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We propose a theoretical model of a non-local dipersive-dissipative equation which contains as a particular case a large class of non-local PDE's arising from stratified flows. Within this fairly general framework, we study the spatial behavior of solutions proving some sharp pointwise and averaged decay properties as well as some pointwise grow properties.

Introduction

Stratified flows, which roughly speaking are fluids with a density variation, are everywhere in nature and play a key role in a range of natural phenomena, from ocean circulation to weather forecasting. Mathematical models for these flows are helpful in understanding the real world. These models essentially write down as non-local, dispersive-dissipative type equations, see e.g. the range of equations ( 6)- [START_REF] Carvajal | On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation[END_REF] below, and these equations describe the evolution of nonlinear internal long waves considering different physical settings. We refer to [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Benjamin | Lectures on Nonlinear Wave Motion Lectures in Applied Mathematics[END_REF][START_REF] Benjamin | Model equation for long waves in nonlinear dispersive systems[END_REF][START_REF] Ostrovsky | Nonlinear stage of the shearing instability in a stratified liquid of finite depth[END_REF][START_REF] Ostrovsky | Radiation instability in a stratified shear flow[END_REF][START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF][START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF] and the references therein for a small sample of the huge existing literature.

In this article, we propose a theoretical equation which contains as a particular case some well-known relevant physical model arising from stratified fluids. Within the fairly general setting of this equation, we investigate some sharp properties of the spatial behavior of solutions.

Let us consider the following Cauchy problem for a dispersive-dissipative equation with a non-local perturbation term:

∂ t u + D(∂ x u) + u k ∂ x u + η(H∂ n x u + H m u) = 0, η > 0, u(0, •) = u 0 . (1) 
In this equation, the dispersion effects are given by the term D(∂ x u), where D is a pseudo-differential operator D defined in the Fourier variable as follows: for ϕ ∈ S(R) D(ϕ)(ξ) = p(ξ) ϕ(ξ).

(

) 2 
The symbol p(ξ) characterizes the linearized dispersion relation of the model equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. We consider here a fairly general symbol p(ξ) verifying the following natural assumptions (see the Section 5 of [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]): p ∈ L ∞ loc (R) is a real-valued function, continuous at the origin, smooth outside the origin and with polynomial grow at infinity, i.e., for a.e. ξ ∈ R we have |p(ξ)| ≤ c|ξ| σ , with σ > 0.

(3)

It is easy to observe that the operator D commutes with differentiation and moreover, since the symbol p(ξ) is real-valued then D is a self-adjoint operator on its domain in the space L 2 (R).

Thereafter, for a parameter k ∈ N * we consider a fully non-linear term of the form u k ∂ x u. Writing u k ∂ x u = 1 k+1 ∂ x (u k+1 ), we observe that this non-linear term essentially behaves as the derivative of a polynomial in u which agrees with the classical assumption in the study of non-linear dispersive waves [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF].

Finally, for η > 0 fix, and moreover, for n ∈ N * and m = 2, 3, the dissipative effects are given by the non-local perturbation term η(H∂ n

x u + H m u). Here, H denotes the Hilbert transform defined as:

H(ϕ)(x) = p.v. 1 π R ϕ(y) y -x dy, (4) 
where we have H(ϕ)(ξ) = i sign(ξ) ϕ(ξ). Moreover, the operator H m is defined by the expression

H m u = (-1) m-1 ∂ m x u, if m = 2, H∂ m x u, if m = 3. (5) 
When n = 1, the term η(H∂ x u + H m u) arises in physical models and it describes the wave's instability in a stratified fluid (see the short explanation below equation ( 6) for more details). However, we will also consider higher values of the parameter n which, from the mathematical point of view, will play an interesting role in the spatial decaying properties of solutions.

As already mentioned, equation ( 1) is a generic model and its major interest bases on the fact that it contains as a particular case several relevant physical models. In order to motivate the interest of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] let us examine the following examples. Let us set n = 1:

A) For D = ∂ 2
x , where p(ξ) = -|ξ| 2 , k = 1 and m = 3, the equation (1) deals with a non local perturbed version of the celebrated Korteweg-de Vries (KdV) equation [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. This equation, also known as the Ostrovsky, Stepanyams and Tsimring (OST) equation:

∂ t u + ∂ 3 x u + u∂ x u + ηH(∂ x u + ∂ 3 x u) = 0, (6) 
describes the radiational instability of long non-linear waves in a stratified flow caused by internal wave radiation from a shear layer. The parameter η > 0 represents the importance of amplification and damping relative to dispersion. The fourth term in equation represents amplification, while the fifth term in equation denotes damping. For a more complete physical description we refer to [START_REF] Ostrovsky | Nonlinear stage of the shearing instability in a stratified liquid of finite depth[END_REF][START_REF] Ostrovsky | Radiation instability in a stratified shear flow[END_REF][START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF].

B) For D = ∂ 2
x , k = 2, 3 and m = 3, the equation (1) coincides with the generalized OST-equation:

∂ t u + ∂ 3 x u + u k ∂ x u + ηH(∂ x u + ∂ 3 x u) = 0. ( 7 
)
This model considers a stronger non-linear dynamics due to the term u k ∂ x u with k ≥ 2. The values k = 2 and k = 3 are relevant from the physical point of view in the modelling of surface and volume water waves respectively [START_REF] Bona | Stability and instability of solitary waves of Korteweg-deVriesType[END_REF].

C) For D = H∂ x , where p(ξ) = |ξ|, k = 1 and m = 3, the equation ( 1) agrees with a non local perturbed version of the well-known Benjamin-Ono (BO) equation [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF]:

∂ t u + H∂ 2 x u + u∂ x u + ηH(∂ x u + ∂ 3 x u) = 0. ( 8 
)
This equation is a good approximate model for long-crested unidirectional waves at the interface of a two-layer system of incompressible inviscid fluids. Moreover, it gives an analogous model of the OST-equation ( 6) in deep stratified fluids [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF].

D) For D = H∂ x , k = 1 and m = 2, the equation ( 1) becomes the Chen-Lee equation (CL) which deals with the BO equation with another kind of non-local perturbation:

∂ t u + H∂ 2 x u + u∂ x u + ηH(∂ x u -∂ 2 x u) = 0. (9) 
Chen-Lee equation was introduced by H. H. Chen and Y. C. Lee in [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF] to describe nonlinear dynamical models of plasma turbulence. See also [START_REF] Chen | A study of nonlinear dynamical models of plasma turbulence[END_REF] for more details.

E) For D = (H∂ x ) 1+α with 0 < α < 1, where p(ξ) = |ξ| 1+α , k = 1 and m = 3, the equation ( 1) writes down as a non local perturbation (since we assume η > 0) of the dispersive generalized BO equation:

∂ t u + (H∂ x ) 1+α ∂ x u + u∂ x u = 0. ( 10 
)
From the physical point of view, this equations models vorticity waves in the coastal zone [START_REF] Shrira | Nonlinear dynamics of vorticity waves in the coastal zone[END_REF]. On the other hand, from the mathematical point of view, this equation was studied in [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF] as an interesting intermediate dispersive model between the BO equation (when α = 0) and the KdV equation (when α = 1). The parameter 0 < α < 1 measures the sharp dispersive effects which are stronger than the one for the BO equation but weaker than the one for the KdV equation.

Concerning the mathematical study of these equations, as the local and global well-posedness (LWP and GWP respectively) and some previous results on the spatial decaying properties, there exists a large amount of works. So, we will give a short overview on the most recent results.

First, let us focus on the non-local perturbations of the KdV equation. For the OST-equation [START_REF] Benjamin | Model equation for long waves in nonlinear dispersive systems[END_REF], GWP was proved in H s (R) with s ≥ 0 in [START_REF] Carvajal | Sharp ill-posedness and well-posedness results for dissipative KdV equations in the real line[END_REF] and LWP was obtained in H s (R) with -3/2 ≤ s < 0 in [START_REF] Cui | Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data[END_REF]. Moreover, the value s = -3/2 is the critical one for the LWP in the Sobolev spaces. Thereafter, the average decay of solutions was derived in [START_REF] Samaniego | On the Cauchy problem for a nonlocal perturbation of the KdV equation[END_REF] using the weighted space H 2 ∩ L 2 ((1 + | • | 2 )dx)(R). On the other hand, respect to the generalized OST-equation [START_REF] Brandolese | Far field asymptotics of solutions to convection equation with anomalous diffusion[END_REF], only for the values k = 2 and k = 3, it was shown in [START_REF] Carvajal | On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation[END_REF] the LWP in H s (R) for s > 0 and the GWP in L 2 (R). To the best of our knowledge, the well-posedness issues for k ≥ 4 and the spatially decay properties for k ≥ 2 have not been yet studied. Now, let us concentrate on the non-local perturbations of the BO equation. The non-local perturbed BO equation [START_REF] Bona | Stability and instability of solitary waves of Korteweg-deVriesType[END_REF] was recently studied in [START_REF] Fonseca | The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces[END_REF] where the GWP was obtained in H s (R) with s > -3/2. The value s = -3/2 seems to be critical for the well-posedness in the Sobolev spaces in the sens that the flow map data-solution for this equation is not C 2 from H s (R) to H s (R) for s < -3/2. Moreover, similar to the equation ( 6), the averaged decay of solutions was studied in the space

H 2 ∩ L 2 ((1 + | • | 2 )dx)(R).
On the other hand, for the CL equation (9), the GWP was first proved in [START_REF] Pastrán | On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces[END_REF] for the periodic Sobolev spaces H s (T) with s > -1/2. Thereafter, this result was generalized to the non-periodic setting of the whole line R in [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF]. Moreover, in this work it was also proved that the value s = -1/2 seems to the sharp provided that the flow map data-solution for this equation is not C 3 from H s (R) to H s (R) for s < -1/2. Finally, concerning the decay of solutions, always in [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF] it was shown that solutions cannot have an averaged decay at infinity faster than 1/|x| 3 . More precisely, it is proven that if u(t, x) is a solution of equation ( 9) which

verifies u ∈ C([0, T ], H 3 ∩ L 2 (1 + | • | 6 dx)(R)) then we have u(t, •) = 0 for all t ∈ [0, T ].
Within the general framework of the equation ( 1), the aim of this paper is to give a better understanding of the spatial behavior of solutions for all these equations and other related models in the studying of stratified fluids.

Our methods are technically different with respect to the works mentioned above. Indeed, these results are obtained through purely dispersive approaches based on Strichartz-type estimates, smoothing effects and estimates in Bourgain-type spaces. Instead, following some ideas of a previous work [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF], using the explicit definition in the frequency variable and the inverse Fourier transform we derive some sharp estimates (in the spatial variable) on the kernel associated to the linear part of (1). Kernels estimates seems to be a useful tool to study the spatial properties of solutions for equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. First, we derive some pointwise decaying rates of solutions which in certain cases are optimal. Thereafter, combining the kernel estimates with some well-known tools of modern harmonic analysis, as the Hardy-Littlewood maximal function operator and the Muckenhoupt weights, we study the average decay properties of solutions in the improved setting of the weighted Lebesgue spaces L p w δ (R) for 1 < p < +∞ (see formula [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] for a definition of these spaces). Finally, we are able to construct solutions of with some pointwise growing rates. To the best of our knowledge, these kind of solutions have not been considered in the previous works.

Plan of the paper: in Section 3 we derive some kernel estimates. Then, Section 4 is devoted to a first result on the well-posedness of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. In this framework, we study some pointwise and average decaying properties of solution in Sections 5 and 6 respectively. Finally, in Section 7 we study some pointwise growing properties of solutions.

Statement of the results

In all the results obtained in this paper, we will observe that the properties of solutions of equation ( 1), as the well-posedness issues and the spatial behavior, deeply rely with parameters m and n given in the term η(H∂ n

x u + H m u). From now on we will assume that the parameter n ∈ N * verifies n = 5 + 4d, with d = 0, 1, 2, 3,

• • • . (11) 
This condition on the parameter n seems to be sharp to prove the well-posedness of equation ( 1) in the classical Sobolev spaces H s (R). Roughly speaking, solutions can be written as an explicit integral formulation (see formula [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF]) which involves a kernel depending on m and n. For the values of n which do not verify [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF], the Fourier transform of the kernel behaves at high frequencies as an increasing exponential function (see the expression ( 22) below) and then we loose any control on the well-known H s -norm. Moreover, it is worth to emphasize that the condition [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF] is not too restrictive since all the physical models mentioned above are not concerned.

Global well-posedness

To the best of our knowledge, the fairly general equation (1) has not been considered before in the literature and, in order to provide a more complete study of this equation, we give first the following result concerning some well-posedness issues in the classical framework of Sobolev spaces.

Theorem 1 In equation ( 1), let the parameters m = 2, 3, n ∈ N * which verifies [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF] and k ∈ N * . Moreover, for s > 3/2 let u 0 ∈ H s (R) be an initial datum. Then, the equation ( 1) possess a unique classical solution

u ∈ C([0, +∞[, H s (R)) ∩ C 1 (]0, +∞[, C ∞ (R)).
Some comments are in order. For the OST equation (6) studied in [START_REF] Cui | Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data[END_REF], the non-local perturbed BO equation (8) treated in [START_REF] Fonseca | The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces[END_REF] and the CL equation (9) studied in [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF], this theorem recovers some well-known results obtained on the GWP and improves the regularity of solutions: here we have u ∈ C 1 (]0, +∞[, C ∞ (R)). Moreover, for the generalized OST equation [START_REF] Brandolese | Far field asymptotics of solutions to convection equation with anomalous diffusion[END_REF] studied in [START_REF] Carvajal | On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation[END_REF], this theorem improves both GWP and regularity of solutions for the higher non-linearities k ≥ 4. On the other hand, let us mention that under some technical modifications this theorem could be improved for a large class of initial data u 0 belonging to a Besov space B s,q 2 (R) with 2 ≤ q ≤ +∞. For a definition and more details on Besov spaces see the book [START_REF] Bahouri | Fourier Analysis and nonlinear partial differential equations[END_REF].

In the framework of this theorem, we study now some decaying properties of solutions in the spatial variable.

Pointwise decaying properties

Before to state our results we need to precise some notation. We denote V ⊂ R a neighborhood of the origin, and moreover, for k ∈ N we use the standard notation C k (V ) for the functions k-times differentiable in the neighborhood V .

In our second result, we study the pointwise spatial decaying of solutions of the general equation ( 1), provided that the initial datum u 0 verifies a pointwise decay. It is interesting to observe that the parameter n in the dissipative perturbation term: η(H∂ n

x u + H m u), as well as the regularity properties at the origin of the symbol p(ξ) of the operator D in the dispersive term : D(∂ x u), play a fundamental role in the description of the spatial decaying of solutions.

Theorem 2 Let u 0 ∈ H s (R) (with s > 3/2) be an initial datum and let u(t, x) be the solution of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] given by Theorem 1. Assume that for a parameter γ > 0 the initial datum verifies

|u 0 (x)| ≤ c |x| γ , |x| → +∞. ( 12 
)
For n ∈ N * given by [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF], if the symbol p(ξ) verifies p ∈ C n-1 (V ) then we have

|u(t, x)| ≤ C 0 |x| min(γ,n+1) , |x| → +∞, ( 13 
)
for a constant C 0 = C 0 (u, t) > 0, depending on the solution u and the time t > 0.

Let us make the following remarks. In [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] we may observe that the parameter n controls the decaying rate of solutions: the function u(t, x) fulfills the decaying given by the initial datum only if γ ≤ n + 1. But, if the initial datum decays fast enough, when γ > n + 1, then the solution u(t, x) does not mimic this decaying and it decays at infinity as 1/|x| n+1 . Moreover, we observe that the decaying properties given in (13) also depend of a equilibrium between the dispersive and dissipative terms in equation (1) in the sense that for higher values of parameter n (in the dissipative term) the symbol p(ξ) (in the dispersive term) must be more regular at the origin.

From the physical point of view, the value n = 1 is the most interesting since the non-local perturbation term η(H∂ x u + H m u) (with m = 2 or m = 3) gives a good model of long non-linear waves deformation in stratified flows [START_REF] Ostrovsky | Nonlinear stage of the shearing instability in a stratified liquid of finite depth[END_REF][START_REF] Ostrovsky | Radiation instability in a stratified shear flow[END_REF][START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF]. To illustrate the relevance of Theorem 2 in the studying of some physical models let us mention the following examples.

• For the OST-equation (6), numerical studies done in [START_REF] Feng | Multi-hump stationary waves for a Korteweg-deVries equation with nonlocal perturbations[END_REF] by B.F. Feng & T. Kawahara shows that for every η > 0 there exists a family of solitary waves which experimentally decay as 1/|x| 2 when |x| → +∞. Thus, setting γ = 2 and assuming that the initial datum verifies |u 0 (x)| ≤ c/|x| 2 , then by [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] we rigorously obtain the decay rate of solutions

|u(t, x)| 1 |x| 2 . ( 14 
)
This decay rate was also exhibit in a previous work [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF]. Moreover, we observe that this decay rate is also verified for the case of higher non-linearities in the setting generalized OST-equation [START_REF] Brandolese | Far field asymptotics of solutions to convection equation with anomalous diffusion[END_REF].

• For the non-local perturbed BO (8) and the CL equation (9), a second work [START_REF] Feng | Temporal evolutions and stationary waves for dissipative benjamin-Ono equation[END_REF] due to B.F. Feng & T. Kawahara shows numerically that the solitary waves of these equations behave at infinity as 1/|x| 2 . Thus, always by [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] we able to exhibit solutions of these equations which a explicit decay rate given in [START_REF] Cui | Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data[END_REF]. Moreover, always in [START_REF] Feng | Temporal evolutions and stationary waves for dissipative benjamin-Ono equation[END_REF], it is experimentally shown that if the perturbation parameter η > 0 is large enough then the dispersive term in equations ( 8) and ( 9) can be negligible (from the numerical point of view) and in this setting there exist solitary waves which behave at infinity as 1/|x|. Thus, setting now γ = 1, by [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] we get solutions of these equations with a pointwise decay of the form

|u(t, x)| 1 |x| . ( 15 
)
Although the main physical relevance of Theorem 2 is when n = 1, from the mathematical point of view it is also interesting to study the influence of high values of the parameter n in the decaying behavior of solutions. As already mentioned, for the values n ≥ 2 the description of the decay of solutions becomes more complex in the sense that it is also determined by the regularity properties of the symbol p(ξ) at the origin ξ = 0. Let us illustrate this interesting phenom with some simple examples. For simplicity, we set γ > 0 large enough, so we let the initial datum decay fast enough, and moreover we set m = 3.

• For n = 2, let us consider the following theoretical non-local perturbation of the dispersive generalized BO equation [START_REF] Carvajal | On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation[END_REF]:

∂ t u + (H∂ x ) 1+α ∂ x u + u∂ x u + η(H∂ 2 x u + H∂ 3 x u), with 0 < α < 1.
Here we have p(ξ) = |ξ| 1+α and then p ∈ (C) 1 (V ). Thus, by [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] the solutions have the following spatial behavior

|u(t, x)| 1 |x| 3 , |x| → +∞.
• For n ≥ 3, let us consider the following theoretical perturbed KdV equation:

∂ t u + ∂ 3 x u + u∂ x u + η(H∂ n x u + H∂ 3 x u), with 0 < α < 1.
In this case we have p(ξ) = -|ξ| 2 and then p ∈ C ∞ (V ). Thus, by [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] the solutions decay as follows:

|u(t, x)| 1 |x| n+1 , |x| → +∞.
Now, it is natural to ask if the decay rates [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] are either optimal or they can be improved. In our third result, assuming some technical restrictions on the parameters m and n, we are able to answer these questions. As was pointed out the in [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF], the zero-mean properties of the initial datum u 0 is the key tool to study these facts. 

|u(t, x)| ≤ C 1 |x| n+1+ε , |x| → +∞, ( 16 
)
for a constant C 1 = C 1 (u, t) > 0.
2) If the initial datum u 0 verifies:

|u 0 (x)| ≤ c |x| n+1+ε
, |x| → +∞, and R u 0 (y)dy = 0, then the solution u(t, x) of equation ( 1) verifies:

C 2 R u 0 (y)dy 1 |x| n+1 ≤ |u(t, x)|, |x| → +∞, ( 17 
)
for a constant C 2 = C 2 (t) > 0.
In point 1), we may observe here that if the initial datum is a zero-mean function and if it decays fast enough (we have γ = n + 1 + ε) then the decay rate obtained in ( 13) is improved in [START_REF] Feng | Multi-hump stationary waves for a Korteweg-deVries equation with nonlocal perturbations[END_REF] for 0 < ε ≤ 1. To the best of our knowledge, the value ε = 1 seems to be the maximal one to improve the decay rates. This is due to the fact that the solutions of equation ( 1) are written in a explicit integral formulation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF], where the spatial decay properties of the kernel eventually block an improvement in the decaying of the solution for ε > 1.

On the other hand, in point 2), we remark that when the initial datum is not a zero-mean function then the decay rate is optimal. Moreover, even if this datum is a fast-decaying function we have an instantaneous lost of persistence of solution u(t, x) when t > 0.

It is worth to emphasize that the additional conditions of the parameters m and n stated above are essentially technical and we refer the reader to Remark 1 in page 28 for the details. However, this additional conditions are not too restrictive since most of the physical models mentioned in the introduction are considered in Theorem 3. Indeed, observe that we can set the values m = 3 and n = 1 and then Theorem 3 hols true for the for the relevant physical models given by equations ( 6), [START_REF] Brandolese | Far field asymptotics of solutions to convection equation with anomalous diffusion[END_REF] and [START_REF] Bona | Stability and instability of solitary waves of Korteweg-deVriesType[END_REF]. For these equations, it is interesting to observe that if we consider a particular initial datum u 0 such that u 0 (x) = c/|x| γ , for γ > 0 large enough and for |x| large enough; then by point 2) we obtain solutions whit the sharp asymptotic behavior:

|u(t, x)| ∼ 1 |x| 2 , |x| → +∞,
which agrees with the numerical results obtained in [START_REF] Feng | Multi-hump stationary waves for a Korteweg-deVries equation with nonlocal perturbations[END_REF] and [START_REF] Feng | Temporal evolutions and stationary waves for dissipative benjamin-Ono equation[END_REF]. Finally, let us mentions that among these physical models we only left open the case of the CL equation (9) which deals with the values m = 2 and n = 1 that are not included in this theorem.

Average decaying properties

Our methods also allow us to study the average decay properties of solution u(t, x). These decay properties are characterized through the weighted Lebesgue space which we introduce as follows: for the parameter γ > 0 we introduce the weight

w γ (x) = 1 (1 + |x|) γ , (18) 
and for 1 ≤ p ≤ +∞ we consider the weighted Lebesgue space L p wγ (R) = L p (w γ dx). The weighted Lebesgue spaces give us a fairly general framework to study different decaying properties of solutions of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. For the classical Lebesgue spaces we have the (evident) embedding L p (R) ⊂ L p wγ (R), but the weighted Lebesgue spaces also contains more sophisticate functional spaces which characterize the average decaying of functions. Denoting as L p,∞ (R) a Lorentz space (see the book [15] for a complete study of these spaces) we have the continuous embedding L p,∞ (R) ⊂ L p wγ (R). Moreover, for 1 < r < p < +∞ we denote as Ṁ r,p (R) the homogeneous Morrey space (see the Section 8 of the book [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF] for a definition and some properties of these spaces). Then, for 0 < 1 -r/p < γ we have the continuous embedding Ṁ r,p (R) ⊂ L p wγ (R). In the setting of the weighted Lebesgue spaces we have the following result.

Theorem 4 Let u 0 ∈ H s (R) (with s > 3/2) be an initial datum and let u(t, x) be the solution of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] given by Theorem 1. For 1 < p < +∞ and 0 < γ < 1 assume that the initial datum verifies u 0 ∈ L p wγ (R). Then, for the parameter α > 0 given in (49) which only depends on m = 2, 3 and n given by ( 11), we have

u ∈ L ∞ loc ]0, +∞[, L p wγ (R), t α dt .
Remark that the have the continuous embedding

L 2 (1 + |x| 2 )dx) ⊂ L 2 w δ (R)
. Thus, for p = 2 this theorem improves some well-known results on the average decaying properties of solutions for non-local perturbed BO equation [START_REF] Bona | Stability and instability of solitary waves of Korteweg-deVriesType[END_REF] studied in [START_REF] Fonseca | The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces[END_REF], the CL-equation (9) treated in [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF] and the OST-equation (6) studied in [START_REF] Samaniego | On the Cauchy problem for a nonlocal perturbation of the KdV equation[END_REF]. For this latter equation, due to the embedding L p (R) ⊂ L p w δ (R) for any 1 < p < +∞, this theorem also improves a recent result on the average decaying properties given in [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF]. Moreover, to our knowledge, this kind of results seems not be studied before for the generalized OST-equation (7).

Pointwise growing properties

In all our previous results, we consider an initial datum u 0 with pointwise or average decaying properties at infinity. However, it is also interesting to study the persistence problem of solutions for equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] when the initial datum has some growing properties at infinity. For the value k = 1 in the non-linear term in (1), we are able give a first result on the existence of solutions which fulfill some pointwise growing properties (in the spatial variable) given by initial datum.

Theorem 5 Let u 0 ∈ Ḣ1 (R) be an initial datum such that for 0 < γ < 1/2 and for a constant C 0 > 0, it verifies for all x ∈ R:

|u 0 (x)| ≤ C 0 (1 + |x|) γ .
Moreover, let 0 < T < +∞. There exists a constant δ = δ(T ) > 0 such that if u 0 Ḣ1 + C 0 < δ, then there exits a unique mild solution u(t, x) of equation ( 1) (with k = 1) defined on the interval of time [0, T ], such that for all x ∈ R we have

|u(t, x)| ≤ C(1 + |x|) γ ,
for a constant C = C(u 0 , u, t) > 0 depending on u 0 , u and t.

Let us make the following comments. We observe first that this theorem does not come from the setting of Theorem 1 since, due to the well-known Sobolev embedding, the assumption of the initial datum given in Theorem 1: u 0 ∈ H s (R) with s > 1/2 implies that u 0 ∈ L ∞ (R) which is not coherent with the growing properties assumed above. In this theorem, we assume instead u 0 ∈ Ḣ1 (R) and this hypothesis is essentially technical. However, it is worth to remark that this hypothesis is coherent with the growing properties assumed. A simple example of an initial datum verifying all the hypothesis in Theorem 5 is given by

u 0 (x) = C 0 (1 + x) γ , x > 0, 0, x ≤ 0.
Here, as 0 < γ < 1/2 it is easy to see that we have d dx u 0 ∈ L 2 (R).

To close this section, let us mention that from now on in the following computations, the generic constants C η > 0 and c η > 0 may change in each line but they only depend on the fixed parameter η > 0 given in the dissipative perturbation term in equation ( 1).

Kernel estimates

Remark first that the equation ( 1) can be written as the equivalent integral formulation

u(t, x) = K m,n (t, •) * u 0 (x) + t 0 K m,n (t -τ ) * (u k ∂ x u)(τ, x)dτ, (19) 
where, for t > 0, m = 2, 3, n ∈ N * , and moreover, for the symbol p(ξ) given in formula (2), the kernel K m,n (t, x) is defined in the Fourier variable as follows:

K m,n (t, ξ) = e -ip(ξ)ξt-η(i n+1 |ξ|ξ n-1 +|ξ| m )t . ( 20 
)
To make the notation more convenient let us introduce the function

ϕ m,n (ξ) = -η(i n+1 |ξ|ξ n-1 + |ξ| m ) = η(i n+1 ξ n -(-ξ) m ), ξ < 0, -η(i n+1 ξ n + ξ m ), ξ ≥ 0. ( 21 
)
With this notation write K m,n (t, ξ) = e -ip(ξ)ξt+ϕm,n(ξ)t , hence, as the symbol p(ξ) is a real-valued function we obtain

| K m,n (t, ξ)| = |e ϕm,n(ξ) t |.
In this expression we are interesting in the behavior of the quantity ϕ m,n (ξ) which comes from the dissipative perturbation term in equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. A simple calculation shows that for m = 2, 3 and for n = 5 + 4d, with d ∈ N, we have ϕ m,n (ξ) = η(|ξ| n -|ξ| m )t, then we get

|e ϕm,n(ξ) t | ∼ e η|ξ| n t , |ξ| → +∞, (22) 
and thus, for those values of n we loose any control on the function K m,n (t, ξ). On the other hand, observe that for the values of n which verify the condition [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF], i.e., n = 5 + 4d, for n even we have the identity ϕ m,n (ξ) = η(i|ξ|ξ n-1 -|ξ| m ), hence we obtain

|e ϕm,n(ξ) t | ∼ e -η|ξ| m t , |ξ| → +∞, (23) 
moreover, for n odd we have the identity ϕ m,n (ξ) = -η(|ξ| n + |ξ| m ) and then we get

|e ϕm,n(ξ) t | ∼ e -η(|ξ| n +|ξ| m ) t , |ξ| → +∞. ( 24 
)
In conclusion, when n verifies (11) the function K m,n (t, ξ) has good decaying properties and the key idea is to use them to obtain sharp estimates on the kernel in the spatial variable. Notice that by [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF] the kernel K m,n (t, x) writes down as the convergent integral:

K m,n (t, x) = R e 2πixξ e -ip(ξ)ξt+ϕm,n(ξ)t dξ. (25) 
In the following result we study some spatial decaying properties of the kernel K m,n (t, x), which will be fundamental in the next sections. As mentioned in Section 2.2, the regularity properties at the origin of the symbol p(ξ) plays an important role in this study and they vary as long as the parameter n take different values. Thus, for the sake of clarity, we will consider first the values n = 1, 2 and then the values n ≥ 3.

Proposition 3.1 Let m = 2, 3 and n ∈ N * which verifies [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF]. There exist two constants C η > 0 and c η > 0, depending only on η > 0, such that for all t > 0 and for all x ∈ R it verifies:

1) For n = 1, 2, if the symbol p(ξ) verifies p ∈ C n-1 (V ) then we have: |K m,n (t, x)| ≤ C η e cηt η 1/m t 1/m 1 1 + |x| n+1 .
2) For n ≥ 3, if symbol p(ξ) verifies p ∈ C n-1 (V ) then we have:

2.1) For n even (n = 2d, with d ∈ N and d ≥ 2): |K m,n (t, x)| ≤ c η e 3ηt η 1/m t 1/m 1 1 + |x| n+1-. 2.2) For n odd (n = 3 + 4d, with d ∈ N): |K m,n (t, x)| ≤ c η e 3ηt η 1/n t 1/n 1 1 + |x| n+1-.
Proof. We start writing

K m,n (t, x) = ξ<0
e 2πixξ e -ip(ξ)ξt +ϕm,n(ξ)t dξ + ξ>0 e 2πixξ e -ip(ξ)ξt +ϕm,n(ξ)t dξ.

The key idea to study the pointwise spatial behavior of the kernel K m,n (t, x) essentially bases on the procedure: first, in each term of the right-hand side in this identity, for x = 0 we multiply and we divide by 2π ix to obtain:

K m,n (t, x) = 1 2π ix ξ<0 (2π ix)e 2πixξ e -ip(ξ)ξt +ϕm,n(ξ)t dξ + 1 2π ix ξ>0 (2π ix)e 2πixξ e -ip(ξ)ξt +ϕm,n(ξ)t dξ = 1 2πix ξ<0 ∂ ξ (e 2πixξ )e -ip(ξ)ξt +ϕm,n(ξ)t dξ + 1 2πix ξ>0 ∂ ξ (e 2πixξ )e -ip(ξ)ξt +ϕm,n(ξ)t dξ. (26) 
Thereafter, integrating by parts each term we write

K m,n (t, x) = 1 2πix e 2πixξ e -ip(ξ)ξt +ϕ 2,n (ξ)t 0 -∞ - ξ<0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ + 1 2πix
e 2πixξ e -ip(ξ)ξt +ϕm,n(ξ)t +∞ 0 -ξ>0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ

= 1 2πix 1 - ξ<0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ + 1 2πix -1 - ξ>0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ = - 1 2πix ξ<0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) dξ . ( 27 
)
Repeating the computations done in ( 26) and ( 27) we get

K m,n (t, x) = - 1 (2πix) 2 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) 0 -∞ - ξ<0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ - 1 (2πix) 2 e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) +∞ 0 - ξ>0 e 2πixξ ∂ 2
ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ .

Now, remark that we have

e 2πixξ ∂ ξ (e -ip(ξ)ξt +ϕm,n(ξ)t ) = e 2πixξ e -ip(ξ)ξt+ϕm,n(ξ)t (-ip (ξ)ξt -ip(ξ)t + ϕ m,n (ξ)t), (28) 
hence, by the good decaying properties of the function e ϕm,n(ξ)t when |ξ| → +∞ (see the formulas ( 23) and ( 24)) and moreover, as by [START_REF] Grafakos | Classical Fourier analysis[END_REF] we have ϕ m,n (0) = 0, then we get

e 2πixξ e -ip(ξ)ξt+ϕm,n(ξ)t (-ip (ξ)ξ -ip(ξ) + ϕ m,n (ξ))t 0 -∞ = -ip(0 -)t + ϕ m,n (0 -)t,
and

e 2πixξ e -ip(ξ)ξt+ϕm,n(ξ)t (-ip (ξ)ξ -ip(ξ) + ϕ m,n (ξ))t +∞ 0 = ip(0 + )t -ϕ m,n (0 + )t,
where, for a function f (ξ) we use the standard notation lim

ξ→0 - f (ξ) = f (0 -) and lim ξ→0 + f (ξ) = f (0 + ).
Thus we can write

K m,n (t, x) = - 1 (2πix) 2 ip(0 -)t -ip(0 + )t -ϕ m,n (0 -)t + ϕ m,n (0 + )t + 1 (2πix) 2 ξ<0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ . (29) 
At this point, in order to make a clearer exposition, we will distinguish the following cases of the parameter n.

The case n = 1. Recall that in this case we assume p ∈ C(V ) and then we get p(0 -) -p(0 + ) = 0. Moreover, the function ϕ m,n (ξ) writes down as:

ϕ m,n (ξ) = η(i n+1 nξ n-1 + m(-ξ) m-1 ), ξ < 0, -η(i n+1 nξ n-1 + mξ m-1 ), ξ > 0, (30) 
hence, for n = 1 and m = 2, 3 we have -ϕ m,1 (0 -) + ϕ m,1 (0 + ) = 2η. Then, getting back to [START_REF] Ostrovsky | Radiation instability in a stratified shear flow[END_REF] we can write:

K m,1 (t, x) = - 2ηt (2πix) 2 + 1 (2πix) 2 ξ<0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,1 (ξ)t ) dξ + ξ>0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,1 (ξ)t ) dξ = - 2ηt (2πix) 2 + I 1 . (31) 
Once the term -2ηt (2πix) 2 appears, this fact suggests the estimate |K m,1 (t, x)| 1/|x| 2 . Indeed, we study the term I 1 above, where, applying the computations done in [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF] and [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF] we get

I 1 = 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,1 (ξ)t ) 0 -∞ - ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt +ϕ m,1 (ξ)t ) dξ + 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,1 (ξ)t ) +∞ 0 - ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt +ϕ m,1 (ξ)t ) dξ = 1 (2πix) 3 (I 1,1 + I 1,2 ).
Now, by the good decaying properties of the function e ϕ m,1 (ξ)t when |ξ| → +∞ (see the expression [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] with n = 1) and following the same computations done in Lemma 3.1 of [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF] we have |I 1,1 + I 1,2 | ≤ C η e cηt . Then we obtain the following estimate

|I 1 | ≤ C η e cηt |x| 3 . (32) 
Thus, by [START_REF] Pastrán | On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces[END_REF] and [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF], for |x| large enough we can write

|K m,1 (t, x)| ≤ c 2ηt |x| 2 + |I 1 | ≤ c 2ηt |x| 2 + C η e cηt |x| 3 ≤ C η e cηt |x| 2 + C η e 2ηt |x| 3 ≤ C η e cηt |x| 2 . ( 33 
)
Until now we have estimated the kernel K m,1 (t, x) for |x| sufficiently large and it remains to obtain an estimate also valid for |x| small. For this we have write

|K m,1 (t, x)| ≤ K m,1 (t, •) L ∞ ≤ K m,1 (t, •) L 1 , (34) 
where, by [START_REF] Grafakos | Classical Fourier analysis[END_REF] the quantity K m,1 (t, •) L 1 is estimated as follows:

K m,1 (t, •) L 1 ≤ R e ϕ m,1 (ξ)t dξ ≤ R e η(|ξ|-|ξ| m )t dξ ≤ |ξ|≤2 2 1/(m-1) e η(|ξ|-|ξ| m )t dξ + |ξ|≥2 1/(m-1) e η(|ξ|-|ξ| m )t dξ ≤ |ξ|≤2 1/(m-1)
e η|ξ|t dξ +

|ξ|≥2 1/(m+1) e -η |ξ| m 2 t dξ ≤ ce 2 1/(m-1) ηt + c 1 (ηt) 1/m ≤ C η e cηt (ηt) 1/m . Hence, for all x ∈ R we get |K m,1 (t, x)| ≤ C η
e cηt (ηt) 1/m . Finally, gathering this estimate and the estimate given in [START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF] we obtain

|K m,1 (t, x)| ≤ C η e cηt η 1/m t 1/m 1 1 + |x| 2 . ( 35 
)
The case n = 2. Recall that in this case we assume p ∈ C 1 (V ), hence, in particular we have p(0 -)-p(0 + ) = 0. Moreover, by [START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF] for n = 2 and m = 2, 3 we have ϕ m,2 (0 -) = ϕ m,2 (0 + ) = 0. Then, getting back to [START_REF] Ostrovsky | Radiation instability in a stratified shear flow[END_REF] we get

K m,2 (t, x) = 1 (2πix) 2 ξ<0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ + ξ>0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ .
Here we observe that we can continue with the same process and we apply computations done in ( 26) and ( 27) to obtain

K m,2 (t, x) = 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) 0 -∞ - ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ + 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) +∞ 0 - ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ .
In order to study these expressions, remark first that we have

∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) =e -ip(ξ)ξt+ϕ m,2 (ξ)t -ip (ξ)ξt -ip(ξ)t + ϕ m,2 (ξ)t 2 -ip (ξ)ξt -2ip (ξ)t + ϕ m,2 (ξ)t , (36) 
where the function ϕ m,n (ξ) writes down as:

ϕ m,n (ξ) = η i n+1 n(n -1)ξ n-2 -m(m -1)(-ξ) m-2 , ξ < 0, -η i n+1 n(n -1)ξ n-2 + m(m -1)ξ m-2 , ξ > 0. ( 37 
)
Recalling that by [START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF] we have ϕ m,2 (0 -) = ϕ m,2 (0 + ) = 0 and moreover, remarking that by (37) we have

ϕ m,2 (0 -) = -η(2i + c m ) and ϕ m,2 (0 + ) = -η(-2i + c m )
, where c m = 2 if m = 2, and c m = 0 if m = 3, then, by the good decaying properties of the function e ϕ m,2 (ξ)t when |ξ| → +∞ (see the expression [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] with n = 2) we get:

e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) 0 -∞ = -2ip (0 -)t -η(2i + c m )t,
and

e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) +∞ 0 = +2ip (0 + )t + η(-2i + c m )t,
and then we can write

K m,2 (t, x) = 1 (2πix) 3 (-2ip (0 -)t + 2ip (0 + )t -4iηt) - 1 (2πix) 3 ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ + ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ .
But, recalling that we have p ∈ C 1 (V ) we finally obtain

K m,2 (t, x) = -4iηt (2πix) 3 - 1 (2πix) 3 ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ + ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) dξ = -4iηt (2πix) 3 + I 2 . ( 38 
)
We must study now the term I 2 . By the good decaying properties of the function e ϕ m,2 (ξ)t (see always the expression [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] with n = 2) and moreover, following the same computations performed for the term I 1 in (32) the term I 2 is estimated as follows:

|I 2 | ≤ C η e cηt |x| 4 . (39) 
Then, for |x| large enough we can write

|K m,2 (t, x)| ≤ c ηt |x| 3 + C η e cηt |x| 4 ≤ C η e cηt |x| 3 + C η e cηt |x| 4 ≤ C η e cηt |x| 3 . (40) 
On the other hand, by estimate [START_REF] Shrira | Nonlinear dynamics of vorticity waves in the coastal zone[END_REF] we have

|K m,2 (t, x)| ≤ K m,2 (t, •) L 1
, where, by [START_REF] Grafakos | Classical Fourier analysis[END_REF] we write 

K m,2 (t, •) L 1 = R e -ip(ξ)ξt+ϕ m,2 (ξ)t dξ = R e -ip(ξ)ξt-η(-i|ξ|ξ+|ξ| m |)t dξ ≤ R e -η|ξ| m t dξ ≤ c (ηt) 1/m ≤ C η e cηt (ηt)
|K m,2 (t, x)| ≤ C η e cηt η 1/m t 1/m 1 1 + |x| 3 . (41) 
At this point, by estimates (35) and (41) we have proven the point 1) in Proposition 3.1.

The case n ≥ 3. The computations follow the same ideas performed in the previous cases (n = 1 and n = 2). Recall that in this case we assume p ∈ C n-1 (V ). In particular we have p ∈ C(V ) hence we get p(0 -) -p(0 + ) = 0. Moreover, by [START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF] with n ≥ 3 and m = 2, 3, we have ϕ m,n (0 -) = ϕ m,n (0 + ) = 0. Then, getting back to (29) we obtain

K m,n (t, x) = 1 (2πix) 2 ξ<0 e 2πixξ ∂ 2
ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ .

Thereafter, applying the computations done in ( 26) and ( 27) we get

K m,n (t, x) = 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) 0 -∞ - ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + 1 (2πix) 3 e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) +∞ 0 - ξ>0 e 2πixξ ∂ 3
ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ .

In this expression, by identity (36), the fact that e ϕm,n(ξ)t is a fast decaying function when |ξ| → +∞ (see the expression [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] for n even and the expression [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] for n odd) and moreover, since by (37) we have ϕ m,n (0 -) = -ηc m and ϕ m,n (0 + ) = -ηc m , with c m = 2 if m = 2, and c m = 0 if m = 3, we get

e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) 0 -∞ = -2ip (0 -)t -ηc m t,
and e 2πixξ ∂ 2 ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) +∞ 0 = +2ip (0 + )t + ηc m t.
Thus, we can write

K m,n (t, x) = 1 (2π ix) 3 2it(-p (0 -) + p (0 + )) + 1 (2πix) 3 ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ .
At this point recall that we have p ∈ C 1 (V ) (since p ∈ C n-1 (V ) and n ≥ 3) and then -p (0 -) + p (0 + ) = 0.

Then we obtain

K m,n (t, x) = 1 (2πix) 3 ξ<0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ 3 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ . ( 42 
)
At this point we observe that we can apply the computations done in ( 26) and ( 27) iteratively until to obtain the identity

K m,n (t, x) = 1 (2πix) n+1 e 2πixξ ∂ n ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) 0 -∞ - ξ<0 e 2πixξ ∂ n+1 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + 1 (2πix) n+1 e 2πixξ ∂ n ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) +∞ 0 - ξ>0 e 2πixξ ∂ n+1
ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ .

(43)

Here, as we may observe in identities ( 28) and (36), the expression ∂ n ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) computes down as

∂ n ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) = e -ip(ξ)ξt+ϕm,n(ξ)t g n (ξ, p(ξ), ϕ m,n (ξ), t) -n ip (n-1) (ξ)t + ϕ (n) m,n (ξ)t , (44) 
where g n (ξ, p(ξ), ϕ m,n (ξ), t) is a polynomial of degree n which depends on ξ, the derivatives p (k) (ξ) and ϕ andt, and moreover, it verifies g n (0, p(0), ϕ m,n (0), t) = 0. On the other hand, the function ϕ (n) m,n (ξ) computes down as: Thus, by (44) and (45) we obtain

(k) m,n (ξ) for k = 0, • • • , n -2,
ϕ (n) m,n (ξ) = η(i n+1 n! + c m ), ξ < 0, -η(i n+1 n! + c m ), ξ > 0, (45) here 
e 2πixξ ∂ n ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) 0 -∞ = -n ip (n-1) (0 -)t + η(i n+1 n! + c m ) t, and 
e 2πixξ ∂ n ξ (e -ip(ξ)ξt+ϕ m,2 (ξ)t ) +∞ 0 = n ip n-1 (0 + )t + η(i n+1 n! + c m ) t,
and getting back to (43), as we have p ∈ C n-1 (V ) we are able to write

K m,n (t, x) = 1 (2πix) n+1 -n ip (n-1) (0 -)t + n ip n-1 (0 + )t + 2η(i n+1 n! + c m )t - 1 (2πix) n+1 ξ<0 e 2πixξ ∂ n+1 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ n+1 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ = c η t (2πix) n+1 - 1 (2πix) n+1 ξ<0 e 2πixξ ∂ n+1 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ + ξ>0 e 2πixξ ∂ n+1 ξ (e -ip(ξ)ξt+ϕm,n(ξ)t ) dξ = c η t (2πix) n+1 + I n . (46) 
Thereafter, always by the good decaying properties of the function e ϕm,n(ξ)t (see the expression [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] for n even and the expression [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] for n odd) and moreover, following the computations done for the term I 1 in [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF] we have the estimate

|I n | ≤ C η e cη t |x| n+2 . ( 47 
)
Then, for |x| large enough we obtain

|K m,n (t, x)| ≤ c η t |x| n+1 + C η e cη t |x| n+2 ≤ C η e cη t |x| n+1 + C η e cη t |x| n+2 ≤ C η e cη t |x| n+1 . ( 48 
)
On the other hand, by estimate [START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF] we have |K m,n (t, x)| ≤ K m,n (t, ξ) L 1 , where the quantity K m,n (t, ξ) L 1 is estimated as follows. For n even, by [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] we have

K m,n (t, •) L 1 ≤ R e -η|ξ| m t dξ ≤ c (ηt) 1/m ≤ C η e cηt (ηt) 1/m .
In this case, for all x we have |K m,n (t, x)| ≤ C η e cηt (ηt) 1/m and with this estimate and estimate (48) we obtain

|K m,n (t, x)| ≤ C η e cηt (η 1/m t 1/m 1 1 + |x| n+1 ,
which proves the point 2.1) in Proposition 3.1. On the other hand, for n odd, by [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] we have

K m,n (t, •) L 1 ≤ R e -η|ξ| n t dξ ≤ c (ηt) 1/n ≤ C η e cηt (ηt) 1/n .
Here for all x we have |K m,n (t, x)| ≤ C η e cηt (ηt) 

hence, we have 0 < α ≤ 1/2. With this parameter, and the estimates of the kernel K m,n (t, x) given in Proposition 3.1, from now on we write the following unified kernel estimate:

|K m,n (t, x)| ≤ C η e cηt t α 1 1 + |x| n+1 . ( 50 
)
4 Global well-posedness: proof of Theorem 1

We will start by the following local well-posedness result.

Proposition 4.1 Let s > 3/2 and let u 0 ∈ H s (R) be an initial datum. There exists a time 0 < T 0 < +∞ and a function u ∈ C([0, T 0 ], H s (R)), which is the unique solution of equation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF].

Proof. For a time 0 < T < +∞ (which we will set small enough) we consider the Banach space C([0, T ], H s (R)) with the usual norm u T = sup

0≤t≤T u(t, •) H s .
For the first term in the right-hand side of [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF] we have K m,n (t, •) * u 0 ∈ C([0, T ], H s (R)). Indeed, remark first that by ( 23) and ( 24) there exists a constant c = c(m, n, η) > 0, such that for all t > 0 and all ξ ∈ R we have

| K m,n (t, ξ)| ≤ c. Then, as u 0 ∈ H s (R) we get sup 0≤t≤T K m,n (t, •) * u 0 H s ≤ c u 0 H s . ( 51 
)
It remains to prove the continuity of the quantity K m,n (t, •) * u 0 H s on [0, T ]. By convergence dominated we get directly lim

t→0 + K m,n (t, •) * u 0 -u 0 H s = 0.
Moreover, we have the following technical lemma:

Lemma 4.1 Let ε > 0 and let s 1 > 0. Then, there exists a constant c 1 > 0, which depends on s 1 , ε and the parameters m, n, such that for all ε < t 1 , t 2 , and for all ψ ∈ H s (R) we have:

K m,n (t 1 , •) * ψ -K m,n (t 2 , •) * ψ H s+s 1 ≤ c 1 |t 1 -t 2 | 1/2 ψ H s .
Proof. Recall that by ( 20) and ( 21) we have K m,n (t, ξ) = e -ip(ξ)ξt+ϕm,n(ξ)t . Then we can write

K m,n (t 1 , •) * ϕ -K m,n (t 2 , •) * ϕ 2 H s+s 1 = R (1 + |ξ| 2 ) s+s 1 | K m,n (t 1 , ξ) -K m,n (t 2 , ξ)| 2 | ψ(ξ)| 2 d ξ = R (1 + |ξ| 2 ) s+s 1 |e (-ip(ξ)ξ+ϕm,n(ξ))t 2 | 2 |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| 2 | ψ(ξ)| 2 d ξ = (a),
where we must study the quantity |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| 2 . We write |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| 2 = |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1|.

Recall that by ( 23) and ( 24) the quantity |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| is uniformly bounded and then we have |e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| 2 ≤ c|e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1|. Now, by the mean value theorem in the temporal variable, the definition of ϕ m,n (ξ) given in [START_REF] Grafakos | Classical Fourier analysis[END_REF], and moreover, by the estimate (3) on the symbol p(ξ) we obtain:

|e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| ≤ c| -ip(ξ)ξ + ϕ m,n (ξ)||t 1 -t 2 | ≤ c(|ξ| σ+1 + η|ξ| n + η|ξ| m )|t 1 -t 2 |.
Then we have

|e (-ip(ξ)ξ+ϕm,n(ξ))(t 1 -t 2 ) -1| 2 ≤ c(|ξ| σ+1 + η|ξ| n + η|ξ| m )|t 1 -t 2 |.
With this estimate, we get back to identity (a) to write

(a) ≤ c|t 1 -t 2 | R (1 + |ξ| 2 ) s+s 1 |e (-ip(ξ)ξ+ϕm,n(ξ))t 2 | 2 (|ξ| σ+1 + η|ξ| n + η|ξ| m )| ψ(ξ)| 2 d ξ ≤ c|t 1 -t 2 | R (1 + |ξ| 2 ) s+s 1 |e ϕm,n(ξ) t 2 | 2 (|ξ| σ+1 + η|ξ| n + η|ξ| m )| ψ(ξ)| 2 d ξ ≤ c|t 1 -t 2 | sup ξ∈R (1 + |ξ| 2 ) s 1 (|ξ| σ+1 + η|ξ| n + η|ξ| m )|e ϕm,n(ξ)t 2 | 2 (b) ψ 2 H s .
At this point, recall that by ( 23) and ( 24), and moreover, as have t 2 > ε then we obtain

(b) ≤ c sup ξ∈R (1 + |ξ| 2 ) s 1 (|ξ| σ+1 + η|ξ| n + η|ξ| m ) max(e -2η(|ξ| n +|ξ| m )ε , e -2η|ξ| m ε = c 1 < +∞,
hence the desired estimate follows.

In this lemma we set s 1 = 0 and ψ = u 0 , hence we obtain K m,n (t, •) * u 0 ∈ C(]0, T ], H s (R)). Thus, we finally have

K m,n (t, •) * u 0 ∈ C[0, T ], H s (R)).
We study now the second term in the right-hand side of [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF]. For this term have the following estimate:

sup 0≤t≤T t 0 K m,n (t -τ, •) * (u k ∂ x u)(τ, •)dτ H s ≤ C η e cη T T 1-α u k+1 T , (52) 
where the parameter 0 < α ≤ 1/2 is given in (49). Indeed, for 0 < t ≤ T fix we write

t 0 K m,n (t -τ, •) * (u k ∂ x u)(τ, •)dτ H s ≤ t 0 K m,n (t -τ, •) * (u k ∂ x u)(τ, •) H s dτ ≤ 1 k + 1 t 0 K m,n (t -τ, •) * ∂ x (u k+1 )(τ, •) H s dτ ≤ c k + 1 t 0 K m,n (t -τ, •) * u k+1 (τ, •) H s+1 dτ.
At this point, we need the following technical lemma: Lemma 4.2 Let 0 < α ≤ 1/2 be the parameter given in (49) and let s 1 , s 2 ∈ R. The following estimates follows:

1) For all ψ ∈ H s 1 (R) we have K m,n (t, •) * ψ H s 1 +s 2 ≤ C η,s 2 e cη s 2 t t α s 2 ψ H s 1 .
2) Moreover, all ψ ∈ Ḣs 1 (R) we have K m,n (t, •) * ψ Ḣs 1 +s 2 ≤ C η,s 2 e c η,s 2 t t α s 2 ψ Ḣs 1 .

Proof. The proof of points 1) and 2) essentially follows the same lines so it is sufficient to detail the computations for the point 1). We write

K m,n (t, •) * ψ 2 H s 1 +s 2 = R n (1 + |ξ| 2 ) s 1 +s 2 | K m,n (t, ξ)| 2 | ψ(ξ)| 2 dξ = R (1 + |ξ| 2 ) s 2 | K m,n (t, ξ)| 2 (1 + |ξ| 2 ) s 1 | ψ(ξ)| 2 dξ ≤ sup ξ∈R n (|1 + |ξ| 2 ) s 2 | K m,n (t, ξ)| 2 (b) ψ 2 H s 1 ,
where we must estimate the quantity (b). For this we will consider the following cases of the parameters m and n. For n even, by ( 23) for all t > 0 and for all ξ ∈ R we can write

(|1 + |ξ| 2 ) s 2 | K m,n (t, ξ)| 2 ≤ C s 2 | K m,n (t, ξ)| 2 + |ξ| 2 s 2 | K m,n (t, ξ)| 2 ≤ C η,s 2 1 + |ξ| 2 s 2 e -2η|ξ| m t ≤ C η,s 2 1 + |(ηt) 1/m ξ| 2s 2 (ηt) 2s 2 /m e -2|(ηt) 1/m ξ| m ≤ C η,s 2 1 + 1 (ηt) 2s 2 /m ≤ C η,s 2 1 + (ηt) 2s 2 /m (ηt) 2s 2 /m ≤ C η,s 2 e cη,s 2 t t 2s 2 /m .
Then, for n even we have (b) ≤ C η,s 2 e cη,s 2 t t 2s 2 /m , and thus we get

K m,n (t, •) * ψ H s 1 +s 2 ≤ C η,s 2 e cη,s 2 t t s 2 /m ψ H s 1 . (53) 
Now, for n odd, by [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] and following the same estimates above, if n ≤ m we have (b) ≤ C η,s 2 e cη,s 2 t t 2s 2 /n , and then we obtain:

K m,n (t, •) * ψ H s 1 +s 2 ≤ C η,s 2 e cη,s 2 t t s 2 /n ψ H s 1 . (54) 
Moreover, if n > m then we have (b) ≤ C η,s 2 e cη,s 2 t t 2s 2 /n , and thus we get the same estimate (53). Thus, by estimates (53) and (54), and moreover, by definition of the parameter α in (49) we obtain the estimate stated in point 1).

In the setting of this lemma, we set the parameters s 1 = s, s 2 = 1 and the function ψ = u k+1 . Moreover, as s > 1/2 (since we have s > 3/2) by the Sobolev product laws we can write

c k + 1 t 0 K m,n (t -τ, •) * u k+1 (τ, •) H s+1 dτ ≤ C η k + 1 t 0 e cη(t-τ ) (t -τ ) α u k+1 (τ, •) H s dτ ≤ C η e cη T (k + 1) t 0 u k+1 (τ, •) H s (t -τ ) α dτ ≤ C η e cη T (k + 1) t 0 u(τ, •) k+1 H s (t -τ ) α dτ ≤ C η e cη T (k + 1) sup 0≤t≤T u(τ, •) H s k+1 t 0 dτ (t -τ ) α ≤ C η e cη T (k + 1) u k+1 T t 1-α ≤ C η e cη T u k+1 T t 1-α ,
hence we obtain (52). Once we dispose of estimates ( 51) and (52), we set a time 0 < T 0 < +∞ small enough such that

2 k+1 (c u 0 H s ) k C η e cη T 0 T 1-α 0 < 1, (55) 
and then, the existence and uniqueness of a (local in time) solution u ∈ C([0, T 0 ], H s (R)) of the integral equation ( 19) follow from standard arguments.

In order to study the regularity (in the spatial variable) of solutions of equation ( 1), we define the space

H ∞ (R) as H ∞ (R) = r≥0 H r (R). Proposition 4.2 Let u ∈ C([0, T 0 ], H s (R)
) be the solution of equation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF] given by Proposition 4.1. Then, this solution verifies u ∈ C(]0, T 0 ], H ∞ (R)). Moreover we have u ∈ C 1 (]0, T 0 ], C ∞ (R)) and then u(t, x) is a classical solution of equation (1).

Proof. We will prove that each term in the integral equation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF] belong to the space C(]0, T 0 [, H ∞ (R)). For the first term in the right-hand side of [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF], remark that setting the parameters s 1 = s, s 2 > 0 and ψ = u 0 in the framework of Lemma 4.2 then we have K m,n (t, •) * u 0 ∈ H ∞ (R) pointwise for all t > 0. Moreover, by Lemma we get K m,n (t,

•) * u 0 ∈ C(]0, T 0 ], H ∞ (R)).
We study now the second term in the right-hand side of [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF]. Recall that the solution u of this equation verifies u(t, •) ∈ H s (R) for all 0 ≤ t ≤ T 0 . With this information, and moreover, for δ > 0 small enough, first we will prove that for all 0 < t ≤ T 0 we have

t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •)dτ ∈ H s+δ (R). Indeed, in
the setting of Lemma 4.2, we set the parameters

s 1 = s -1 > 1/2, s 2 = δ + 1 and ψ = u k ∂ x u. Then we write t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •)dτ H s+δ ≤ t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •) H s+δ ≤ t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •) H (s-1)+(δ+1) ≤ C η,δ t 0 e c η,δ (t-τ ) (t -τ ) (δ+1)α u k ∂ x u(τ, •) H s-1 dτ ≤ C η,δ e c η,δ T 0 t 0 u k (τ, •) H s-1 ∂ x u(τ, •) H s-1 (t -τ ) (δ+1)α dτ ≤ C η,δ,T 0 t 0 u(τ, •) k H s-1 u(τ, •) H s (t -τ ) (δ+1)α dτ ≤ C η,δ,T 0 t 0 u(τ, •) k+1 H s (t -τ ) (δ+1)α dτ ≤ C η,δ,T 0 sup 0≤τ ≤T 0 u(τ, •) H s k+1 t 0 dτ (t -τ ) (δ+1)α .
Here, as 1/α ≥ 2 (see the expression (49)) then we set 0 < δ < 1/α -1, hence we have 1 -(1 + δ)α > 0, and then the last integral computes down as

t 0 dτ (t -τ ) (δ+1)α ≤ c t 1-(1+δ)α .
Then, for all 0 < t ≤ T 0 we obtain

t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •)dτ H s+δ ≤ C η,δ,T 0 sup 0≤τ ≤T 0 u(τ, •) H s k+1 t 1-(1+δ)α . ( 56 
)
We prove now the continuity respect to the temporal variable. Let 0 < t 1 , t 2 ≤ T 0 and assume (without loss of generality) that t 2 < t 1 . We write

t 1 0 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ - t 2 0 K m,n (t 2 -τ, •) * u k ∂ x u(τ, •)dτ H s+δ ≤ t 1 0 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ - t 2 0 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ H s+δ + t 2 0 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ - t 2 0 K m,n (t 2 -τ, •) * u k ∂ x u(τ, •)dτ H s+δ ≤ t 1 t 2 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ H s+δ + t 2 0 (K m,n (t 1 -τ, •) -K m,n (t 2 -τ, •)) * u k ∂ x u(τ, •)dτ H s+δ
.

By (56) the first term in the right-hand side is estimated as

t 1 t 2 K m,n (t 1 -τ, •) * u k ∂ x u(τ, •)dτ H s+δ ≤ C η,δ,T 0 sup 0≤τ ≤T 0 u(τ, •) H s k+1 |t 1 -t 2 | 1-(1+δ)α .
For the second term in the right-hand side, by Lemma 4 we have

t 2 0 (K m,n (t 1 -τ, •) -K m,n (t 2 -τ, •)) * u k ∂ x u(τ, •)dτ H s+δ ≤ c 1 |t 1 -t 2 | 1/2 t 2 0 u k ∂ x u(τ, •) H s-1 dτ ≤ c 1 |t 1 -t 2 | 1/2 sup 0≤τ ≤T 0 u(τ, •) H s k+1 T 0 .
Thus, by these estimates we get

t 0 K m,n (t -τ, •) * u k ∂ x u(τ, •)dτ ∈ C(]0, T 0 [, H s+δ (R)) for 0 < δ < 1/α -1.
At this point, we have proved that u ∈ C(]0, T 0 [, H s+δ (R)) and repeating this process (in order to obtain a gain of regularity for the non linear term) we conclude that u ∈ C(]0, T 0 [, H ∞ (R)). Thereafter, we observe that u(t, x) solves the equation ( 1) in the classical way and moreover, writing

∂ t u = -D(∂ x u) + u k ∂ x u -η(H∂ n x u + H m u), we get ∂ t u ∈ C(]0, T 0 [, H ∞ (R))
. From this information we can verify now that we have

∂ t u ∈ C(]0, T 0 [, C ∞ (R)).
Indeed, we will prove that for all k ∈ N, the function

∂ k x ∂ t u(t, •) is a Hölder continuous function on R. Let k ∈ N fix. Then, for 1 2 < s 1 < 3 2 we set r = k + s 1 and since ∂ t u ∈ C(]0, T 0 [, H ∞ (R)) then we have ∂ k x ∂ t u(t, •) ∈ H s 1 (R).
On the other hand, recall that we have the identification

H s 1 (R) = B s 1 ,2 2 (R) (where B s 1 ,2
2 (R) denotes a Besov space [START_REF] Bahouri | Fourier Analysis and nonlinear partial differential equations[END_REF]) and moreover we have the inclusion

B s 1 ,2 2 (R) ⊂ B s 1 -1 2 ,∞ ∞ (R). Thus we get ∂ k x ∂ t u(t, •) ∈ Ḃs 1 -1 2 ,∞ ∞ (R).
But, by definition of the space Ḃs 1 -1 2 ,∞ ∞ (R) (see always [START_REF] Bahouri | Fourier Analysis and nonlinear partial differential equations[END_REF]) and since

1 2 < s 1 < 3 2 , then we have 0 < s 1 -1 2 < 1 and thus ∂ n x ∂ t u(t, •) is a β-Hölder continuous function with β = s 1 -1 2 . Then we have ∂ t u ∈ C(]0, T 0 [, C ∞ (R)) and thus u ∈ C 1 (]0, T 0 [, C ∞ (R)).
Finally, we prove the global well-posedness. Following similar arguments of [START_REF] Cui | Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data[END_REF] (see the proof of Theorem 2, page 9) we have the following result. for the equation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF] given by Proposition 4.1. Then we have T * = +∞.

Proof. By definition we have: 19) arising from u 0 }.

T * = sup {T > 0 : there exists a unique solution u ∈ C([0, T [, H s (R)) of (
We will assume that T * < +∞ which give us a contradiction. First we need to derive an energy estimate for solution u(t, x) and for this recall that by Proposition 4.2 we know that this solution is regular enough and then it verify the equation ( 1) in a classical way. Thus, we can multiply this equation pointwise by u and integrating in the spatial variable (after some integration by parts) we get:

1 2 d dt u(t, •) 2 L 2 = -η R (H∂ n x u + H m u)u dx, (57) 
where we must study the term in the right-hand side. By the Parseval's identity we write

-η R (H∂ n x u + H m u)u dx = -η R (i n+1 |ξ|ξ n-1 + |ξ| m )| u| 2 dξ (a)
, and we will estimate the quantity (a) respect to the following values of the parameter n given by [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF]. For n = 1 we have

(a) = R (|ξ| -|ξ| m )| u| 2 dξ = |ξ|≤2 1/(m-1) (|ξ| -|ξ| m )| u| 2 dξ + |ξ|≥2 1/(m-1) (|ξ| -|ξ| m )| u| 2 dξ ≤ |ξ|≤2 1/(m-1)
|ξ|| u| 2 dξ -

|ξ|≤2 1/(m-1) |ξ| m | u| 2 dξ - |ξ|≥2 1/(m-1) |ξ|| u| 2 dξ ≤ c |ξ|≤2 1/(m-1) | u| 2 dξ ≤ c R | u| 2 dξ ≤ c u(t, •) 2 L 2 .
Getting back to (57) and using the Gröwall inequality we have, for all t ∈ [0,

T * [, u(t, •) 2 L 2 ≤ c u 0 2 L 2 e 2ηt .
Then, for n = 2d with d ∈ N * we write (a) = - We have proven that the solution u(t, x) verifies, for all t ∈ [0, T * [, the energy estimate

u(t, •) L 2 ≤ c u 0 L 2 e ηT * , (58) 
and with this estimate (assuming that T * < +∞) we will obtain a contradiction as follows: first, we set the fixed quantity M = c u 0 L 2 e ηT * > 0. Then, for any initial datum v 0 ∈ H s (R), recall that by estimate (55) the time T = T (v 0 ) > 0 of existence of a solution v ∈ C([0, T [, H s (R)) of equation ( 19) arising from an initial datum v 0 is controlled as:

2 k+1 (c u 0 H s ) k C η e cη T T 1-α 0 < 1,
hence we write

e cη T T 1-α < 1 2 k+1 C η (c v 0 H s ) k .
Moreover, remark that as we have v 0 L 2 ≤ v 0 H s , then the existence time T = T (v 0 ) may be controlled by the quantity v 0 L 2 as follows:

e cη T T 1-α < η α 2 k+1 C η (c v 0 L 2 ) k .
In this estimate we may observe that the existence time T = T (v 0 ) is a decreasing function of v 0 L 2 and then, there exist a time 0 < T 1 < T * such that for all initial datum

v 0 ∈ H s (R) such that v 0 L 2 ≤ M the associated solution v ∈ C([0, T [, H s (R)) exists at least on the interval [0, T 1 ] and verifies v ∈ C([0, T 1 ], L 2 (R)).
Thus, for 0 < ε < T 1 and for the solution u(t, x) (arising from u 0 ) we can consider the initial datum v 0 = u(T * -ε, •) ∈ H s (R), which by (58) verifies v 0 L 2 ≤ M . So, there exists a solution v arising from v 0 = u(T * -ε, •) which is defined at least on [0, T 1 ]. Thus, gathering the functions u(t, x) and v(t, x) we get a solution

ũ(t, •) = u(t, •) for 0 ≤ t ≤ T * -ε, v(t, •) for T * -ε ≤ t ≤ T * -ε + T 1 ,
arising from the datum u 0 which is defined on the interval [0, T * -ε + T 1 ]. But, since 0 < ε < T 1 we have T * -ε + T 1 > T * and then we contradict the definition of T * . Then we have T * = +∞.

Pointwise decaying properties 5.1 Proof of Theorem 2

Given an initial u 0 ∈ H s (R) (with s > 3/2) by Theorem 1 there exists a unique solution u ∈ C([0, +∞[, H s (R)) of equation [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]. By [START_REF] Chen | A study of nonlinear dynamical models of plasma turbulence[END_REF] we assume now that the initial datum verifies moreover u 0 ∈ L ∞ ((1 + | • | γ )dx), with γ > 0, and we will construct a solution u 1 (t, x) of equation (1) in the functional space

C([0, +∞[, H s (R)) ∩ E α,n,γ ,
where, for the parameter 0 < α ≤ 1/2 defined in (49), the parameter n ≥ 1 given by [START_REF] Chen | Nonlinear dynamical models of plasma turbulence[END_REF] and the parameter γ > 0 above, the space E α,n,γ characterizes the pointwise spatial decaying of solutions and it is defined as:

E α,β,γ = u ∈ S ([0, +∞[×R) : for all 0 < T < +∞, sup 0<t≤T t α (1 + | • | min(γ,n+1) )u(t, •) L ∞ < +∞ . (59) 
It is worth to mention that the weight in the temporal variable t α is essentially technical (due to the kernel estimates (50)) and it will be useful to carry up all our estimates. We start by the local in time existence of solutions. More precisely, for a time 0 < T < +∞, which we shall fix small enough later, we will solve the equation

u 1 (t, •) = K m,n (t, •) * u 0 + t 0 K m,n (t -τ ) * (u k 1 ∂ x u 1 )(τ, •)dτ, (60) 
in the Banach space

E T = C([0, T ], H s (R)) ∩ E α,n,γ , with the norm u E T = sup 0≤t≤T u(t, •) H s + sup 0<t≤T t α (1 + | • | min(γ,n+1) )u(t, •) L ∞ . (61) 
We study the first term in the right-hand side in (60). Recall that the quantity sup

0≤t≤T K m,n (t, •) * u 0 H s
was estimated in (51) and then it remains to estimate the quantity sup

0<t≤T t α (1 + | • | min(γ,n+1) )K m,n (t, •) * u 0 L ∞ . As u 0 ∈ L ∞ ((1 + | • | γ )dx
) and moreover, by the kernel estimate (50), for t > 0 and x ∈ R fix we write

|K m,n (t, •) * u 0 (x)| ≤ R |K m,n (t, x -y)||u 0 (y)|dy ≤ R |K m,n (t, x -y)| 1 + |y| γ 1 + |y| γ |u 0 (y)|dy ≤ (1 + | • | γ )u 0 L ∞ R |K m,n (t, x -y)| 1 + |y| γ dy ≤ (1 + | • | γ )u 0 L ∞ C η e cη t t α R dy (1 + |x -y| n+1 )(1 + |y| γ ) ≤ (1 + | • | γ )u 0 L ∞ C η e cη t t α c 1 + |x| min(γ,n+1) , hence we have t α (1 + | • | min(γ,β) )K m,n (t, •) * u 0 L ∞ ≤ C η e cη t (1 + | • | γ )u 0 L ∞ . (62) 
Thus, by estimates (51) and (62) we get

K m,n (t, •) * u 0 E T ≤ C η e cη T ( (1 + | • | γ )u 0 L ∞ + u 0 H s ). ( 63 
)
We study now the second term in the right-hand side in the equation (60). Remark that since the quantity

sup 0<t≤T t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ H s
was estimated in (52) it remains to estimate the quantity

sup 0<t≤T t a (1 + | • | min(γ,n+1) ) t 0 K m,n (t -τ, •) * (u k ∂ x u)(τ, •)dτ L ∞
. By the kernel estimate (50), for 0 < τ < t ≤ T and x ∈ R fix we write:

|K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, x)| ≤ R |K m,n (t -τ, x -y)||u 1 (τ, y)| k |∂ y u 1 (τ, y)|dy ≤ C η R e cη(t-τ ) (t -τ ) α 1 (1 + |x -y| n+1 ) |u 1 (τ, y)| k |∂ y u 1 (τ, y)|dy ≤ C η e cη(t-τ ) (t -τ ) α u 1 (τ, •) k-1 L ∞ ∂ x u 1 (τ, •) L ∞ R 1 (1 + |x -y| n+1 ) |u 1 (τ, y)|dy ≤ C η e cη(t-τ ) (t -τ ) α u 1 (τ, •) k-1 L ∞ ∂ x u 1 (τ, •) L ∞ (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ × R 1 (1 + |x -y| n+1 )(1 + |y| min(γ,n+1) ) dy ≤ C η e cη(t-τ ) (t -τ ) α u 1 (τ, •) k-1 L ∞ ∂ x u 1 (τ, •) L ∞ (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ (a) 1 1 + |x| min(γ,n+1) .
In the last expression we still must estimate the term (a). Recall that as s > 3/2 then we have s -1 > 1/2 and thus the space H s-1 (R) embeds in the space L ∞ (R). So we can write

(a) ≤ u 1 (τ, •) k-1 H s-1 ∂ x u 1 (τ, •) H s-1 τ α τ α (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ ≤ c τ α u(τ, •) k H s τ α (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ . (64) 
Thus, getting back to the previous estimate we have

(1 + |x| min(γ,n+1) )|K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •) L ∞ ≤ C η e cη(t-τ ) (t -τ ) α τ α u(τ, •) k H s × τ α (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ ,
hence we can write

t α t 0 (1 + | • | min(γ,n+1) ) K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •) L ∞ dτ ≤C η e cη T t α t 0 1 (t -τ ) α τ α u(τ, •) k H s τ α (1 + | • | min(γ,n+1) )u 1 (τ, •) L ∞ dτ. (65) 
Now, recalling the definition of the norm • E T given in (61) we finally get

sup 0<t≤T t α (1 + | • | min(γ,n+1) ) t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ L ∞ ≤ C η e cη T T 1-α u 1 k+1 E T .
By this estimate and by estimate (52) we obtain

t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ E T ≤ C η e cη T T 1-α u 1 k+1 E T . (66) 
Once we have the estimates (63) and (66), for a time 0 < T 0 < +∞ small enough, the existence and uniqueness of a (local in time) solution u 1 ∈ E T of the integral equation (60) follow from well-known arguments. Now we will show that the solution u 1 (t, x) is global in time. Recall that by Proposition 4.3 we have u 1 ∈ C([0, +∞[, H s (R)) and then it remains to prove that the quantity sup

0<t≤T t α (1 + | • | min(γ,n+1) )u 1 (t, •) L ∞
is well-defined for all time T > 0.

Let T > 0. For all 0 < t ≤ T , let us define the quantity g(t

) = t α (1 + | • | min(γ,n+1) )u 1 (t, •) L ∞ ,
and by equation (60) we write

g(t) = t α (1 + | • | min(γ,n+1) ) K m,n (t, •) * u 0 + t 0 K m,n (t -τ ) * (u k 1 ∂ x u 1 )(τ, •)dτ L ∞ ≤ t α (1 + | • | min(γ,n+1) )K m,n (t, •) * u 0 L ∞ +t α t 0 (1 + | • | min(γ,n+1) ) K m,n (t -τ ) * (u k 1 ∂ x u 1 )(τ, •)dτ L ∞ = I 1 + I 2 ,
where we must estimate the terms I 1 and I 2 . For I 1 , by estimate (62) we have directly the estimate

I 1 ≤ C η e cη T (1 + | • | γ )u 0 L ∞ = C 1 (u 0 , T ). ( 67 
)
For I 2 , by estimate (65) and recalling the definition of the expression g(t) given above, we have

I 2 ≤ C η e cη T sup 0≤τ ≤t u 1 (τ, •) k H s t α t 0 1 (t -τ ) α τ α g(τ )dτ ≤ C η e cη T sup 0≤τ ≤T u 1 (τ, •) k H s t α t 0 1 (t -τ ) α τ α g(τ )dτ = C 2 (u, T ) t α t 0 1 (t -τ ) α τ α g(τ )dτ. (68)
At this point, we need to distinguish two cases for the parameter 0 < α ≤ 1/2.

• For 0 < α < 1/2. By estimates (67) and ( 68), for all t ∈]0, T ] we obtain the following inequality:

g(t) ≤ C 1 (u 0 , T ) + C 2 (u, T )T α t 0 1 (t -τ ) α τ α g(τ ).
Now, in order to get control (global in time) on the quantity g(t) we will use the following technical result. For a proof see the Lemma 7.1.2 of the book [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF]. 

a) g ∈ L 1 loc ([0, T ]), t b-1 g ∈ L 1 loc ([0, T ]
), and b) there exists two constants C 1 > 0 and C 2 > 0, such that for almost all t ∈ [0, T ], we have

g(t) ≤ C 1 + C 2 t 0 (t -τ ) a-1 τ b-1 g(τ )dτ.
Then, the following statements hold:

1) There exists a continuous and increasing function Θ : [0, +∞[-→ [0, +∞[, defined by

Θ(t) = +∞ k=0 c k t σk , (69) 
where σ = a + b -1 > 0 and moreover, for the Gamma function Γ(•) the coefficients c k > 0 are given by the recurrence formula: c 0 = 1 and

c k+1 c k = Γ(kσ + 1) Γ(kσ + a + b) for k ≥ 1.
2) For all time t ∈ [0, T ], we have

g(t) ≤ c 1 Θ c 1 σ 2 t .
In this lemma we set the parameters a = 1 -α > 0 and b = 1 -α > 0, hence, as 0 < α < 1/2 then we have a+b > 1. Moreover, it is easy to see that points a) and b) above are verified, where, in point b) we set the constants C 1 = C 1 (u 0 , T ) and C 2 = C 2 (u, T )T α . Thus, by point 2) for σ = 1 -2α > 0 and for all time t ∈]0, T ] we obtain the control g(t

) = t α (1 + | • | min(γ,n+1) )u 1 (t, •) L ∞ ≤ c 1 Θ c 1 1-α 2 t , hence
the quantity g(t) does not explode in a finite time. Thus we have u 1 ∈ C([0, +∞[, H s (R)) ∩ E α,n,γ .

• For α = 1/2. Observe that by estimates (67) and ( 68), for all 0 < t ≤ T we obtain the following inequality:

g(t) ≤ C 1 (u 0 , T ) + C 2 (u, T )t α t 0 1 (t -τ ) 1/2 τ 1/2 g(τ ). ( 70 
)
However, we may observe that this case ir more delicate since if in Lemma 5.1 we set a = b = 1/2, then the required condition a + b > 1 is not verified. To contour this problem, we shall use here another argument.

We suppose that T * <+∞ and we will obtain a contradiction.

version of a Grönwall's type inequality. For a proof of this technical result see the Lemma 3.4 in [START_REF] Brandolese | Far field asymptotics of solutions to convection equation with anomalous diffusion[END_REF].

Lemma 5.2 (Grönwall's type inequality II) Let g : [0, T ] -→ [0, +∞[ be a non-negative and locally bounded function such that, for all t ∈]0, T ] it verifies:

g(t) ≤ C 1 + C 2 t 0 1 (t -τ ) 1/2 τ 1/2 g(τ )dτ, for two constants C 1 , C 2 > 0 depending on T . Moreover, let K = 1 0 d τ (1 -τ ) 1/2 τ 1/2 . If C 2 < 1/K, then for all t ∈]0, T ] we have g(t) ≤ C 1 .
In this lemma, we set the constant C 1 = C 1 (u 0 , T ). Moreover, in the second term of the right in (70) we remark that we can set a time 0 < T 1 < T /2 such that C 2 = C 2 (u, T )T α 1 < 1/K. Thus, for all t ∈]0, T 1 ] we have g(t) ≤ C 1 . Thereafter, we observe that we can repeat this process as follows: we consider now the initial datum u(T 1 , •) and then for all time t ∈ [0, T 1 ] we denote by ũ1 (t, x) the solution of the problem

ũ1 (t, x) = K m,n (t, •) * u 1 (T 1 , x) + t 0 K m,n (t -τ ) * (ũ k 1 ∂ x ũ1 )(τ, x)d τ.
Then, for the quantity g(t) = t α (1+|•| min(γ,n+1) )ũ 1 (t, •) L ∞ , by estimates (67) and (68), and moreover, applying the Lemma 5.2, for all t ∈ [0, T 1 ] we have g(t) ≤ C 1 (u(T 1 , •), T ). But, by uniqueness of solutions in the space C([0, +∞[, H s (R)) we have the identity ũ1 (t, x) = u 1 (t + T 1 , x) and then we have g(t) = g(t + T 1 ) ≤ C 1 (u(T 1 , •), T ). Repeating this process a finite number of iterations we arrive to the time T > 0. Then (when α = 1/2) the quantity g(t) does not explode in a finite time and thus have

u 1 ∈ C([0, +∞[, H s (R)) ∩ E α,n,γ .
In order to finish this proof, remark that always by uniqueness of solution u(t, x) in the space C([0, +∞[, H s (R)) we have the identity u = u 1 and then the solution u(t, x) belongs to the space E α,n,γ . By definition of the space E α,n,γ given in (59), for all t > 0 and for x ∈ R we can write

|u(t, x)| ≤ 1 t α sup 0<τ ≤t τ α (1 + | • | min(γ,n+1) )u(τ, •) L ∞ 1 1 + |x| min(γ,n+1) = C 0 (u) t α 1 1 + |x| min(γ,n+1) , (71)
hence, setting the constant C 0 (u, t) = C 0 (u) t α > 0, we obtain the desired estimate [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF]. Theorem 2 is proven.

Proof of Theorem 3

Recall that for n ≥ 1 given by (11) for ε ∈]0, 1] we have γ = n + 1 + ε. Since that the solution u(t, x) writes down as in the integral formulation [START_REF] Fonseca | The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces[END_REF], we start by proving that the first term in the right-hand side in (19 has the the following asymptotic development: hence, we define R 1 = I 1 + I 2 + I 3 and we will verify that the following statement holds:

K m,n (t, •) * u 0 (x) = K m,n (t, x) R u 0 (y)dy + R 1 (t, x), |x| → +∞, (72) 
|R 1 | ≤ c(u 0 , t) |x| γ , |x| → +∞. ( 73 
)
To estimate the term I 1 we need the following technical result. Its proof follows the same lines of the proof of Lemma 4.2 in [START_REF] Cortez | On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation[END_REF].

Lemma 5.3 Let the parameter 0 < α ≤ 1/2 given in (49). Within the framework of Proposition 3.1, for all time t > 0 this kernel K m,n (t, x) satisfies K m,n (t, •) ∈ C 1 (R) and we have the following estimates:

1) For all x = 0, |∂ x K m,n (t, x)| ≤ C η e cη t |x| n+2 . 2) For all x ∈ R, |∂ x K m,n (t, x)| ≤ C η e cη t t 2α 1 1 + |x| n+2 .
As K m,n (t, •) ∈ C 1 (R), by the Taylor expansion we write K m,n (t, x -y) -K m,n (t, x) = -y∂ x K m,n (t, x -θy) for some 0 < θ < 1. Then, by this identity and the estimate given in point 1) above, in the term I 1 we obtain 

I 1 ≤ |y|< |x| 2 |(K m,n (t, x -y) -K m,n (t,
I 3 ≤ C η e cη t t α 1 |x| n+1 |y|> |x| 2 |u 0 (y)|dy ≤ C η e cη t t α 1 |x| n+1 |y|> |x| 2 1 1 + |y| n+1+ε dy ≤ C η e cη t t α 1 |x| n+1+ε |y|> |x| 2 1 1 + |y| n+1 dy ≤ C η e cη t t α 1 |x| γ R 1 1 + |y| n+1 dy ≤ C η e cη t t α 1 |x| γ . (76) 
Thus, the desired estimate (73) follows from (74), ( 75) and ( 76), and we have the asymptotic development given in (72).

We prove now that the second term in the right-hand side of ( 19) verifies:

t 0 K m,n (t -τ, •) * (u k ∂ x u)(τ, x)dτ ≤ C 1 (u, t) |x| n+2 , |x| → +∞. ( 77 
)
For t > 0 and x ∈ R fix we write

t 0 K m,n (t -τ ) * (u k ∂ x u)(τ, x)dτ = 1 k + 1 t 0 ∂ x K m,n (t -τ, •) * u k+1 (τ, x)dτ = 1 k + 1 t 0 R ∂ x K m,n (t -τ, x -y)u k+1 (τ, y)dy = 1 k + 1 t 0 R ∂ x K m,n (t -τ, x -y)u 2 (τ, y)u k-1 (τ, y)dy = (a).
Then, by point 2) of Lemma 5.3 and recalling that by estimate (71) (with γ = n + 1 + ε) we have the

pointwise estimate: |u(τ, y)| 2 ≤ C 2 0 (u) τ 2α (1 + |y| 2(n+1) )
, we obtain

(a) ≤ C η C 2 0 (u) k + 1 t 0 e cη(t-τ ) (t -τ ) 2α τ 2α R 1 1 + |x -y| n+2 1 1 + |y| 2(n+1) |u k-1 (τ, y)|dy dτ ≤ C η C 2 0 (u) k + 1 t 0 e cη(t-τ ) (t -τ ) 2α τ 2α u(τ, •) k-1 L ∞ dτ R 1 1 + |x -y| n+2 1 1 + |y| 2(n+1) dy ≤ C η C 2 0 (u) e cη t k + 1 t 0 u(τ, •) k-1 L ∞ (t -τ ) 2α τ 2α dτ R 1 1 + |x -y| n+2 1 1 + |y| 2(n+1) dy = (b).
Now, recall that as s > 3/2 then H s (R) embeds in L ∞ (R) and then we can write

(b) ≤ C η C 2 0 (u) e cη t k + 1 t 0 u(τ, •) k-1 H s (t -τ ) 2α τ 2α dτ 1 1 + |x| n+2 ≤ C η C 2 0 (u) e cη t k + 1 sup 0<τ <t u(τ, •) H s k-1 t 0 dτ (t -τ ) 2α τ 2α 1 1 + |x| n+2 .
At this point we must estimate the integral in the temporal variable. For this recall the assumption on the parameters m and n: (m, k) = (2, 1) and (m, n) = (2, 2d) with d ∈ N * . For those values of m and n, by definition of parameter 0 < α ≤ 1/2 given in (49) we obtain 0 < α ≤ 1/3 and then this integral computes down as t 0 dτ (t -τ ) 2α τ 2α ≤ c t 4α-1 . At this point, before to continue with the proof of this theorem it is worth to do the following remark. Let us continue with the proof of this theorem. With these estimates on the terms (a) and (b) above, for all t > 0 and for |x| large enough we can write

t 0 K m,n (t -τ ) * (u k ∂ x u)(τ, x)dτ ≤ C η C 2 0 (u) e cη t k + 1 t 4α-1 sup 0<τ <t u(τ, •) H s k-1 1 1 + |x| n+2 ≤ C η C 2 0 (u) e cη t k + 1 t 4α-1 sup 0<τ <t u(τ, •) H s k-1 1 |x| n+2 = C 1 (u, t) |x| n+2 ,
hence, as γ ≤ n + 2 we get (77). Now, for the expression R 1 (t, x) given in (73) we set

R(t, x) = R 1 (t, x) + t 0 K m,n (t -τ ) * (u k ∂ x u)(τ, x)dτ, (78) 
and then we write

u(t, x) = K m,n (t, x) R u 0 (y)dy + R(t, x), (79) 
where, by estimates (73) and (77) we have the estimate

|R(t, x)| ≤ C 1 (u 0 , u, t) |x| γ , |x| → +∞. ( 80 
)
With this information, we are able to prove the points 1) and 2) stated in Theorem 3. and by estimate (80) (recalling that γ = n + 1 + ε) we obtain the desired estimate [START_REF] Feng | Multi-hump stationary waves for a Korteweg-deVries equation with nonlocal perturbations[END_REF].

1) If the initial datum verifies

2) We get back to the identity (79), where we assume now that the initial datum verifies From this identity we write:

|u(t, x)| = K m,n (t, x) R u 0 (y)dy + R(t, x) = K m,n (t, x) R u 0 (y)dy -(-R(t, x)) ≥ |K m,n (t, x)| R u 0 (y)dy -|R(t, x)|.
At this point, we have the following estimate for the kernel K m,n (t, x).

Lemma 5. 

|K m,n (t, •) * ψ(x)| ≤ (|K m,n (t, •)| * |ϕ|)(x) ≤ C η e cη t t α 1 1 + | • | n+1 * |ψ| (x).
Moreover, since the function 1 1 + | • | n+1 belongs to the space L 1 (R) and it is a radially decreasing function then, by the Hardy-Littlewood maximal function operator M (see the Section 2 of the book [START_REF] Grafakos | Classical Fourier analysis[END_REF] for a definition) we can write the pointwise estimate

C η e cη t t α 1 1 + | • | β * |ψ| (x) ≤ C η e cη t t α 1 1 + | • | n+1 L 1 M |ψ| (x) ≤ C η e cη t t α M |ψ| (x).
Thus we obtain

K m,n (t, •) * ψ L p wγ ≤ C η e cη t t α M |ψ| L p wγ .
Now, by Lemma 1 of [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] we have that, for 0 < γ < 1 and for 1 < p < +∞, the weight w γ (x) = 1 (1 + |x|) γ belongs to the Muckenhoupt class A p (R) (see the book [START_REF] Grafakos | Modern harmonic analysis[END_REF] for a definition). Moreover, by well-known properties of the Muckenhoupt class [START_REF] Grafakos | Modern harmonic analysis[END_REF] we have that the Hardy-Littlewood maximal function operator M is bounded in L p wγ (R) and finally we can write C η

e cη t t α M |ψ| L p wγ ≤ C η e cη t t α ψ L p wγ .
By this lemma, with ψ = u 0 , and by estimate (51) we get:

K m,n (t, •) * u 0 F T 0 ≤ C η e cη T ( u 0 H s + u 0 L p wγ ). (81) 
We study now the second term in the right-hanf side of (60). As before, we know that the quantity sup

0<t≤T 0 t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ H s
was estimated in (52) so it remains to estimate the quantity sup

0<t≤T 0 t α t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ ) L p wγ
. For 0 < t < T 0 fix, and by Lemma 6.1 we write

t α t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ L p wγ ≤ t α t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)) L p wγ dτ ≤ C η t α t 0 e cη(t-τ ) (t -τ ) α u k 1 ∂ x u 1 )(τ, •) L p wγ dτ ≤ C η e cηT 0 t α t 0 1 (t -τ ) α u 1 (τ, •) L p wγ u k-1 1 (t, •) L ∞ ∂ x u 1 (t, •) L ∞ dτ = (a).
But, recalling that as s -1 > 1/2 then the spaces H s (R) and H s-1 (R) embed in the space L ∞ (R), then we have

(a) ≤ ≤ C η e cη T 0 t α t 0 1 (t -τ ) α u 1 (τ, •) L p wγ u 1 (τ, •) k H s dτ ≤ C η e cη T 0 t α t 0 1 (t -τ ) α τ α (τ α u 1 (τ, •) L p wγ ) u 1 (τ, •) k H s dτ = (b). (82) 
Moreover, recalling the definition of the norm • F T given above, we get

(b) ≤ C η e cη T 0 t α t 0 1 (t -τ ) α τ α dτ u 1 k+1 F T ≤ C η e cη T 0 t 1-α u 1 k+1 F T ≤ C η e cη T 0 T 1-α 0 u 1 k+1 F T .
With this estimate and by estimate (52) we finally write Recall that by Proposition 4.3 we have u 1 ∈ C([0, +∞[, H s (R)), and the it remains to verify that the quantity g(t) = t α u 1 (t, •) L p wγ does not explode in a finite time. For this, for a time 0 < T < +∞ large enough and for 0 < t < T , by Lemma ≤ C 1 (u 0 , T ) + C 2 (u, T ) t α t 0 1 (t -τ ) α τ α g(τ )dτ, and we conclude following the same arguments done at the end of the proof of Theorem 2 where we have treated the cases 0 < α < 1/2 (using the Lemma 5.1) and α = 1/2 (using the Lemma 5.2) separately.

We have thus u 1 ∈ C([0, +∞[, H s (R)) ∩ L ∞ loc ]0, +∞[, L p wγ (R), t α dt . Then, always by uniqueness of solution u(t, x) in the space C([0, +∞[, H s (R)) we have the identity u = u 1 and then, the solution u(t, x) verifies u ∈ L ∞ loc ]0, +∞[, L p wγ (R), t α dt . This theorem in proven.

7 Pointwise growing properties: proof of Theorem 5

As the initial datum u 0 ∈ Ḣ1 (R) verifies |u 0 (x)| ≤ C 0 (1 + |x|) γ , then we get

1 (1 + | • |) γ u 0 L ∞ ≤ C 0 < +∞.
Thus, we will solve the integral problem

u(t, x) = K m,n (t, •) * u 0 (x) + t 0 K m,n (t -τ ) * (u ∂ x u)(τ, x)dτ, (84) 
in the Banach space G T = {u ∈ Ḣ1 (R) : u G T < +∞}, where, for a time 0 < T < +∞ arbitrary large and fix, and moreover, for the parameter 0 < α ≤ 1/2 given in (49), we define the norm

u G T = sup 0<t≤T u(t, •) Ḣ1 + sup 0<t≤T t α 1 (1 + | • |) γ u(t, •) L ∞ .
Remark that the first term of this norm is technical and it will be useful to treat the second term in the right-hand side of the integral formulation above. On the other hand, observe that the second term in this norm characterizes the pointwise spatial growing of the solution u(t, x). Finally, the weight in time t α is always a technical requirement to carry up of computations.

We start by estimating the first term in the right-hand side of (84). Recall first that for all t > 0 and all ξ ∈ R by estimates [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] and [START_REF] Kenig | On the generalized Benjamin-Ono equation[END_REF] we have | K m,n (t, ξ)| ≤ c, and then we write where, as n ≥ 1, and moreover, as we have 0 < γ < 1/2, then the both integrals above converge. Thus, getting back to the previous estimate we get

t α 1 (1 + | • |) γ K m,n (t, •) * u 0 L ∞ ≤ C η e cη T C 0 . (86) 
Thereafter, by ( 85) and ( 86) we obtain We study now the second term in the right-hand side of (84). For the first term in the norm • G T we have 

Theorem 3 1 )

 31 Within the framework of Theorem 2, assume that (m, n) = (2, 1) and (m, n) = (2, 2d) with d ∈ N * . Moreover, let 0 < ε ≤ 1. If the initial datum u 0 verifies: |u 0 (x)| ≤ c |x| n+1+ε , |x| → +∞, and R u 0 (y)dy = 0, then the solution u(t, x) of equation (1) verifies:

  , when n = 3 we have c m = 0 if m = 2 and c m = 6 if m = 3, and moreover, when n > 3 we have c m = 0 for m = 2, 3.

Finally, in order

  to simplify the notation, for m = 2, 3 and n ∈ N such that (11) is verified, let us define the parameter α > 0: α = 1/m, if n = 1 or n even: n = 2d with d ∈ N and d ≥ 2, 1/n, if n odd: n = 3 + 4d, with d ∈ N,

Proposition 4 . 3

 43 Let T * > 0 be the maximal time of existence of a unique solution u ∈ C([0, T * [, H s (R))

R i n+1 |ξ|ξ n- 1 |

 1 u| 2 dξ -R |ξ| m | u| 2 dξ, and since i n+1 |ξ|ξ n-1 | u| 2 is a odd function we obtain (a) = -R |ξ| m | u| 2 dξ ≤ 0. So, by (57) we have u(t, •) 2 L 2 ≤ c u 0 Finally, for n = 3+4d, with d ∈ N, remark that the function i n+1 |ξ|ξ n-1 + |ξ| m writes down as |ξ| n + |ξ| m and then we have (a) = -R (|ξ| n + |ξ| m )| u| 2 dξ ≤ 0. Thus, always by (57) we obtain the same estimate above.

Lemma 5 . 1 (

 51 Grönwall's type inequality I) Let a > 0 and b > 0, such that a + b > 1. Let g : [0, T ] -→ [0, +∞[ be a function such that verifies:

|y|> |x| 2 u 0

 20 (y)dy = K m,n (t, x) R u 0 (y)dy + I 1 + I 2 + I 3 ,

Remark 1

 1 For the values (m, n) = (2, 1) or (m, n) = (2, 2d) (with d ∈ N * ) always by definition of parameter α given in (49) we have α = 1/2. Then our method breaks down since the integral t 0 dτ (t -τ ) 2α τ 2α diverges.

R 3 u

 3 0 (y)dy = 0, then by (79) we get |u(t, x)| = |R(t, x)|. From this identity

R 3 u

 3 0 (y)dy = 0.

t 0 K 0 ≤ C η e cη T 0 T 1

 001 m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ F T estimates (81) and (83) the existence and uniqueness of a solution u 1 ∈ F T 0 for the equation (60) follow from well-know arguments.

KR( 1 +C η e cη t t α C 0 R( 1 +( 1 +( 1 +( 1 +( 1 + 1 +

 10111111 m,n (t, •) * u 0 Ḣ1 ≤ c u 0 Ḣ1 . (85) Next, by the kernel estimates (50), for 0 < t ≤ T and x ∈ R fix we have the pointwise estimates:|K m,n (t, •) * u 0 (x)| ≤ R |K m,n (t, x -y)||u 0 (y)|dy ≤ C η e cη t t α R |u 0 (y)| 1 + |x -y| n+1 dy ≤ C η e cη t t α |y|) γ |u 0 (y)| (1 + |y|) γ (1 + |x -y| n+1 ) dy ≤ |y|) γ 1 + |x -y| n+1 dy,where the last expression computes down asR |y|) γ 1 + |x -y| n+1 dy ≤ c γ (1 + |x|) γ . Indeed, we write R |y|) γ 1 + |x -y| n+1 dy ≤ c γ R |x -y|) γ + (1 + |x|) γ 1 + |x -y| n+1 dy ≤ ≤ c γ R |x -y|) γ 1 + |x -y| n+1 dy + c γ (1 + |x|) γ R 1 |x -y| n+1 dy ≤ c γ (1 + |x|) γ R (1 + |x -y|) γ 1 + |x -y| n+1 dy + R 1 1 + |x -y| n+1 dy ,

K

  m,n (t, •) * u 0 G T ≤ C η,γ e cη T ( u 0 Ḣ1 + C 0 ). (87)

t 0 K 0 K 0 K 0 KBy these estimates we have sup 0≤t≤T t 0 K 0 K 0 RC η t 0 e 1 +( 1 +( 1 +( 1 +( 1 +( 1 + 2 R 2 ≤R( 1 +

 00000000111111221 m,n (t -τ, •) * (u∂ x u)(τ, m,n (t -τ, •) * ∂ x (u 2 )(τ, •)dτḢ1 ≤ t m,n (t -τ, •) * u 2 (τ, •) Ḣ2 dτ.Then, in point 2) of Lemma 4.2 we set the parameters s 1 = 3/2, s 2 = 1/2 and moreover ψ = u 2 , hence we can writet m,n (t -τ, •) * u 2 (τ, •) Ḣ2 dτ ≤ C η t 0 e c η (t-τ ) (t -τ ) α/2 u 2 (τ, •) Ḣ3/2 dτ ≤ C η e c η T t 0 1 (t -τ ) α/2 u 2 (τ, •) Ḣ3/2 dτ.Moreover, by the product laws of the homogeneous Sobolev spaces we have u 2 (τ,•) Ḣ3/2 ≤ c u(τ, •) 2Ḣ1 . With this estimate, and recalling the definition of the norm • G T , from the last expression we getC η e c η T t 0 1 (t -τ ) α/2 u 2 (τ, •) Ḣ3/2 dτ ≤ C η e c η T t 0 1 (t -τ ) α/2 u(τ, •) 2 Ḣ1 dτ ≤ C η e c η T sup 0≤τ ≤T u(τ, •) Ḣ1 2 t 0 dτ ((t -τ ) α/2 ) ≤ C η e c η T T 1-α/2 u 2 G T . m,n (t -τ, •) * (u∂ x u)(τ, •)dτ Ḣ1 ≤ C η e c η T T 1-α/2 u 2 G T .(88)We estimate now the secod term in the norm • G T . By the kernel estimates (50), and moreover, by the definition of the norm • G T , for 0 < t ≤ T and x ∈ R fix we have the following pointwise estimates:t m,n (t -τ, •) * (u∂ x u)(τ, x)dτ ≤ t |K m,n (t -τ, x -y)||u(τ, y)||∂ y u(τ, y)|dy dτ ≤ cη(t-τ ) (t -τ ) α R 1 |x -y| n+1 |u(τ, y)||∂ y u(τ, y)|dy dτ ≤ C η e cη T t 0 1 (t -τ ) α R |y|) γ 1 + |x -y| n+1 |u(τ, y)| (1 + |y|) γ |∂ y u(τ, y)|dy dτ ≤ C η e cη T t 0 1 (t -τ ) α 1 (1 + | • |) γ u(τ, •) L ∞ R |y|) γ 1 + |x -y| n+1 |∂ y u(τ, y)|dy dτ ≤ C η e cη T t 0 1 (t -τ ) α τ α τ α 1 (1 + | • |) γ u(τ, •) L ∞ R (1 + |y|) γ 1 + |x -y| n+1 |∂ y u(τ, y)|dy dτ ≤ C η e cη T sup 0≤τ ≤T τ α 1 (1 + | • |) γ u(τ, •) τ ) α τ α R (1 + |y|) γ 1 + |x -y| n+1 |∂ y u(τ, y)|dy dτ ≤ C η e cη T u G T t 0 1 (t -τ ) α τ α R |y|) γ 1 + |x -y| n+1 |∂ y u(τ, y)|dy dτ = (a).At this point, we must study the integral in the spatial variable. Applying first the Cauchy-Schwarz inequalities we writeR |y|) γ 1 + |x -y| n+1 |∂ y u(τ, y)|dy ≤ R |y|) 2γ 1 + |x -y| 2(n+1) dy 1/|∂ y u(τ, y)|dy1/|y|) 2γ 1 + |x -y| 2(n+1) dy 1/2 u(τ, •) Ḣ1 ≤ c γ (1 + |x|) γ u(τ, •) Ḣ1 .Thus, getting back to the term (a), by this estimate and always by the definition of• G T , we obtain (a) ≤ C η,γ (1 + |x|) γ e cη T u G T t 0 1 (t -τ ) α τ α u(τ, •) Ḣ1 dτ ≤ C η,γ (1 + |x|) γ e cη T u G T sup 0≤τ ≤T u(τ, •) Ḣ1 t 0 dτ (t -τ ) α τ α ≤ C η,γ (1 + |x|) γ e cη T u 2 G T t 1-2α . n (t -τ, •) * (u∂ x u)(τ, x)dτ L ∞ ≤ C η,γ e cη T T 1-α u 2 G T .(89)Finally, by estimates (88) and (89) we have t 0 K m,n (t -τ, •) * (u∂ x u)(τ, x)dτ G T ≤ C η,γ e cη T max(T 1-α/2 , T 1-α ) u 2 G T . (90)

  1/m , and then, for all x ∈ R we get |K m,2 (t, x)| ≤ C η e cηt (ηt) 1/m . Finally, gathering this estimate and estimate (40) we have

  1/n and then, by this estimate and by estimate estimate (48) we get |K m,n (t, x)| ≤ C η e cηt η 1/n t 1/n 1 1 + |x| n+1 , which proves the point 2.2) in Proposition 3.1. This proposition in now proven.

  with |R 1 (t, x)| ≤ c(u 0 , t) |x| γ . Indeed, for t > 0 and x ∈ R fix this term can be decomposed as follows:K m,n (t, x -y)u 0 (y)dy = K m,n (t, x)

				R	u 0 (y)dy +	|y|<	2 |x|	(K m,n (t, x -y) -K m,n (t, x))u 0 (y)dy
	+	|y|>	2 |x|	K m,n (t, x -y)u 0 (y)dy -K m,n (t, x)

R

  x))||u 0 (y)|dy ≤ |K m,n (t, x -y)||u 0 (y)|dy ≤ c K m,n (t, •) L 1 , but, by (50) we have K m,n (t, •) L 1 ≤ C ηFinally, in order to study the term I 3 , recall first that always by (50) for |x| enough enough we have

	|y|< |x -θy| β+1 . As we have 0 < θ < 1 and moreover, as we have |y| < |x| |x| 2 |y||∂ x K m,n (t, x -θy)||u 0 (y)|dy |y||u 0 (y)| |x -θy| n+2 dy. We study now the expression ≤ C η e cη t |y|< |x| 2 1 2 , then we can write |x -θy| ≥ |x| -θ|y| ≥ |x| -|y| ≥ |x| 2 ; and thus we get 1 |x -θy| n+2 ≤ c 1 |x| n+2 . With this inequality and recalling that the initial datum verifies |u 0 (y)| ≤ c 1 + |y| γ (with γ = n + 1 + ε) we can write C η e cη t |y|< |x| 2 |y||u 0 (y)| |x -θy| n+2 dy ≤ C η e cη t |x| n+2 |y|< |x| 2 |y| 1 + |y| n+1+ε dy ≤ C η e cη t |x| n+2 R |y| 1 + |y| n+1+ε dy ≤ C η e cη t |x| n+2 . Thus, as γ ≤ n + 2 then we have I 1 ≤ C η e cη t |x| n+2 ≤ C η e cη t |x| γ , |x| → +∞. (74) For the term I 2 , as we have |u 0 (y)| ≤ c |y| γ (for |y| large enough) and moreover, as we have |y| > |x| 2 , then we write I 2 ≤ |y|> |x| 2 |y|> |x| 2 |K m,n (t, x -y)| |y| γ dy ≤ c |x| γ |y|> |x| 2 |K m,n (t, x -y)| ≤ c t α , and then we can write I 2 ≤ C η e cη t t α 1 |x| γ , |x| → +∞. (75) |K m,n (t, x)| ≤ C η e cη t t α 1 |x| n+1 . Moreover, recall that the initial datum verifies |u 0 (y)| ≤ c 1 + |y| γ (with γ = |x| γ e cη t n + 1 + ε). Then we write

  Lemma 6.1 For ψ ∈ L p wγ (R), and for all t > 0 we have K m,n (t, •) * ψ L p wγ ≤ C η e cη t t α ψ L p wγ . Proof. By estimate (50), for t > 0 and x ∈ R fix we have the following pointwise estimate

[START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] 

For t > 0 fix, there exists a quantity M = M (t) > 0 such that for all |x| > M we have

|K m,n (t, x)| ≥ c η t 2|x| n+1

, for a constant c η > 0 depending on η > 0.

  [START_REF] Benjamin | Model equation for long waves in nonlinear dispersive systems[END_REF].1 and by estimate (82) we can writeh(t) ≤ t α K m,n (t, •) * u 0 L p wγ + t α t 0 K m,n (t -τ, •) * (u k 1 ∂ x u 1 )(τ, •)dτ L p wγ ≤ C η e cη T u 0 L p wγ + C η e cη T t α -τ ) α τ α (τ α u 1 (τ, •) L p wγ ) u 1 (τ, •) k H s dτ ≤ C η e cη T u 0 L p wγ + C η e cη T sup -τ ) α τ α g(τ )dτ

	t	1				
	0 (t 0≤τ ≤T	u 1 (τ, •) k H s t α	0	t	(t	1

L 2 e 2ηt , for all t ∈ [0, T * [.

Proof. For n = 1, by identity [START_REF] Ostrovsky | Negative energy waves in hydrodynamics[END_REF] we write

Moreover, by [START_REF] Pastrán | Sharp well-posedness for the Chen-Lee equation[END_REF] 

Average decaying properties: proof of Theorem 4

To prove this theorem we will follow some of the ideas of the proof of Theorem 2. We assume that for 1 < p < +∞ and for 0 < γ < 1 the initial datum u 0 ∈ H s (R) (with s > 3/2) verifies u 0 ∈ L p wγ (R). First, we will construct a solution

of equation ( 60). Here, for the parameter 0 < α ≤ 1/2 given in (49) the weight in the temporal variable t α is essentially technical and it will be useful to carry up all our estimates.

We start by the local in time existence of the solution u 1 (t, x) and for this, for a time 0 < T 0 < +∞ small enough, we will solve the equation (60) in the Banach space

with the norm

For the first term in the right-hand side of (60), recall that the quantity sup 0≤t≤T K m,n (t, •) * u 0 H s was estimated in (51) and then it remains to estimate the quantity sup

This estimate bases on the following technical lemma. Now, with the estimates (87) and (83) we set the quantity δ as δ = 1 4C η,γ e cη T > 0, and if the initial datum verifies u 0 Ḣ1 + C 0 < δ then the existence and uniqueness of a solution u ∈ G T of equation (60) follow from standard arguments. Theorem 5 is now proven.