p◦) (7)

where S = ((1− α) (α− φ◦)) /Kdr, in which Kdr [MPa] is the elastic rock

bulk modulus in drained conditions. φp is the plastic porosity and written

as:

φp = αpεpv (8)

where εpv is the plastic volumetric strain. The parameter αp is the nonlin-

ear Biot’s coefficient and shares the same restrictions of Biot’s coefficient α,

i.e. φ◦ ≤ αp ≤ 1 (Coussy, 2004; Bui et al., 2016; da Silva et al., 2018). There

are experimental results that support the fact that α 6= αp (Xie & Shao,

2015). However, some researchers (Zhou et al., 2008; Kim et al., 2011b,c)

assume that α = αp. In this research, for simplicity α = αp is considered.

The volumetric elastic strain εev can be related to volumetric total stress

σtv = tr (σt) /3 as follows:
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(σtv − σ◦tv) + α (p− p◦) = Kdr (εev − ε◦ev) (9)

By inserting equation (9) into equation (7) and considering Se = S+φ◦cf ,

an alternative expression for (φρf ) is obtained as (Kim et al., 2012; Duŕan

et al., 2019):

φρf = ρ◦f

(
φ◦ + α

Kdr

(σtv − σ◦tv) + φp − φ◦p +
(
Se + α2

Kdr

)
(p− p◦)

)
(10)

where Se is the inverse of Biot’s modulus M [MPa], cf is the fluid com-

pressibility. ρ◦f and ρf are the initial and current fluid density [kg m−3],

respectively. σ◦tv and σtv are the initial and current volumetric total stress

[MPa], respectively.

2.2. Momentum Conservation

The conservation of momentum under the quasi-static assumption is ex-

pressed as (Rudnicki, 1986):

div (σt − σ◦t) = 0 (11)

where div(·) [m−1] is the divergence operator on the deform configuration.

σ◦t and σt [MPa] are the initial and the current Cauchy total stress tensor,

respectively. The corresponding initial (referred with the superscript (·)◦)

and boundary conditions of momentum conservation are:
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I.C. =


p = p◦ on Ω

u = u◦ on Ω
B.C. =


σt · n = t on ΓσtN

u = uD on Γ u
D

(12)

The momentum conservation in equation (11) can be expressed in terms

of Cauchy effective stress tensor as follows:

div (σ − σ◦ − α (p− p◦) I) = 0 (13)

where I is the second rank identity tensor. p◦ and p are the initial and

current fluid pressure [MPa], respectively. σ◦ and σ are the initial and

current Cauchy effective stress [MPa], respectively. The effective stress σ is

determined by linear stress-strain relationship, as:

σ− σ◦ = 2µ (εe − ε◦e) + λtr (εe − ε◦e) I (14)

where εe is the elastic strain. The parameters µ and λ are the Lamé

constants [MPa].

2.3. Elastoplastic Constitutive Models

Nonlinear elastoplastic model is defined by the theory of elastoplasticity,

when a material undergoes an irreversible deformations. The total strain

tensor ε is decomposed into two components as follows (de Souza Neto et al.,

2008):
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ε = εe + εp (15)

where εe is the elastic strain component and εp is the plastic strain compo-

nent. The elastic component is reversible and the plastic component repre-

sents a permanent deformation (de Souza Neto et al., 2008). The total strain

is defined in terms of displacement u as:

ε = 1
2
(
∇u +∇Tu

)
(16)

The elastoplastic deformation is mathematically described by four funda-

mental axioms as follows (de Souza Neto et al., 2008):

Elastic law. The elastic law can be defined by using the linear stress-strain

relationship expressed by equation (14).

Yield criterion. Describes the elastic limit and the plastic part through

a plasticity yield function Φ = Φ (σ,A), where A = ρ̄∂Fp/∂χ is the

hardening thermodynamic force, Fp is the plastic part of Helmholtz

free energy F, and χ is the hardening variable. The plasticity function

assumes negative values in the elastic part and null values in the plastic

part (Kossa, 2011).

Flow rule. Assumes the existence of a plastic potential function Ψ = Ψ (σ,A),

which specifies how the plastic deformation tensor evolves in the plastic-

ity process .
εp = .

γN, in which N (σ,A) = ∂Ψ/∂σ is the flow direction
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and .
γ is the plastic multiplier. The flow rule is called associative if

the plastic potential function equals to yield function, namely Ψ = Φ

(Davis & Selvadurai, 2002).

Hardening law. Specifies how the internal damage variable .
χ = .

γH evolves,

in which, H (σ,A) = −∂Ψ/∂A is the hardening modulus.

2.3.1. Numerical integration algorithm for the elastoplastic model

The numerical integration is divided into two main steps: the elastic trial

step and the plastic corrector step (or return-mapping algorithm). If the

elastic trial state lies within the elastic domain or on the yield surface, the

solution is accepted. Otherwise, if the trial stress in the first step fails to

verify the plastic admissible condition, it is projected onto the yield surface

by the return-mapping algorithm (de Souza Neto et al., 2008).

The incremental constitutive model is formed by giving the elastic strain

εn−1
e , the plastic strain εn−1

p , and the hardening variable χn−1 at a (pseudo)

time step tn−1, and also given a prescribed incremental strain tensor ∆ε for

the time interval [tn−1, tn] in order to find the following system of algebraic

equations at a time-step tn (de Souza Neto et al., 2008):

εne = εn−1
e + ∆ε−∆γN (σn,An)

χn = χn−1 + ∆γ H (σn,An)
(17)

for the unknowns εne , χn and incremental of plastic multiplier ∆γ, it is

subjected to the restrictions:
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∆γ ≥ 0, Φ (σn,An) ≤ 0, ∆γ Φ (σn,An) = 0 (18)

Solving the elastoplastic problem occurs in two steps. First an elastic

response is computed (i.e. elastic trial step), where ∆γ = 0 leading to the

elastic trial stress εnetrial = εn−1
e + ∆ε and hardening variable χntrial = χn−1.

Next, σntrial and Φ (σntrial,An
trial) are computed as a function of εnetrial . If

Φ (σntrial,An
trial) ≤ 0, the elastic response is a valid solution and the elasto

plastic variables are updated from the trial values (· )n := (· )ntrial. Otherwise,

the return-mapping algorithm is applied and a set of nonlinear equations

needs to be solved (de Souza Neto et al., 2008):

εne = εnetrial −∆γN (σn,An)

χn = χntrial + ∆γ H (σn,An)

∆γ > 0, Φ (σn,An) = 0

(19)

Once the solution εne has been calculated, the plastic strain at a time step

tn can be computed as:

εnp = εn−1
p + ∆ε−∆εe (20)

2.3.2. DiMaggio-Sandler Elastoplasticity Model

The original DiMaggio-Sandler elastoplasticity model was presented in

(DiMaggio & Sandler, 1971). It was initially applied for granular soils, and

currently is used in the oil industry to present the behavior of rocks at depth
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(Cećılio et al., 2015). The yield function Φ of DiMaggio-Sandler model is de-

fined by a failure function Ff (I1,
√
J2, β), and a cap function Fc(I1,

√
J2, L, β),

as follows:

Φ =


Ff (I1,

√
J2, β),

Fc(I1,
√
J2, L, β),

I1 > L

L > I1 > X

(21)

where β is the Lode angle [°], L (χ) is the cap position parameter [MPa],

X (χ) is the current cap surface position [MPa], I1 is the first invariant of

the stress tensor [MPa], and J2 is the second deviatoric stress tensor [MPa2].

A typical 2D profile of DiMaggio-Sandler yield surface is plotted in Fig. 1

(left).



Ff (I1,
√
J2, β) =

√
J2 − Fs(I1)

Γ(β)

Fc(I1,
√
J2, L, β) = ( I1−L

RFs(L))
2 + (

√
J2Γ(β)
Fs(L) )2 − 1

(22)

with,

L (χ) =


χ

0

if χ < 0

if χ ≥ 0
(23)

Fs (ι) = A− C exp (B ι)

X = L−RFs(L)
(24)
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where A [MPa], B [MPa−1], C [MPa] are material property constants and R

is the ratio of principal ellipse radii of the cap surface, and the factor Γ(β)

is given by:

Γ(β) = 1
2 [(1 + sin (3β)) + 1

ψ
(1− sin (3β))] (25)

where, ψ has the range from 7/9 to 9/7, as shown in Fig. 1 (right). The

original DiMaggio-Sandler model refers to ψ = 1, such that Γ(β) = 1.

The hardening parameter χ of DiMaggio-Sandler cap model is defined

through a functional of X(χ) and volumetric plastic strain εpv as follows

(Fossum et al., 1995):

εpv = W (exp[D (X −X◦)]− 1) (26)

whereX◦ is the initial cap position [MPa]. D [MPa−1] andW are the material

properties constants.

Figure 1. (left) DiMaggio-Sandler plastic yield profile in the (I1,
√
J2) plane (Sandler &

Rubin, 1979), (right) yield surface cross section of DiMaggio-Sandler model for ψ = 7/9,
ψ = 1, ψ = 9/7 (Cećılio et al., 2015).
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2.4. Strong Statement of Coupled Reservoir Geomechanics

The strong statement of the coupled reservoir geomechanics is presented

using the conservation laws given in equations (1) and (13), as follows:



div (σ − σ◦ − α (p− p◦) I) = 0

∂(mf)
∂t

+ div (q) = 0

(27)

It is completed by considering the equations (3) and (14), namely:



σ−σ◦ = 2µ (εe − ε◦e) + λtr (εe − ε◦e) I

vf = −K
η
∇p

(28)

The strong statement is incorporated with Dirichlet and Neumann bound-

ary conditions in the equations (2) and (12).

2.5. Weak Statement of Coupled Reservoir Geomechanics

The weak statement of the coupled reservoir geomechanics is presented

by using one field u as state variable for the geomechanics problem and two

fields q and p for the reservoir flow problem, as:
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

∫
Ω (σn − σ◦ − α (pn − p◦) I) · ε (φu) dΩ−

∫
ΓN

(tn − t◦) · φu dΓ = 0

∫
Ω

(
ρnf

κn I
η

)−1
qn · φq dΩ +

∫
ΓD
pn · φq · n dΓ −

∫
Ω p

n · div
(
φq
)
dΩ = 0

∫
Ω div (qn) · φp dΩ +

∫
Ω

(
φρf |n−φρf |n−1

δt

)
· φp dΩ = 0

(29)

where Ω is the domain, Γ is the boundary and φu, φq, φp are the test

functions. The weak statement is incorporated with Dirichlet and Neumann

boundary conditions in the equations (2) and (12).

2.6. Iterative Coupled Scheme

The fixed stress iterative coupled scheme is as a robust method to ap-

proximate solutions of nonlinear equations. The schematic of the solution

procedures by using the fixed-stress splits is illustrated in the Figure 2. The

iterative coupled scheme computes a new state (u,q, p)m in a time step of

size ∆t, by applying an external loop with counter m → 1 to execute a

sequence of two nonlinear solvers (a reservoir module and a geomechanics

module with internal loops that counter n).
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Figure 2. Iterative coupled scheme with fixed-stress split (Kim, 2010).

In order to describe the implementation of iterative coupled scheme, the

change in porosity in equation (6) is rewritten as:

φ = φ◦ + δφ (30)


δφ = δφpore +

δφ∗
r+δφ∗

g︷ ︸︸ ︷
δφmatrix

δφ = δφpore + δφ∗r + δφ∗g

(31)

where 

δφpore = S (p− p◦)

δφmatrix = α2

Kdr

(p− p◦)︸ ︷︷ ︸
δφ∗
r

+ α

Kdr

(σtv − σ◦tv) + φp − φ◦p︸ ︷︷ ︸
δφ∗
g

(32)

where δφ∗r and δφ∗g are the matrix parts of porosity change. The variation

of the fluid content expressed by equations (10) and (32) is computed using
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two stages (Settari & Mourits, 1998; Mikelić & Wheeler, 2012; Duŕan et al.,

2019):

1. For the reservoir module the variation of δφpore and δφ∗r are computed

and the δφ∗g is considered constant;

2. For the geomechanics module δφ∗g is updated.

At the first step, it is set to δφ∗ m−1
g → 0 and add the (αn−1)2

/Kdr to the

reservoir module, and the equation is solved as follows:

• Reservoir Module: by allowing to compute implicitly pn,m, while

the total volumetric stress and the plastic porosity are constant during

solving the reservoir flow iterations, the porosity φn,m is approximated

as:



φn,m ≈ φ◦ + δφn,mpore + δφ∗ n−1,m
r + δφ∗ m−1

g

φn,m ≈ φ◦ + S (pn,m − p◦)︸ ︷︷ ︸
δφpore

+
((
αn−1

)2
/Kdr

)
(pn,m − p◦)︸ ︷︷ ︸

δφ∗
r

+ δφ∗ m−1
g︸ ︷︷ ︸
δφ∗
g

(33)

Consecutively, the pressure is transferred to the geomechanics module

and the equation is solved as follows:

• Geomechanics Module: Once the pressure pn,m is determined, then
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the term δφ∗ mg is computed implicitly using the expression:

δφ∗ mg = (αn−1)2

Kdr

(σn,mtv − σ◦tv) + φn,mp − φ◦p (34)

It is considered to maintain the Biot coefficient constant during a timestep

iteration and only between timesteps is updated using the following expres-

sion (Kim et al., 2012):

α = 1− Kdrep
Ks

; Kdrep = δσv
δεv

(35)

where Kdrep [MPa] is the elastoplastic tangent bulk modulus, Ks [MPa]

is the solid bulk modulus, δσv [MPa] is volumetric effective stress variation,

and δεv is the volumetric total strain variation.

The iteration between both reservoir and geomechanics module is re-

peated until a desired stopping criteria is reached.

3. Permeability evolution models

To be able to describe the strain-dependent permeability properly, it is

required to review the available permeability models, in order to choose an

appropriate one. Permeability evolution models have been studied by several

researchers in terms of porosity, stress, strain, temperature, chemical process,

etc. (Zhu & fong Wong, 1997; Morris et al., 2003; Ma, 2015). Generally,

there are three main types of permeability evolution models under mechanical

condition in porous media, i.e. based on (i) porosity, (ii) stress, and (iii)
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strain, that can be applied to specific conditions. The purpose of this section

is to review the permeability models and choose the suitable ones.

3.1. Permeability evolution models based on porosity

Several semi-empirical equations have been proposed to estimate rock

permeability κ based on the porosity φ. The Table 1 summarizes some

permeability-porosity models found in the literature.

Table 1. Permeability-porosity models (Kozeny, 1927; Carman, 1937; Walsh & Brace,
1984; Costa, 2006; Petunin et al., 2011; Nelson, 1994; Davies & Davies, 1999).

Model Formulation Comments
Kozeny-Carman κ = φ3

Bcτ2
cSc

2 Sc
[
m−1] is specific surface area, τc is

tortuosity, Bc is pore shape coefficient.
Costa κ = %c

φZc

1−φ %c and Zc are the constant coefficient.

Petunin κ
κ◦ =

(
φ
φ◦

)Zg

Zg is the constant coefficient.
Nelson log10 (κ) = Znφ+ %n Zn and %n are the constant coefficient.
Davies κ = κ◦ exp

(
Zd
(
φ
φ◦ − 1

))
Zd is the constant coefficient.

3.2. Permeability evolution models based on stress

Many studies have been done to investigate a relationship between per-

meability κ and stress σ in porous media. The Table 2 summarizes some

permeability-stress models found in the literature.

Table 2. Permeability-stress models (Ghabezloo et al., 2009; Zhou et al., 2011; David
et al., 1994; Xu et al., 2008; Raghavan & Chin, 2004).

Model Formulation Comments
Ghabezloo κ = agσ

bg
a σa is the axial effective stress, ag and bg

are the constant coefficient.
Zhou κ = az − bz ln (σa) az and bz are the constant coefficient.
David or Xu κ = κ◦ exp (ad (σa − σ◦a)) ad is the constant coefficient.
Raghavan κ = κ◦ exp (ar (σm)) σm is the effective mean stress, ar is the

constant coefficient.
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3.3. Permeability evolution models based on strain

Few researches have been published to show the relation between per-

meability κ and strain ε in porous media. The Table 3 summarizes some

permeability-strain models found in the literature.

Table 3. Permeability-strain models (Main et al., 2000; Minkoff et al., 2003; Ni et al.,
2018).

Model Formulation Comments
Main κ = κ0 exp [amn

(εa − ε◦a)] ε◦a and εa are the initial and current axial
strain, amn

is the constant coefficient.
Minkoff or Ni κ = am exp (bm (εv)) εv is the volumetric strain, am and bm are

the constant coefficient.

4. Strain-dependent permeability models

During the depletion of hydrocarbon reservoirs, porosity and permeability

may change in response to an increase of the effective stress, which can alter

the pore geometry of the reservoir rock (Zimmerman, 1991; Schatz et al.,

1982). The variation of pore volume due to increase effective stress has an

impact on both porosity and permeability (Santos et al., 2014). In addition,

previous studies such as Shin et al. (2014) showed that permeability is in-

directly related to the porosity, pore size distribution, and pore architecture

of the porous media. These parameters are induced when a strain field is

imposed on the porous media. Then, due to the strain-dependent porosity

and the direct relation of porosity with both deformation and pore pressure,

the permeability evolution model based on porosity is selected in order to

present strain-dependent permeability. In this study, various permeability-
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porosity models (reported in Table 1) are used and modified to consider the

initial permeability κ◦ and porosity φ◦ which are given in Table 4.

Table 4. The modified permeability-porosity models (Costa, 2006; Petunin et al., 2011;
Nelson, 1994; Davies & Davies, 1999).

Model Formulation Comments

Costa κ
κ◦ = %

(
1−φ◦
1−φ

)(
φ
φ◦

)Z
% and Z are the constant coefficient.

Petunin κ
κ◦ =

(
φ
φ◦

)Z
Z is the constant coefficient.

Nelson log10
(
κ
κ◦

)
= Z (φ− φ◦) + % Z and % are the constant coefficient.

Davies κ = κ◦ exp
(
Z
(
φ
φ◦ − 1

))
Z is the constant coefficient.

5. Numerical Model Verification

Numerical implementation of the iterative coupled scheme is accomplished

through the finite element method. Several numerical examples are done to

verify the iterative coupled reservoir geomechanical modeling. They are in-

cluded: a comparison between experimental data and numerical results for

DiMaggio-Sandler plasticity model, a comparison between analytical solution

and numerical results of a vertical wellbore for a linear case, and a compar-

ison between reference solution and numerical results of a vertical wellbore

for a nonlinear case.

5.1. Implementation of DiMaggio-Sandler model

The implementation of DiMaggio-Sandler elastoplasticity model has been

done using the plastic return-mapping in the rotated principal stresses and it

is presented in Fig. 3 (left). The numerical integration scheme for DiMaggio-

Sandler is verified by comparing the numerical results with two different ex-
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perimental test data. The experimental data are included a uniaxial compres-

sive loading on the McCormic sand sample provided by (Sandler & Rubin,

1979) and a triaxial loading on a salem limestone sample provided by (Fos-

sum et al., 1995). The material parameters of these two tests are presented

in Table 5.

Table 5. Parameters employed for verification of DiMaggio-Sandler plasticity model.

Test data E ν A B C D W X◦ R

Sandler 1979 100.0 0.25 0.25 0.67 0.18 0.67 0.066 0.0 2.5
Unit [unit] ksi ksi ksi−1 ksi ksi−1 ksi

Fossum 1995 23456.9 0.267 209.61 1.787 × 10−3 198.49 3.909 × 10−4 0.189 −442.56 5.63
Unit [unit] MPa MPa MPa−1 MPa MPa−1 MPa

Fig. 3 presents a comparison between the DiMaggio-Sandler implemen-

tation and the experimental results from articles (Sandler & Rubin, 1979)

and (Fossum et al., 1995) displaying the verification of the implementation.

Figure 3. (left) DiMaggio-Sandler plasticity yield criterion in which failure function part
is with a green color and cap function is with a red color, (middle) a comparison between
numerical model of DiMaggio-Sandler with the experimental data reported by (Sandler &
Rubin, 1979); the arrow with a blue color in the left shows the evolution of elastoplastic
model which is represented here by a point with a red color, and (right) a comparison
between numerical model of DiMaggio-Sandler with the experimental data provided by
(Fossum et al., 1995) for the specimen SL1255.
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5.2. Vertical wellbore for linear case

For a vertical wellbore drilled in an isotropic elastic rock, analytical so-

lutions for displacement and pore pressure are given by Coussy (2004), as

follows:

For the pressure expression:

p (r) = pwb + p◦ − pwb
ln
(
re
rw

) ln
(
r

rw

)
(36)

For the displacement expression:

u (r) = σwb + σ◦

2µ
r2
w

r
(37)

The two-dimensional numerical mesh is performed by quadratic poly-

nomial order for displacement and linear polynomial order for flux and pore

pressure. The domain and boundary conditions for a vertical wellbore drilled

is displayed in Fig. 4 (left). The material parameters are presented in Table

6. Fig. 5 shows the comparison of distributions of displacements, pressure,

and flux. A good approximation is obtained using quadratic-linear elements.
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Table 6. Parameters employed for a vertical wellbore drilled.

Parameter Variable [unit] Value
Young’s modulus E MPa 1000.0

Poisson’s ratio ν 0.2
Biot coefficient α 0

Fluid compressibility cf MPa−1 0
Fluid dynamic viscosity η Pa s 1× 10−3

Initial porosity φ◦ 0.1
Initial Abs. permeability κ◦ m2 1× 10−13

Initial hydrostatic total stress σ◦ MPa -50
Initial pressure excess p◦ MPa 30

Mud pressure pwb MPa 20
Internal BC normal stress σwb -20

Tolerance for stop criterion εu = εp 1× 10−7

Figure 4. Domain and boundary conditions for: (left) vertical wellbore, and (right)
uniaxial compression test.
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Figure 5. (left) Plot of displacement, (middle) pressure, and (right) flux.

5.3. Vertical wellbore for nonlinear case

In this study, we develop a reference solution for a vertical wellbore

(boundary is shown in Fig. 4 (left) by reducing an axisymmetric boundary

value problem (BVP) to an initial value problem (IVP) using Runge-Kutta

solver. To construct a Runge-Kutta approximation, it is hypothesized that

the coordinate is cylindrical (r, θ, z), the approximation is axisymmetric, and

the condition is steady state. The Runge-Kutta is defined as:

dy
dx

= f (y) (38)

The expression (38) is rewritten for coupled reservoir geomechanical mod-

eling in terms of stress σrr and pressure p, as follows:
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dy
dx

=



dur
dr

dσrr
dr

dp
dr

dqr
dr


and f (y) =



rσrr−λur
r(λ+2µ)

−σrr+( 2µur
r

+λ(urr + rσrr−λur
r(λ+2µ) ))

r
− α η

k
qr

− η
κ
qr

− qr
r


(39)

The approximation above can be solved as an elastoplastic problem. The

initial value problem y◦ is evaluated at the reservoir radius re. The detail of

the reference solution by using Runge-Kutta solver can be found in (Duŕan

et al., 2019).

In this section, the iterative coupled reservoir geomechanical modeling

for analyzing strain-dependent permeability is verified using a reference so-

lution of axisymmetric Runge-Kutta (RK ). The geomechanics is presented

by DiMaggio-Sandler elastoplastic model and the reservoir permeability is

described using the permeability evolution models given in Table 4. The

parameters employed to perform the simulations are presented in Table 7.
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Table 7. Parameters employed for axisymmetric Runge-Kutta and vertical wellbore.

Parameter Variable [unit] Value
Young’s modulus E MPa 8000.0

Poisson’s ratio ν 0.2
Biot’s coefficient α 1

Fluid compressibility cf MPa−1 0
Fluid dynamic viscosity η Pa s 1× 10−3

Initial porosity φ◦ 0.12
Initial Abs. permeability κ◦ m2 4× 10−13

Permeability coefficient Z 10
A MPa 40.5
B MPa−1 0.00028
C MPa 18.0
D MPa−1 0.00001
R 2.0
W 0.00001
X◦ MPa −40.0

Initial hydrostatic total stress σ◦ MPa −40.0
Initial pressure excess p◦ MPa 30.0

Wellbore pressure pw MPa 20.0
Internal BC normal stress σw −20.0

Final time tend s 100000000

All the subfigures in the Figures 6, 7, 8, and 9 present a comparison for

the sequential approximation with the Runge-Kutta approximation, show-

ing verification of the models. A good approximation is obtained using a

quadratic polynomial order for displacement and linear polynomial order for

flux and pore pressure. The Fig. 6 (left) presents the variation of pore

pressure, and (right) the variation of radial effective stress using a Costa

permeability model with the coefficient % = 1 and Z = 10.
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Figure 6. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Costa permeability model. (left) pressure, and (right) effective stress.

The Fig. 7 (left) presents the variation of pore pressure, and (right) the

variation of radial effective stress using Petunin permeability model with the

coefficient Z = 10.

Figure 7. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Petunin permeability model with the coefficient Z = 10. (left) pressure, and (right)
effective stress.

The Fig. 8 (left) presents the variation of pore pressure, and (right) the

variation of radial effective stress using the Nelson permeability model with
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the coefficient % = 0 and Z = 10.

Figure 8. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Nelson permeability model with the coefficient % = 0 and Z = 10. (left) pressure, and
(right) effective stress.

The Fig. 9 (left) presents the variation of pore pressure, and (right) the

variation of radial effective stress using a Davies permeability model with the

coefficient Z = 10.

Figure 9. Nonlinear 2D case: steady state approximation for coupled DiMaggio-Sandler
and Davies permeability model with the coefficient Z = 10. (left) pressure, and (right)
effective stress.
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6. Results and Discussions

The strain-dependent permeability (SDP) and its impact on production

are analyzed using coupled reservoir and geomechanical modeling. The strain

is represented using DiMaggio-Sandler elastoplastic model and permeabil-

ity is defined using the nonlinear permeability models provided in Table 4.

The following numerical tests are implemented, such as: (1) homogeneous

stress state of uniaxial compression test, (2) two-dimensional model of verti-

cal reservoir production, (3) three-dimensional model of vertical reservoir.

6.1. Uniaxial compression test

The strain-dependent permeability is analyzed numerically by implement-

ing a uniaxial compression test. The numerical model is done using a homo-

geneous stress states. The material properties for the uniaxial test are given

in Table 8. Fig. 4 (right) is representative of the equivalent loading condi-

tion. The uniaxial test is modeled in a stress-rate control where the vertical

stress on the top of the specimen is increased from (-1 MPa to -20 MPa).

The bottom and lateral displacement are restricted to zero displacement.

Hydraulic boundary conditions are set as follows: the initial pore pressure

boundary and a constant pressure p = 1 MPa are applied on the top of spec-

imen and the impermeable boundaries on the bottom and lateral boundaries

of specimen. The evolution of loading applied on the sample to reach the

final stresses is done in 20 states.
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Table 8. Parameters employed for uniaxial test to analyze strain-dependent permeability.

Parameter Variable [unit] Value
Young’s modulus E MPa 3800.0

Poisson’s ratio ν 0.2
Biot’s coefficient α 1

Fluid compressibility cf MPa−1 0
Fluid dynamic viscosity η Pa s 1× 10−3

Initial porosity φ◦ 0.12
Initial Abs. permeability κ◦ m2 1× 10−13

Petunin coefficient Z 20
A MPa 40.0
B MPa−1 0.02
C MPa 35.0
D MPa−1 0.006
R 3.0
W 0.025
X◦ MPa −45.0

Initial vertical total stress σ◦v MPa −1.0
Initial pressure excess p◦ MPa 1.0
Vertical total stress σv MPa −1.0 to −20.0

To represent the strain-dependent permeability using coupled DiMaggio-

Sandler plasticity and Petunin permeability model, the results of a material

point subject to evolving stresses is studied. The results of the uniaxial

compression test to analyze strain-dependent permeability is shown in Fig.

10.

The results in Fig. 10 illustrate that the strain-dependent permeability

can be described using coupled reservoir geomechanical modeling. The re-

sults demonstrate that porosity and permeability decrease with increasing

the strain.
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Figure 10. 2D model of uniaxial test to see strain-dependent permeability using a Petunin
model with Z = 20: (top-left) relation between porosity and total strain, (top-right)
relation between porosity and plastic strain, (middle-left) relation between permeability
and total strain, (middle-right) relation between permeability and plastic strain, (bottom-
left) distribution of porosity, and (bottom-right) distribution of permeability at t = 1.0 s.
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6.2. Two-dimensional model of vertical reservoir production

Generally, the use of open-hole completions in the design of production

wells is a specially appealing choice for oil companies because its profitable

compared to the standard cased hole (Capasso et al., 2008). To analyze the

impact of strain-dependent permeability on reservoir productivity, a 2D nu-

merical model is implemented. The numerical mesh is composed of quadratic

polynomial order elements for displacement and linear Raviart Thomas flux/-

pore pressure pairs for the fluid approximation. The model of cylindrical

reservoir includes a vertical well with the radius rw = 0.1 m in open hole

completion and the outer boundary of reservoir, extending to ro = 10.0 m.

The simulation is conducted as follows. First, the initial state of the reservoir

is calculated based on a pore pressure of 50.0 [MPa] and an external stress

of 60 [MPa] is imposed on both inner and outer boundaries of the reservoir.

Next, the stress around wellbore is changed to a reservoir pressure of 50.0

[MPa] to simulate the open-hole completion. Finally, a series of decreasing

fluid pressure with the same length of time for a total time span of 10 days

is applied at the inner boundary of the wellbore, as given in Table 9.

Table 9. A series of decreasing fluid pressure for a 2D cylindrical reservoir.

Time [d] 1 2 3 4 5 6 7 8 9 10
Well pressure MPa 50 47 44 41 38 35 32 29 26 23

The numerical model is implemented using coupled DiMaggio-Sandler

elastoplastic model and four types of permeability models, including Costa,

Petunin, Nelson, and Davies. To evaluate the impact of strain-dependent
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permeability on the various reservoir rocks, two different quantities of coef-

ficient Z, namely 20, 40 are used. The model parameters are given in Table

10.

Table 10. Parameters employed for strain-dependent permeability on a 2D reservoir
productivity.

Parameter Variable [unit] Value
Young’s modulus E MPa 8000.0

Poisson’s ratio ν 0.2
Biot’s coefficient α 1

Fluid compressibility cf MPa−1 0
Fluid dynamic viscosity η Pa s 1× 10−3

Initial porosity φ◦ 0.12
Initial Abs. permeability κ◦ m2 4× 10−13

Permeability coefficient Z 20 and 40
A MPa 40.5
B MPa−1 0.00028
C MPa 18.0
D MPa−1 0.00001
R 2.0
W 0.00001
X◦ MPa −40.0

Initial hydrostatic total stress σ◦ MPa −60.0
Initial pressure excess p◦ MPa 50.0

Time step size ∆t d 1.0
Final time tend d 10.0

6.2.1. 2D model of vertical reservoir using Costa permeability model

To analyze the field variable profiles due to drawdown in open hole com-

pletion, the 2D numerical test of coupled reservoir geomechanical by con-

sidering Costa permeability in the cylindrical reservoir is implemented. The

quantity of coefficient % is 1 and coefficient Z is 20 and 40. The impact of

strain-dependent permeability on reservoir productivity using a Costa model

is shown in Fig. 11, in which the results belong to time t = 2, 6, 10 [d].
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All the subfigures in the Fig. 11 present a comparison of the variables due

to the various quantities of Z. Near to the wellbore, it can be observed less

increments of radial flux and more reduction of porosity and permeability

because of the increase the Z value from 20 to 40. In addition, the Fig. 11

at middle-right and bottom-left illustrate that the porosity and permeability

are decreased by reducing the fluid pressure. The Fig. 11 at bottom-right

shows the variation of radial flux near the wellbore. It can be seen that from

only geomechanical effects the wellbore region deteriorates the productivity

index associated with the case when is considered a constant permeability

and no geomechanical effects.
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Figure 11. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Costa model. (top-left) fluid pressure, (top-right)
effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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6.2.2. 2D model of vertical reservoir using Petunin permeability model

Implement the same model for the last subsection with considering Petunin

permeability model. The quantity of coefficient Z is 20 and 40. The impact

of strain-dependent permeability on reservoir productivity using a Petunin

model is presented in Fig. 12, the results belong to time t = 2, 6, 10 [d].

All the subfigures in the Fig. 12 display a comparison of the variables

because of the various quantities of Z. Near to the wellbore, it can be seen

less increments of radial flux and more reduction of porosity and permeability

due to the increase the Z value from 20 to 40. In addition, the Fig. 12 at

middle-right and bottom-left indicate that the porosity and permeability are

decreased by reducing the fluid pressure. The Fig. 12 at bottom-right shows

the variation of radial flux near the wellbore. It can be observed that from

only geomechanical effects the wellbore region deteriorates the productivity

index associated with the case when is considered a constant permeability

and no geomechanical effects.

6.2.3. 2D model of vertical reservoir using Nelson permeability model

Implement the same model for the last subsection with considering Nel-

son permeability model. The quantity of coefficient % is 0 and coefficient

Z is 20 and 40. The impact of strain-dependent permeability on reservoir

productivity using a Nelson model with Z = 20 and Z = 40 are shown in

Fig. 13.

Fig. 13 presents a comparison of the variables because of the various
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quantities of Z. Near to wellbore, it can be observed less increments of radial

flux and more reduction of porosity and permeability due to the increase the

Z value from 20 to 40. In addition, Fig. 13 at middle-right and bottom-left

show that the porosity and permeability are decreased by reducing the fluid

pressure. The Fig. 13 at bottom-right illustrates the change of radial flux

near the wellbore. It can be seen that from only geomechanical effects the

wellbore deteriorates the productivity index associated with the case when

is considered a constant permeability and no geomechanical effects.

6.2.4. 2D model of vertical reservoir using Davies permeability model

Implement the same model for the last subsection with considering Davies

permeability model. The quantity of coefficient Z is 20 and 40. The effect

of strain-dependent permeability on reservoir productivity using a Davies

model with Z = 20 and Z = 40 are displayed in Fig. 14.
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Figure 12. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) fluid pressure, (top-right)
effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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Figure 13. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Nelson model. (top-left) fluid pressure, (top-right)
effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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Figure 14. 2D model of the cylindrical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Davies model. (top-left) fluid pressure, (top-right)
effective stress in x direction, (middle-left) strain in x direction, (middle-right) porosity,
(bottom-left) absolute permeability, and (bottom-right) flux.
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All the subfigures in the Fig. 14 indicate a comparison of the variables

because of the various quantities of Z. Near to the wellbore, it can be

observed less increments of radial flux and more reduction of porosity and

permeability due to the increase the Z value from 20 to 40. In addition,

the Fig. 14 at middle-right and bottom-left illustrate that the porosity and

permeability are decreased by reducing the fluid pressure. The Fig. 14 at

bottom-right shows the variation of radial flux near the wellbore. It can

be seen that from only geomechanical effects the wellbore region deteriorates

the productivity index associated with the case when is considered a constant

permeability and no geomechanical effects.

6.3. Three-dimensional model of vertical reservoir

The petroleum industry uses a large number of well production and in-

jection to produce and enhance hydrocarbon recovery. Consequently, the

purpose of this section is to describe the effect of strain-dependent perme-

ability on the field variables when the wellbore in reservoir receives both the

decrease and increase of fluid pressure.

The implementation of the 3D numerical test is similar to last section with

considering a vertical wellbore with the radius rw = 0.1 m and extending the

outer boundary of reservoir to ro = 10.0 m. The numerical mesh is composed

of quadratic polynomial order elements for displacement and linear Raviart

Thomas flux/pore pressure pairs for the fluid approximation. The model

parameters are given in Table 11.
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Table 11. Material parameters employed for strain-dependent permeability in a 3D reser-
voir.

Parameter Value Variable [unit]
Young’s modulus 5000.0 E MPa

Poisson’s ratio 0.2 ν
Biot’s coefficient 1 α

Fluid compressibility 0 cf MPa−1

Fluid dynamic viscosity 1× 10−3 η Pa s
Initial porosity 0.12 φ◦

Initial Abs. permeability 1× 10−13 κ◦ m2

Permeability coefficient 10.0 and 25.0 Z
A 50.0 MPa
B 0.027 MPa−1

C 40.0 MPa
D 0.0005 MPa−1

W 0.0012
R 3.0
X◦ -74.0 MPa

The simulation is conducted as follows. First, the initial state of reservoir

is computed based on a pore pressure of 50.0 [MPa] and an external stress

of 60 [MPa] is imposed on both inner and outer boundaries of the reservoir.

Then, the stress around wellbore is changed to a reservoir pressure of 50.0

[MPa] to simulate the open-hole completion. Afterwards, a series of decreas-

ing fluid pressure with the same length of time for a total time span of 10

days is applied at the inner boundary of the wellbore. Finally, a series of

increasing pressure with the same length of time for a total time span of 10

days is applied at the inner boundary of the wellbore, as given in Table 12.
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Table 12. A series of decreasing and increasing fluid pressure for a vertical well.

Time [d] 1 2 3 4 5 6 7 8 9 10
Decrease fluid pressure MPa 50 47 44 41 38 35 32 29 26 23

Time [d] 11 12 13 14 15 16 17 18 19 20
Increase fluid pressure MPa 23 26 29 32 35 38 41 44 47 50

The Fig. 15 (top), presents the variation of fluid pressure versus radial

distance from wellbore, in which the fluid pressure decreases from 50 [MPa]

to 23 [MPa] for a total time of 10 [d]. Then, the fluid pressure increases

from 23 [MPa] to 50 [MPa] for a total time of 10 [d]. The variation of fluid

pressure leads to increase effective stress and total strain, as shown in Fig. 15

(middle) and (bottom). The Fig. 15 at top-right, middle-right and bottom-

right illustrate that although the pressure drop is reached zero, the quantity

of effective stress and total strain are not equal to their initial value. All the

subfigures in the Fig. 15 indicate a comparison of the variables due to the

various quantities of Z, namely 10.0 and 25.0.

The Fig. 16 at top and middle positions show that the variation of poros-

ity and permeability because of the change of fluid pressure. The Fig. 16

at bottom position presents the variation of radial flux near the wellbore.

The results of Fig. 16 at top-right and middle-right positions provide an

important reason to consider strain-dependent permeability in reservoir sim-

ulation, where the lost some percent of porosity and permeability are due

to the increment of effective stress and deformation (see in Fig. 15 (middle-

right) and (bottom-right)). The Fig. 16 can be observed that from only

geomechanical effects the wellbore region deteriorates the productivity index
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associated with the case when is considered a constant permeability and no

geomechanical effects. In addition, the distribution of variables near to the

wellbore are presented in Fig. 17.
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Figure 15. 3D model of the vertical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) variation of fluid pressure
after 10 days production, (top-right) variation of fluid pressure after 20 days, (middle-left)
variation of effective stress in z direction after 10 days production, (middle-right) variation
of effective stress in z direction after 20 days, (bottom-left) variation of strain in z direction
after 10 days production, (bottom-right) variation of strain in z direction after 20 days.
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Figure 16. 3D model of the vertical reservoir to analyze the effect of strain-dependent
permeability on productivity using the Petunin model. (top-left) variation of porosity after
10 days production, (top-right) variation of porosity after 20 days, (middle-left) variation
of permeability after 10 days production, (middle-right) variation of permeability after 20
days, (bottom-left) variation of flux in z direction after 10 days production, (bottom-right)
variation of flux in z direction after 20 days.
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Figure 17. Distribution of variables in a 3D cylindrical reservoir after 10 days. (top-
left) fluid pressure, (top-right) effective stress, (middle-left) strain, (middle-right) porosity,
(bottom-left) permeability, and (bottom-right) flux.
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7. Conclusions

The strain-dependent permeability on the productivity of reservoirs is

analyzed using the coupled reservoir geomechanical modeling, in which the

DiMaggio-Sandler elastoplasticity model and four nonlinear permeability mod-

els, e.g., Costa, Petunin, Nelson, and Davies are applied. The results show

that by decreasing fluid pressure, the effective stress increases, and then the

quantity of porosity and permeability decrease. The results also indicate

that by increasing the permeability coefficient Z, less increments of radial

flux and more reduction of porosity and permeability near to the wellbore can

be observed. In addition, the strain-dependent permeability in a 3D cylin-

drical reservoir that receives a decrease and an increase of wellbore pressure

is analyzed. The results emphasize that the wellbore lost some percent of

porosity and permeability by decreasing and increasing of fluid pressure be-

cause of elastoplastic deformation. Finally, the results of strain-dependent

permeability illustrate that from only geomechanical effects the wellbore re-

gion deteriorates the productivity index associated with the case when is

considered a constant permeability and no geomechanical effects.
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