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Additive properties of dense subsets
of sifted sequences

par OLIVIER RAMARÉ et IMRE Z. RUZSA

RÉSUMÉ. Nous nous intéressons aux propriétés additives des sous-
suites de densité de suites "bien criblées" et montrons en parti-
culier que, sous des hypothèses très générales, une telle suite est
une base additive asymptotique dont l’ordre est très bien contrôlé.

ABSTRACT. We examine additive properties of dense subsets of
sifted sequences, and in particular prove under very general as-
sumptions that such a sequence is an additive asymptotic basis
whose order is very well controlled.

1. Introduction

The sequence P of primes is known to be an asymptotic basis of order
at most 4 (due to Vinogradov’s work) and its expected order is 3. Tak-

ing an infinite sequence of primes P* which contains a positive proportion
of primes we answer two additive questions concerning this sequence. As
shown by SArk6zy in [20], such a sequence is an asymptotic basis, and thus
an essential component. We give an upper bound for its order as an asymp-
totic basis and a lower bound for its "impact", this word being understood
in the spirit of Pliinnecke and Ruzsa (cf. [19]). None of the sequence of

integers we consider contains zero and as usual in additive number the-
ory, if A is a sequence of integers, we denote by A(X ) the number of its
elements that are less than X. Since our methods are fairly elementary
(partly inherited from [16]) we prove a wide generalisation of these results
to any "sufficiently sifted sequence" and its dense subsequences, namely
Theorem 1 below.

More precisely, we say that the sequence A of integers is sufficiently
sifted if there exist Xo &#x3E; 1, cl, c2 &#x3E; 0, x &#x3E; 0, 21 ~ E [0, 2 ~, a &#x3E; 0, a
function r such that r(X) = o(X(LogX)-"), a sequence (J(P)PEP such that
1Cp C Z/pZ and a sequence of subsets of .A such that

Manuscrit reçu le 2 juillet 1999.
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and the fact the ,A is infinite implies that lCp 54 0. As examples of suffi-
ciently sifted sequences, let us mention the sequence of integers (~ = 0),
the sequence of primes (rc = 1) , the sequence of integers that are sums
of two squares (x = ~), the sequence of integers n that are sums of two
coprime squares and such that n+1 also has this property (x = 1, cf. [10])
or the sequence of those prime numbers p such that p can be written as
p = + n2 with (m, n) = 1 (x = ~, cf. [11] and also [7] for related
sequences). As far as orders as asymptotic bases are concerned the exam-
ples above have an order C which verifies respectively C = l, 3  C  4,
C = 2, 2  C  oo and C  oo. We mention a last example: the sequence
of integers n that are product of primes each being larger than n 1/ So
(here x = 1).
The parameter occurring in (Hl) and (H4) above is called the dimen-

sion of the sequence. Since (as we show below), A is essentially the result
of sieving the integers by a sieve of dimension ~, we see that ~4.(X) ~
X/ Log" X which provides an intrinsic definition of ~. Given such a suf-

ficiently sifted sequence ,A, we shall consider subsequences A* C A which
are dense with respect to ,A, i.e. such that A*(X) &#x3E; A(X)/k for X &#x3E; X,
for a given constant k &#x3E; 1. Note that such a subsequence is again a suffi-
ciently sifted sequence and of same dimension, but we are interested in the
dependence in k. Our main result is

Theorem 1. For i E {1, 2}, let Ai be a sufficiently sifted sequence of di-
1 be a real numbers and let Ai C Ai be such that

Ai (X )/ki for X &#x3E; Xl . Then we have

we mean that the implied constant may depend on all the pa-
rameters required to define the sufficiently sifted sequences ,,4.1 and A2.

This result is fully asymmetrical in its statement as in its proof, only
the starting hypotheses being similar. We shall reduce the problem to a
finite one by treating the first sequence via Selberg sieve while the other
one will be treated by appealing to an improved version of the large sieve
inequality. The known "duality" between these two processes explains the
similarity of hypotheses. Moreover to treat the final problem, the second
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sequence has to be not too badly distributed in arithmetic progression to
finite moduli, which is built in in this setting.
We have restricted our attention to finite dimensional sieves, but the

method used to prove Theorem 1 can most probably be extended to cover
the case when one of the sifted sequences is as sparse as the sequence of

squares. Both sequences cannot be that sparse since the set of sums of two

squares do not have positive lower density. But the method would never be
able to tackle for instance the sequence consisting of sums of a prime and
a cube, though this sequence does have positive lower density [17, 4].

Here are some corollaries:

Corollary 1. Let A be a sufficiently sifted sequence of dimension K. Let
k &#x3E; 1 be a real numbers and A* C A be such that A* (X ) &#x3E; A(X )/k for X &#x3E;
Xl. If A* is not included in any subgroup of Z, then A* is an asymptotic
basis of order W,,4 k(Log Log 3k)’. Moreover this bound is best possible for
a sequence of k going to infinity, aside from the constant implied in the
«A -symbol.

By Theorem 1, the set of integers that are sums of two elements of A*
has positive lower density, say 6. We then conclude by using Kneser’s
Theorem that A* is an asymptotic basis of order C~(1/b) (statement and
proof of Kneser’s Theorem may be found in [9, chapter I, paragraph 7,
Theorem 16’]).

Thus Corollary 1 says that, except if some local obstructions occur, a suf-
ficiently sifted sequence is an asymptotic basis and that the same property
holds for all its dense subsequences. Though this result seems surprising,
an adaptation of Schnirelman’s approach ([21])would most probably be
enough to establish it. However the fact that the order should be so well
bounded is new. For instance for the sequence of primes, Sarkozy got the
bound W k4 and we do not see how his approach could provide anything
better than the bound « k2. Note that he conjectured our result for this
sequence.

Being an asymptotic additive basis, a theorem of Erd6s asserts that A*
is an essential component i.e. for any sequence of integers B of asymptotic
lower density &#x3E; the asymptotic lower density of B + P is &#x3E; 1 If (see [9]
for instance). For the sequence of primes Ruzsa [18] has shown that this
phenomenom was particularly pronounced if t is large since the asymptotic
lower density of 13 + P is &#x3E; c/ Log Log(3t) for some positive constant c.

Since a sequence of positive lower density is a dense subsequence of the
sufficiently sifted sequence of natural intergers, Theorem 1 readily yields

Corollary 2. Let A* C A be two sequences verifying the assumptions of
Corollary 1. There exists a constant c3(A) &#x3E; 0 such that for all e &#x3E; 1

and every sequence of integers B of asymptotic lower density &#x3E; llf, the
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asymptotic lower density of B + A* is greater than 
This result is optimal for a sequence of k going to infinity, as far as the
value of c3 is not concerned.

We of course do not need to assume that A* is not included in any
subgroup of Z (since Kneser’s Theorem is not required).
The corresponding finite problems sound as follows. Let m be a modulus.

Let be a subset of Z/mZ. For any ilm, we define /Ci = 1cm/iZ. We
say that is multiplicatively split if we have IKhtl = whenever

(h, I) = 1 and hilm. In other words, the canonical isomorphism from
to Z /hZ x Z/iZ maps Khi to ICh x Given such a subset and

a subset of JCm such that and such that is not
included in any subgroup of Z/mZ, how can we bound the order of /C:n
as an additive basis of Z/mZ ? And what is the impact of this set ? We
give satisfactory answers to both questions in the next two results. For the
sake of simplicity we shall restrain our attention to "squarefree" by
which we mean that is the inverse image by the canonical projection
of lCp. Thus squarefree moduli carry all the information about this set.
To be able to have asymptotical results, we need a family of Km, which
we get by considering a compact subset /C of 7G (the projective limit of

and defining = /C/mZ. We assume that /Cm is multiplicatively
split for all m which we shorten by saying that IC is multiplicatively split.
The data IC is equivalent to a sequence such that the 1Cm C Z/mZ
and 1Ce = for Since Corollary 3 below is fairly intricate in
general, for the two applications we have in mind we shall further restrict
our attention to moduli M of the shape M = and to compacta IC

verifying (H4) and (H5). This is by no means necessary but shall render
our results more readable.

Theorem 2. Take a compact IC as above and a sequence (BM)M of subsets
of Z/MZ where M ranges moduli of the shape M = Then we have

It is important to note that the implied constant is independant of k and
BM. ·

Taking for BM a subset of density of Z /MZ, we get immediately a mea-
sure of the "impact" of 1C’M.

Combining the proof of Theorem 1 together with Theorem 2, we reach

Corollary 3. Notations being as dbove, if the set 1CM is not included in

any subgroups then it is a basis of order 

Taking lll to be the set of invertible elements (x = 1), Corollary 3 is
an appreciable improvement (but with stronger hypotheses) on a theorem
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of Cauchy-Davenport-Chowla (cf. [9] chapter 1, paragraph 6 Theorem 15)
which would give the order to be C~(k ~ Log ~).

While the results pertaining to the sieve are exposed in Section 4, we
state here the result concerning the finite part of the proof, where we do
not make any special assumption about )C, aside from the fact that it should
be multiplicatively split.

Theorem 3. Let m be an integer and A and B be two subsets of Z/mZ.
Then

where

where D ranges the set of subsets of exact prime power divisors of m and
L’ q = Z/qZ B lCq.
An "exact prime power divisor of m" is a power of a prime, say q &#x3E; 1,

such that m/q is prime to q.

The organisation of this paper. In Section 2, we prove Theorem 3 and in
Section 3, we prove Theorem 2. In Section 4, we gather information about
Selberg sieve and the large sieve in order to build an upper bound for the
characteristic function of a sufficiently sifted sequence and to prove a large
sieve estimate that will be required to prove Theorem 1, this proof being
displayed in Section 5. Section 6 shows how Theorem 2 and the proper
uniformity in the proof of Theorem 1 implies Corollary 3. In Section 7, we
give examples showing that the bounds given are optimal.

2. Sums coprime to a fixed number. Proof of Theorem 3

Throughout this proof p shall denote a prime factor of m. Define IAI =
n

We define further

We have
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By the power-mean inequality, we infer

with any positive integer t.
Now is the number of those t-tuples al, ... , at E ,~t for which ai+x E
for all i. So if we write

then

For a prime power q let GQ be the complementary set of 1CQ in Z /qZ and

We have

Hence

Let D be a subset of exact prime power divisors of m. We estimate
1 - w9(al, ... , at)/q as follows. For q E D we use the elementary inequality
valid for x &#x3E; 0

while for q 0 D we use the trivial estimate 1 - Wq(al,... at)/q  1. We
also observe that by inclusion-exclusion

Hence with the notation

we obtain
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To estimate the last sum we use the inequality of geometric and arithmetic
mean: 

I 1 -1, , _1 , ,

hence

We thus have to evaluate this latter double sum E. To do that we fix a and
let a’ range Z/mZ. We get

To go any further, consider the following optimisation problem:

Maximum of

for 0 &#x3E; 1. This corresponds to the sum we have to bound with 0 =

exp(t2 / q), Xi = IGq n (i + I and H = ~G9~. Assume (~1, ... , Xq) verify
the proper inequalities and it is such that there exist zj and z; with i # j
and both E ~1, H - 1]. We can further assume and i = 1,
j = 2. The q-tuple (xl + 1, X2 - 1, X37 ... , xq) gives a larger value for S
since the difference between the two values is

Using this remark, we get that the maximum is reached when H2 /H of the
x2 are equal to H and the other are 0. The maximal value is thus

this inequality coming from xbx + 1 - x - b, ~2  0 for 0  x  1 and b &#x3E; 1

(the derivative in b is &#x3E; 0, and the inequality is obvious for b = 1).
Applying this latter result to each term of the product appearing in the

right-hand side inequality of (2.10), we reach the upper bound
I ,
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from which we infer (collecting (2.3), (2.4), (2.8) and (2.9))
- , .. --. ,.,

We put t = which makes the factor (m2/nn’)1/t bounded
by 3.

3. Proof of Theorem 2

This results is an easy consequence of Theorem 3 but the estimates

proved here shall prepare the ground for the proof of Theorem 1. Put

where k E ICM and b E /?M- We have

by applying Theorem 3 to ,Ci = -13M and to A = In E Z/MZ, r2(n) ~
01 = /C* + ZiM of cardinality JM, and where 1] is defined in Theorem 3. In
order to evaluate q, let us first notice that here Lp = Gp and that partial
summation together with (H4) give

Furthermore, we have

hence using (1.1) and (3.3), we get

Notice next that

since

and recalling (3.3), we get



567

Inserting this value in (3.2), we reach

as required. Such a proof is correct if L is less than A, but extends auto-
matically to the other case, for we then have

so that (3.6) is weaker than

which is already certainly true.

4. Sieve results

In Section 4.1 which can be read independently, we present Selberg sieve
in a way that is convenient for this paper and which allows one to sieve

by non-squarefree integers. The reader is assumed to be familiar with the
large sieve and the classical Selberg upper A2-sieve. Under an additional
hypothesis, we use this approach to recover Selberg’s upper bound for an
interval through the large sieve, following an idea of Bombieri and Dav-
enport and deduce an improvement of the large sieve inequality for sifted
sequences which is an essential tool for the proof of Theorem 1. We further-
more prove several technical lemmas that are required to use this sieving
device as an enveloping sieve (i.e. essentially as a preliminary sieve).

In Section 4.2, we explain rapidly how we build an enveloping sieve in
the context of this paper.

4.1. Remarks on Selberg sieve and the large sieve.
oo The supporting compact Our first data is a non empty compact
subset IC of Z = lim~. Z/nZ which is supposed to be multiplicatively split
(a notion that has been defined between Theorem 1 and Theorem 2). This
is equivalent to a sequence (ICpv) with lllpw C Z/p-Z and such that the
canonical projection maps Kpw to lCp,.,-i. As a

matter of notation, we put /Cd = 
A sequence is said to be supported by K up to the level D if

00 The bordering system (.cd)d. We shall need another sequence of sets
complementary to /C: we put G1 = {1} and £pw = 

i.e. it is the set of elements x E Z /pZ such that apv (x) E but that
do not belong to JCpv. We then define Gd by split multiplicativity. The
notation n E 1Cd (resp. n E Gd) means that the image of n in Z/dZ is in
/Cd (resp. in Gd) and the function lxd is the characteristic function of such
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integers. Note that contrarily to what happens with IC, we do not have
Ge if fld. By definition we have

where w(d) denotes as usual the number of prime divisors of d and is in no
way connected to the w defined by (2.5) (this latter will not be used any
more).
oo The G-functions. We set

which is a sum of non-negative terms since the summand can also be written

We introduce the solution h of = 1 * h(q). It is given explicitly by

Introducing h in the expression defining Gd, we get

where [d, 5] stands for the lcm of d and J. From this expression, we imme-
diately get the following generalisation of a Lemma of van Lint &#x26; Richert

(cf. [13]):

Note that these G-functions have been studied thoroughly in the context
of Selberg sieve and the reader will find relevant informations in [8].
0 o Selberg’s weights. We set

These two sets of weights are solutions of the following extremal problems:
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and

We go from one problem to the other by using (4.1.2) and the first one is
fairly trivial to solve. We note for future use that

We refer to [22] and [15] for another exposition and to [6] for related ma-
terial.
oo Dimension of the sieve. It is not the purpose of this note to evaluate the
G-functions and we shall only say that we have a sieve of dimension r. &#x3E; 0
whenever we have

where C(1C) is a positive constant. We refer to [8] and [6] for more details.
Though everything we do is made for this case, most of it is valid under
more general conditions and holds for infinite dimensional sieves as well.
Note that (H4) is enough to ensure (4.1.11), as shown in [8].
oo An identity. We now assume that IC satisfies a condition introduced by
Johnsen (cf. [6] and [22]) and which reads

Then we have the following identity which generalises already known ones
(cf. [1], [14] and [2])

Theorem 4. Assume IC verifies the Johnsen condition (4.1.12). Let 
be a sequence supported by IC up to the level Q. Then we have

where the surramation over a is restricted to invertible classe modulo q.

It can be shown that the Johnsen condition is indeed required. Note that
in order to be able to handle non-squarefree q, we need to have a proper
definition of Gq which comes naturally when studying Selberg sieve with
non-squarefree moduli.
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Proof. Let us denote by A(Q) the LHS of the equality above. We have

and we recognize the inner summation as being Expressing
~* in terms of A, we get

We now define

which we expand in

The inner summation is evaluated by appealing to the fact that IC is mul-
tiplicatively split: for this sum not to be zero, we need m - ~[(~1,~2)]’
Under this condition b is uniquely determined modulo [£1, t2], and by using
the Johnsen condition, we infer that this sum equals By split
multiplicativity again, we have

We thus get

We only have to compute the inner sum. We have

as required. D

Note that by using the above Theorem together with the large sieve
inequality, we recover the upper bound given by Gallagher in [6] in the
spirit of the paper [3] by Bombieri &#x26; Davenport.
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00 An improved large sieve inequality. The first named author is indebted
to Professor H. Iwaniec for useful discussions which led to the following
result.

Theorem 5. Assume 1C verifies the Johnsen conditions (4.1.12).
Let a sequence supported by lC up to the level Q. Then for
Qo  Q we have

Proof. Let us call E(Qo) the LHS of the inequality to be shown. By Theo-
rem 4.1.2 and using the notation O(q) from its proof, we have

and we conclude the proof by applying Lemma 4.1.1. D

oo Equidistribution of Selberg’s weights in arithmetic progressions. We as-
sume J’C satisfies the Johnsen condition (4.1.12). We now define for a co-
prime to q

say. Replacing ~* by its value, we get
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i.e.

(4.1.14)

with

and we now evaluate the inner sum by multiplicativity. Its value is 0 as
soon as there is a prime p which divides t[ or 22 but not q/ (6, q). Let then
p be a prime such that and with c &#x3E; 1. We check

successively that the value of the inner sum is 0 if c  max(a, b) - 1, or if
c = max(a, b) &#x3E; min(a, b) &#x3E; 1. Its value is 1 if c = max(a, b) &#x3E; min(a, b) =
0 and -1 if c = a = b. We can thus write 2i = qlq3, 1% = q2q3 with
q = qiq2q3 and (9i?92) = (qi, q3) = (q2, q3) = 1 and the value of the inner
sum is (-1)~B Hence

Note that pz(q, and is 0 if q &#x3E; z (since max(qlq3, q2q3) &#x3E;
Moreover we check that pz (q, b) ~  

If we have a sieve of dimension x, then recalling (4.1.6), expression
(4.1.14) estimated via (4.1.15) and Lemma 4.1.1 yields

which we combine with (4.1.11) to infer the first line of

the second line being a direct consequence of (4.1.14)-(4.1.15). For the

sake of simplicity, we shall convert the into 0,(q’/Logz),
valid for any - &#x3E; 0. The implied constant also depends on IC, as far as the
asymptotic expression (4.1.11) of Gl depends on 7C.
To conclude this part, we consider e(ab/q). First as an easy ap-

plication of the chinese remainder theorem, we have
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Next if c/M = a/q with (a, q) = 1, then note that

00 Distribution of Selberg’s weights in arithmetic progressions. We assume
JC satisfies the Johnsen condition (4.1.12) and is of dimension (cf. (4.1.11)).
We further assume that

for some c &#x3E; 0 and ~ E [0, 1[ which implies (see (4.1.13), (4.1.16) and
(4.1.17))

We then get by using additive characters

the last equality comimg from (4.1.16), (4.1.17) and (4.1.18). As an easy
consequence, we get

00 Squarefree sieves. When = JCpv for v &#x3E; 2 we say that JC is

squarefree. We are then in the usual condition of the (squarefree) Selberg
sieve. Note that the Johnsen condition (4.1.12) is automatically satisfied.
Under this assumption we have Lpv = 0 for v &#x3E; 2. Note further that,
though Ad is defined and non-zero for squarefree d  z, non-squarefree val-
ues of d do not occur in (4.1.9) if IC is squarefree. In particular w(a/q) = 0
if q is not squarefree which can be seen in two ways: by replacing A*
by Ad in (4.1.13) or by noticing that by the chinese remainder theorem

e(ab/q) = 0. In particular (H4) is enough in this case to claim

(4.1.19) and (4.1.20). We finally refer to [6] for examples of non-squarefree
sieves.
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00 Fourier expansion of 0. In order to have a confortable setting to evaluate
sums of the type where 8 is defined in (4.1.10), we seek
another expression of 0 as in [16]. We assume (4.1.12). We have

We now express the inner characteristic function by using additive charac-
ters and get

hence we reach the fundamental identity

4.2. An enveloping sieve. We fix a real number X &#x3E; 1 and seek an

upper bound /3 for the characteristic function 1,4 of A up to X which we
can work with in a very explicit way. We recalled in Section 4.1 how Selberg
sieve provides such a function.
We define z = so, so being the parameter occuring in the

definition of a sufficiently sifted sequence. We consider the bordering system
(.cd)d. If d is not squarefree, we have Gd = 0. We then put (cf. (4.1.7) and
(4.1.10))

where (cf. (4.1.3) and (4.1.6))

We thus have for n  X

Recall further the classical estimate (cf. (4.1.11))
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for some positive constant C(1C). To go further and still following Sec-
tion 4.1, we define for a coprime to q

We need some information about w(a/q) which are similar to those proved
in [16]. By (4.1.15) and (4.1.19) we infer

If qlM and q  z, we have

In fact, the 0-symbols depends also on the parameters ~ and c2. We shall
need this expression with s fixed, and c2 fixed and hence we shall drop
most of the dependences, except the one in q in the 0-symbols. In Section 4.1
we also established in (4.1.20) that the weighted sequence (j3(n)) is properly
distributed in arithmetic progressions and thus

for b E ICM and provided s &#x3E; 2 (the implied constant may depend on s,
but is bounded for all s for any si &#x3E; 2). If the above
sum is 0. We finally recall the following identity (cf. (4.1.21) for a proof)

5. Proof of Theorem 1

In this part, i will always denote an index that ranges {1,2}. Let us fix
a large enough number X. We p ut z = where is

the parameter so appearing in (H3) for All the constants may depend
on the host sequences and more precisely on the particular choice of
parameters being chosen to verify conditions (Hi)-(H5). We consider two
subsequences Ai as in Theorem 1. X being fixed, we can replace ,,4Z
by Ãi = n [1, X/2] n This sequence satisfies
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To avoid accumulating notations, we shall still use Ai instead of Ai*. This
change is of no consequence since is at most a constant time sparser
than Define

We have readily

where the implied constant depends only on the ones appearing in (5.0).
Define

We have

Define

-, --.t

Loosening the condition al E r4i into al E .A1X and sieving the resulting
al by the process described in Section 3 (cf. (4.2.9)), we get

where w(a/q) depends on z and where IC(’) is the compact correspond-
ing to ,Ai. We thus have reached the inequality
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where the implied constant depends only on the ones appearing in (5.0).
The improved large sieve inequality (Theorem 4.1.13) gives us

/ 

for any D  In our case D is at most z 2 which is not more than
so that Furthermore, we

,(2)have assumed that 0 &#x3E; 2, so that (5.7) implies

Introduce . Using the bounds I

where this time the implied constant depends on ,A.1 and ,A1.2 and on all the
parameters defining them as sufficiently sifted sequences. Since J  1, we
can take A = and get

and we are thus left with a finite problem. We can furthermore replace
w(a/d) by its asymptotic expression (4.2.7) with admissible error term

I I

got by using Ti(0), Parseval equality on T2 and (4.2.8) on 
provided

which we assume. By using (3.4) on and bounding M’ by M 
Log 2e z, we get that this error term is admissible (i.e. smaller than the
RHS of (5.5)) at least if
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which we assume. We have reached

This latter sum is a number of representations. Expanding Tl (c/M) and
T2(c/M), we get

0 Conclusion. We define

Writing

and

the inequality (5.12) reads

where gr(x) = g(r - t). We have the conditions (cf. (4.2.8) and (5.10))

We seek an upper bound for under (5.16) (replace gr by h).
Let us take a maximal solution ( f, h). We first show that we can assume
that f (a) = I or 0 except in at most one point and similarly
for h. For otherwise, h being fixed, assume f (al) and f (a2) both in the
open interval and that h(a2). Increasing f (a2) by
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min(-f (a2) + c6k/IKV) I, f (al)) and decreasing f (al) by the same amount,
we reach a better couple ( f, h) while still verifying the constraints.
We thus have

this latter maximum being taken over the sets 2( of cardinality  1 +

and Q3 C Z/MZ of cardinality  1 + 1K:~I/(C7£). We shall
now apply Theorem 3 and first estimate By (3.4), we have

We then estimate the coefficient 17. We have « Log(3(kl+
k2)). We choose D = {p  A,p &#x3E; Ll. We use (1.1) with L = a(Log(kl +
k2)) 1/(1-2~1) where a &#x3E; 0 is independent of kl and k2 and is being chosen
so that L  A. We finally get

Collecting our estimates, we reach

as required.

6. Proof of Corollary 3

We shall need two parameters M so we change at once the notations of
Corollary 3. We shall work with ICÑ with N = 

If k &#x3E; Log &#x3E; then Theorem 2 readily implies Corollary 3, simply by
taking B M = If k is smaller, the proof is more difhcult and is in fact
pretty similar to the one required for Theorem 1. Let Ai = ,A.2 being the lift
of J’CN over N. Put X = p,2 and look at intervals of length X/2 intersected
with Al. One of these intervals contains more elements than the average
density which is » Discard elements so that the remaining
set Z3 verifies

v

Now (6.1) is the equivalent of (5.0) and the proof of Section 5 can be
pursued with B = the only difference being that we sieve an interval
which does not start at 1. This of no consequence whatsoever while sieving
intervals.
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However, we cannot let X be as large as need be and we have to control
its size in terms of kl = k and k2 = k. The two conditions are (5.10) and
(5.11). They read 

-

This is more than enough since we had a proof already for k &#x3E; 

7. Counterexamples

We give here examples pertaining to the optimality of our results. To
do so first note that Corollary 1 applies only when A is an asymptotic
basis, hence there exist al, a2 in ,A that are coprime. Next consider m =

= + 0(1))). For a sufficiently sifted sequence A, we have

the latter inequality following from (4.2.8). If we chose X2 &#x3E; Xo such that
c4X (Log X )-" - r(X) &#x3E; !c4X(Log X)-’ as soon as X &#x3E; X2, and select a
positive real c number strictly less than c4/2 (which is  c5), we infer that
the set defined by

verifies

We then select ao E jjm and take

We have [ and A* is an asymptotic basis (by
our Theorem) of order at least m. Translating these bounds in terms of
k = we see that the order of ,A* is » k(Log Log k)".
To deal with the optimality of Corollary 2, we use a remark which we own

to D. R. Heath-Brown: by Theorem 1, .Ci = A* + A* is of positive density
» 1/(k(Log Log(3k))") = 1 /t and the inverse of the lower density of B + A*
is an upper bound for the order of ,,4*, the optimality of Corollary 1 thus
implies the optimality of Corollary 2, at least when t = ck(Log Log(3k))’.
Theorem 3 is optimal for the same reason.

For similar reasons, Theorem 2 and Corollary 3 are optimal.
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