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Abstract We present for the first time the simultaneous reconstruction of three optical parameters distributions10

of biological tissues namely, the absorption µa and scattering µs coefficients, as well as the anisotropy factor g of11

the Henyey-Greenstein phase function as a new optical contrast. The 2D images are obtained from the simulation12

experiments and multi-source quantitative photoacoustic tomography with the radiative transfer equation (RTE) as13

light transport model. The image reconstruction method is based on a gradient-based optimization scheme. The14

adjoint method applied to the RTE is used to efficiently compute the gradient of the objective function. The results15

show simultaneous reconstructions of the three optical properties even with noisy data. The crosstalk problem16

between the three parameters is highlighted. Superior quality images are obtained for µa compared to those of µs17

and g. Moreover, our algorithm allows reconstructing inserts-like heterogeneities with very good spatial resolution18

and qualitative accuracy.19

20

Keywords quantitative photoacoustic tomography, radiative transfer equation, inverse problem, image21

reconstruction, adjoint method, biological tissues.22
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Nomenclature24

A absorbed energy density field, W mm−3
25

M measured data of the absorbed optical energy density, W mm−3
26

Ns number of collimated sources27

g anisotropy factor of the Henyey-Greenstein phase function28

H observation equation29

J objective function30

nnn outward unit vector normal to the medium boundary31

p scattering phase function32

rrr spatial position (= x, y), mm33

S source term in the RTE34

35

Greek symbols36

ψ radiance, W mm−2 sr−1
37

∆Ω control solid angle38

L Lagrangian39

µa absorption coefficient, mm−1
40

ΩΩΩ direction vector41

µt attenuation coefficient (= µa + µs), mm−1
42

ψ radiance, W mm−2 sr−1
43

µs scattering coefficient, mm−1
44

ρ directional reflection coefficient45

R state equation46

Θ angle between two directions, rad47

θ parameter to be reconstructed48

Υ intensity of the collimated laser beam, W mm−2
49
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Φ fluence rate, W mm−2
50

φ adjoint variable51

Σ interval [0, 2π]52

D domain of R2R2R2
53

∂D boundary of the medium D54

55

Subscripts56

D spatial57

Ω angular58

DΩ spatial-angular59

c collimated60

s scattered61

sp specular62

x, y, z (Ox)-axis, (Oy)-axis, (Oz)-axis63

Superscripts64

∗ adjoint operator65

+ incoming boundary66

− outgoing boundary67

68

1 Introduction69

Photoacoustic tomography (PAT) is an emerging technique for non-invasive imaging of biological tissues. It is70

based on the photoacoustic effect, which refers to the generation of acoustic waves by the absorption of the optical71

energy in the tissue illuminated by an ultrashort pulsed laser [1–13]. The hybrid modality of PAT combines the72

high tissue contrast of optical imaging methods and the good spatial resolution of ultrasound imaging methods.73
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PAT allows imaging at depths and resolutions unprecedented for optical methods. The optical part of PAT provides74

information on the distribution of chromophores, which are light-absorbing molecules within the tissue. The chro-75

mophores of interest are, for example, haemoglobin, melanin, collagen, and various contrast agents. PAT has been76

successfully applied to the visualization of different structures in biological tissues, such as microvasculature of77

tumors, human blood vessels, the cerebral cortex in small animals or breast cancer. However, this information is78

only a qualitative image and it does not give quantitative information on the concentrations of the chromophores.79

Quantitative photoacoustic tomography (QPAT) is a technique aimed at estimating the absolute concentration of the80

chromophores from a reconstructed PAT image. It reconstructs the optical parameters of biological tissue from data81

describing the absorbed energy distribution inside the tissue (assumed to be known in this work). The development82

of improved image reconstruction algorithm in QPAT constitutes a challenging problem [2]. An accurate forward83

model is essential to meet the requirements of clinical applications and to obtain a good quality reconstruction.84

There have been extensive studies on the optical inverse problem of QPAT, although most were using the Diffusion85

Equation (DE) in the diffusive regime typically assuming that the light propagation throughout the tissue is near-86

isotropic [7]. However, this model has well-known limitations [14–17]. In addition, the anisotropy factor also87

strongly affects the light propagation in tissue in the transport regime. Indeed, the biological tissues are highly88

forward scattering media where g is typically between 0.8 and 1 [9, 14, 18].89

Although the absorption map is usually of the major clinic interest, it is necessary to reconstruct the scattering90

maps (µs, g) as well in order to accurately reconstruct the absorption map when the scattering coefficient and91

the anisotropy factor are unknown. Some works have shown that g can be modified when the tissue is affected92

by a tumor because cells and cell nuclei change their size and shape. Therefore, the morphological modification93

of the tissue changes the scattering coefficient µs. Since the anisotropy factor describes the anisotropy (angular94

distribution) of light scattering, this modification will also lead to a variation of g values between healthy and95

tumor tissues. For instance, quantitative phase imaging showed, on a prostate tissue biopsy with malignancy, that96

the anisotropy factor g can be a marker of disease [19]. Van Hillegersberg et al. [20] pointed that the anisotropy97

factor of rat liver decreases from 0.952 to 0.946 in a tumor at 633 nm. Germer et al. [21] reported experimentally98

that g was different for normal human liver tissue (g = 0.902) and liver metastases (g = 0.955) at three different99
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wavelengths. Consequently, the anisotropy factor can provide an additional intrinsic contrast for optical imaging.100

To overcome the limitations of the DE, the Radiative Transfer Equation (RTE) has been addressed as a rigorous101

model for light transport in biological tissues and has become a focus of investigations in QPAT [15–17, 22–35].102

In the optical inverse problem of QPAT, it has been shown that the absorption coefficient µa can be reconstruct if103

one light source is used whereas the simultaneous reconstruction of (µa, µs) needs multiple optical illuminations,104

so-called multi-source QPAT [16, 25, 36, 37]. Multiple measurements are often needed as well to eliminate non-105

uniqueness of the reconstruction problem [7, 23].106

To the best of our knowledge, the simultaneous reconstruction of (µa, µs, g) has not been presented so far while107

the anisotropy factor is an important optical parameter [38]. In practical applications, the anisotropy factor is108

usually not known while this factor should be known to better describe light propagation. Recovering (µs, g) is109

especially difficult due to the weak dependence of the absorbed optical energy density on scattering. To overcome110

this problem, the approach has been to assume the anisotropy factor as known and estimate simultaneously (µa, µs)111

in QPAT based on the RTE [16,17,26,29,31–33]. However, this approach can bias the estimated value of µs and also112

of µa. In this regard, we investigated the simultaneous reconstruction of (µa, µs, g) in multi-source QPAT based on113

the RTE in the transport regime. For the inversion, a gradient-based scheme using the Lm-BFGS was considered114

to update the spatial distribution of optical parameters. In such scheme, the major challenge is the computation115

of the objective function gradient which is the most expensive step. Evaluating the gradient through perturbation116

methods is daunting and prohibitively expensive with the RTE, especially in this case where the parameters are117

spatially dependent. To overcome this difficulty, the adjoint method applied to the RTE [17, 26–28, 31, 35, 38–40]118

was used to efficiently compute the objective function gradient with respect to the three optical parameters (µa, µs,119

g) regardless the number of unknowns. In this work, a two-dimensional geometry was considered.120

The inverse problem in QPAT is challenging since it is ill-posed due to the unsatisfying of both conditions unique-121

ness and stability. The uniqueness is caused by the strong under-determination nature of the problem where the122

spatially unknown number to retrieve is significantly higher than the spatially absorbed energy density data. This123

implies that different spatial distributions of parameters can lead to identical absorbed energy density data. More-124

over, the measured noise due to the experimental setup causes an instability of the solution where small noise level125
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is able to significantly amplify the estimation errors of optical coefficients. The crosstalk problem is an interesting126

example in QPAT which allows to highlight the robustness of the reconstruction algorithm versus the uniqueness127

condition. The improvement of the quality reconstruction is expected when increasing the source number where128

the amount of measured data becomes more important leading to reduce the under-determination character. Fur-129

thermore, the noise level is also assessed in our study in order to test the stability of our method.130

The remainder of this paper is organized as follows. Section 2 presents the optical forward model in QPAT. Section131

3 deals with the optical inverse problem of QPAT. A continuous Lagrangian formulation is used to rigorously deduce132

the adjoint RTE and an objective function gradient. The results obtained on 2D reconstructions are presented and133

discussed in section 4. Concluding remarks are finally offered in the final section.134

2 Optical forward model in QPAT135

2.1 Light transport model136

We assumed that the convex domain D of the medium is illuminated by a collimated laser beam of direction ΩcΩcΩc.137

Then, the illuminated wall of the medium is defined by:138

∂Dc =
{
rrr ∈ ∂D, ΩcΩcΩc ·nnn(rrr) < 0

}
, (1)

where nnn is the outward unit vector normal to the medium boundary. Let Σ be the interval [0, 2π]. We also define139

the incoming and outgoing boundaries:140

Γ− =
{

(rrr,ΩΩΩ) ∈ ∂D × Σ, ΩΩΩ ·nnn(rrr) < 0
}

and Γ+ =
{

(rrr,ΩΩΩ) ∈ ∂D × Σ, ΩΩΩ ·nnn(rrr) > 0
}
. (2)

The light source Υ(rrr), given at any location point rrr ∈ ∂D, penetrates from the outgoing into the medium. Part

of it propagates through the medium without being deviated, while the rest is scattered in all directions. It is

thus convenient to split the radiance ψ into two components [41]. These are denoted ψc(rrr) = ψ(rrr,ΩΩΩ)δ(ΩΩΩ −ΩcΩcΩc)

for rrr ∈ D (δ is the Dirac-delta function and ΩcΩcΩc is the direction of the collimated laser beam) and ψs(rrr,ΩΩΩ) for
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(rrr,ΩΩΩ) ∈ D × Σ. They are respectively the collimated and scattered components of radiance [42]. The ψc(rrr)

collimated radiance is governed by the Bouguer-Beer-Lambert equation with its boundary conditions [42]:

[
ΩΩΩc · ∇∇∇+ µt(rrr)

]
ψc(rrr) = 0 for rrr ∈ D, (3)

ψc(rrr)−Υ(rrr) = 0 for rrr ∈ ∂Dc and ψc(rrr) = 0 for rrr ∈ ∂D \ ∂Dc. (4)

where µt is the sum of the absorption and scattering coefficients. The scattered radiance ψs(rrr,ΩΩΩ) at location141

rrr ∈ D ⊂ R2R2R2 in direction ΩΩΩ ∈ Σ is solution of the steady state RTE:142

[
ΩΩΩ · ∇∇∇+ µt(rrr)

]
ψs(rrr,ΩΩΩ)− µs(rrr)

∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ) ψs(rrr,ΩΩΩ

′
) dΩ

′ − Sc(rrr,ΩΩΩ) = 0, (5)

for (rrr,ΩΩΩ) ∈ D × Σ where Sc is an additional radiation source term to the RTE due to the scattered part of the143

collimated laser beam within the medium [42]:144

Sc(rrr,ΩΩΩ) = µs(rrr) p(ΩcΩcΩc ·ΩΩΩ) ψc(rrr). (6)

The Henyey-Greenstein (H-G) phase function is the most widely-adopted scattering phase function of biomedical145

optics [14] and this has been used here. This function depends only on the inner product between the incident146

direction Ω
′

Ω
′

Ω
′

that scattered ΩΩΩ and the anisotropy factor g. It is expressed for 2D media as:147

p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ) =

1

2π

1− g2(
1 + g2 − 2g Ω

′
Ω

′
Ω

′ ·ΩΩΩ
) . (7)

The tissue surfaces are assumed to be semi-transparent boundaries due to the refractive index mismatch between148

air and tissue. Thus, the boundary conditions for the scattered radiance are [43]:149

ψs(rrr,ΩΩΩ)− 1

π

∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) ψs(rrr,Ω
′Ω′Ω′) Ω′Ω′Ω′ ·nnn dΩ′ = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn (scattered reflection), (8)
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for (rrr,ΩΩΩ) ∈ Γ−. The directional reflection coefficient ρ is given by Snell-Descartes laws assuming that the refrac-150

tive index of the outside medium (air) is unity and that of tissue is equal to 1.4 [42, 43]. The specular reflection151

ΩspΩspΩsp = ΩΩΩ−2(ΩΩΩ ·nnn)nnn is defined as the direction from which a laser beam must hit the surface. Then, after a specular152

reflection it travels in the direction of ΩΩΩ.153

Similarly as for the radiance, the fluence may be separated into its collimated (Φc) and scattered (Φs) components:154

Φ(rrr) = Φs(rrr) + Φc(rrr) for rrr ∈ D with Φc(rrr) = ψc(rrr) and Φs(rrr) =

∫
Ω=2π

ψs(rrr,ΩΩΩ) dΩ. (9)

The absorption of light in the tissue results in the absorbed energy density field:155

A(rrr) = µa(rrr)Φ(rrr) = µa(rrr)ψc(rrr) + µa(rrr)Φs(rrr). (10)

The function Φ(rrr) depends on the distribution of absorption and scattering within D, as well as the light source.156

The optical forward problem in QPAT is to compute (10) when the optical properties of the biological tissue and157

the input light source are given.158

3 Optical inverse problem of QPAT159

3.1 The objective function and observation equation160

The optical inverse problem of QPAT is to estimate the optical parameters of the tissue when the absorbed energy161

density H is given. In this work, we intented to reconstruct the absorption µa and scattering µs coefficients as162

well as the anisotropy factor g. The spatial distribution of the vector of parameters θ = (µa, µs, g) is reconstructed163

by applying a nonlinear optimization technique to an objective function J that is an explicit function of θ. The164

real-value objective function describes the discrepancy between the measured absorbed energy density, M(rrr) and165

the predicted numerical data, A(rrr) (given from Eq. (10)). The objective function to be minimized, writes166

J(θ) =
1

2

Ns∑
s=1

∣∣∣∣∣∣∣∣As(θ)−Ms

Ms

∣∣∣∣∣∣∣∣2
D
, (11)
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where As(θ) and Ms are the predictions and measurements obtained with the sth collimated source, respectively167

while Ns is the number of collimated sources. In (11), the fraction uses point-wise division and the norm is168

associated to L2(D), the space of real valued square-integrable functions on D. In order to avoid round-off error169

due to the low level of the readings of the forward model, the function J is normalized with respect to Ms. Note170

that Ms can be small far away of the illuminated wall of the medium. But, this didn’t affect the stability of the171

algorithm for the simulations presented further.172

It can be noticed that all the mathematical development presented further can be made for one fixed collimated

source. Then, we can omit the index s for simplicity. The observation equation A(θ) is defined as:

A(θ)(rrr) = (H ψc,θ)(rrr) + (H̃ ψs,θ)(rrr) for rrr ∈ D, (12)

with (H ψc,θ)(rrr) = µa(rrr)ψc(rrr) and (H̃ ψs,θ)(rrr) = µa(rrr)

∫
Ω=2π

ψs(rrr,ΩΩΩ) dΩ. (13)

To define compactly the state equation, we denote byRc(·, ψc) andRs(·, ψc, ψs) the right-hand sides in equations173

(3) and (5). Then:174

R(θ, ψc, ψs) =
{
Rc(θ, ψc), Rs(θ, ψc, ψs)

}
. (14)

The reconstruction algorithm consists of minimizing J when (14) is satisfied. The nonlinear optimization algorithm175

chosen in this work requires knowledge of the objective function gradient with respect to unknown parameters. To176

compute this gradient, the adjoint method (starting from the Lagrangian method) is introduced.177

3.2 The Lagrangian and adjoint method178

For one fixed collimated source, the Lagrangian is written in the L2 space as [44, 45]:179

L(θ, ψc, ψs, φc, φs) =
1

2

∣∣∣∣∣∣∣∣(H ψc) + (H̃ ψs)−M
M

∣∣∣∣∣∣∣∣2
D

+
〈
φc

∣∣∣Rc〉
D

+
〈
φs

∣∣∣Rs〉
DΩ
, (15)

where the Lagrangian multipliers are: φc = φc(rrr) (with rrr ∈ D) and φs = φs(rrr,ΩΩΩ) (with (rrr,ΩΩΩ) ∈ D × Σ). They180

are real functions that represent the adjoint variables associated to (ψc, ψs). The two last terms in (15) are the inner181
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products associated to L2(D) and L2(DΩ). It can be noticed that (which is trivial in appearance) if (ψc, ψs) is the182

solution of the state equation (14) for the true θ parameter, then we have the identity:183

L(θ, ψc(θ), ψs(θ), φc, φs) = J(θ), for all φc, φs. (16)

By deriving this equation it yields:184

J ′(θ) δθ =
∂L(θ, ψc, ψs, φc, φs)

∂θ
δθ +

∂L(θ, ψc, ψs, φc, φs)

∂ψc

∂ψc(θ)

∂θ
δθ +

∂L(θ, ψc, ψs, φc, φs)

∂ψs

∂ψs(θ)

∂θ
δθ. (17)

We denote the following independant quantities by:185

δψc =
∂ψc(θ)

∂θ
δθ and δψs =

∂ψs(θ)

∂θ
δθ. (18)

Then, the adjoint variables are solutions to the following equation [44, 45]:186

∂L(θ, ψc, ψs, φc, φs)

∂ψc
δψc +

∂L(θ, ψc, ψs, φc, φs)

∂ψs
δψs = 0, (19)

and Eq. (17) is reduced to:187

J ′(θ) δθ =
〈
∇∇∇J(θ)

∣∣∣δθ〉
D

=
∂L(θ, ψc, ψs, φc, φs)

∂θ
δθ. (20)

Using (15) and (19) we deduce that:

〈
φc

∣∣∣∂Rc
∂ψc

δψc

〉
D

+
〈
φs

∣∣∣∂Rs
∂ψs

δψs

〉
DΩ

+
〈
φs

∣∣∣∂Rs
∂ψc

δψc

〉
DΩ

+
〈(H ψc) + (H̃ ψs)−M

M

∣∣∣(H δψc)

M

〉
D

+
〈(H ψc) + (H̃ ψs)−M

M

∣∣∣(H̃ δψs)

M

〉
D

= 0. (21)

Using (12), we change (H ψc) + (H̃ ψs) by A in the second line of (21). As Eq. (21) has to be satisfied for all188

sensitivity directions δψc and δψs, then it leads to the following set of equations (for each sensitivity directions):189
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〈A−M
M

∣∣∣(H̃ δψs)

M

〉
D

+
〈
φs

∣∣∣∂Rs
∂ψs

δψs

〉
DΩ

= 0,

〈A−M
M

∣∣∣(H δψc)

M

〉
D

+
〈
φc

∣∣∣∂Rc
∂ψc

δψc

〉
D

+
〈
φs

∣∣∣∂Rs
∂ψc

δψc

〉
DΩ

= 0. (22)

We denote A∗ the adjoint operator of A. Using its definition and Appendix A, the equations of (22) lead to:

〈(∂Rs
∂ψs

)∗
φs

∣∣∣δψs〉
DΩ

+
〈H(A−M)

M2

∣∣∣δψs〉
D

= 0,

〈(∂Rc
∂ψc

)∗
φc

∣∣∣δψc〉
D

+
〈(∂Rs

∂ψc

)∗
φs

∣∣∣δψc〉
D

+
〈H(A−M)

M2

∣∣∣δψc〉
D

= 0, (23)

where A∗ = 2π A∗. As the equations of (23) have to be satisfied for all sensitivity directions δψc and δψs, the190

adjoint variables must be solutions to the following set of equations:191

(∂Rs
∂ψs

)∗
φs +

H(A−M)

M2
= 0 and

(∂Rc
∂ψc

)∗
φc +

(∂Rs
∂ψc

)∗
φs +

H(A−M)

M2
= 0. (24)

ReplacingRc andRs defined by (3) and (5) in Eq. (24), we obtain the following adjoint equations model:

[
ΩΩΩ · ∇∇∇+ µt(rrr)

]
φs(rrr,−ΩΩΩ) = µs(rrr)

∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′ · (−ΩΩΩ)) φs(rrr,ΩΩΩ

′
) dΩ

′ − µa(rrr)
(A(rrr)−M(rrr))

M2
,

[
ΩΩΩc · ∇∇∇+ µt(rrr)

]
φc(rrr) = µs(rrr)

∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′ · (−ΩcΩcΩc)) φs(rrr,ΩΩΩ

′
) dΩ

′ − µa(rrr)
(A(rrr)−M(rrr))

M2
. (25)

The directions ΩΩΩ and ΩcΩcΩc were changed to −ΩΩΩ and −ΩcΩcΩc for convenience.192

If the tissue surfaces are assumed to be semi-transparent with specular reflection, the boundary conditions of the193

first equation are given by [39]:194

φs(rrr,ΩΩΩ) = ρ(Θsp) φs(rrr,−ΩspΩspΩsp) for (rrr,ΩΩΩ) ∈ Γ+ with cos Θsp = ΩspΩspΩsp ·nnn and cos Θ = ΩΩΩ ·nnn. (26)

The boundary conditions for the adjoint collimated radiance fulfill the condition: φc(rrr) = 0 for rrr ∈ ∂D.195
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It can be seen that the adjoint equations model takes a similar form to the forward model. The adjoint equations196

model can be solved in a similar manner to that used to solve the forward model. It also shows that the first equation197

of (25) is solved to obtain φs(rrr,ΩΩΩ) which is bring into the second equation to obtain φc(rrr).198

3.3 Gradient of the objective function199

The differentiation of the Lagrangian (for one fixed collimated source) with respect to θ in direction δθ satisfies:200

∂L(θ, ψc, ψs, φc, φs)

∂θ
δθ =

∂J(θ)

∂θ
δθ +

〈
φc

∣∣∣∂Rc
∂θ

δθ
〉
D

+
〈
φs

∣∣∣∂Rs
∂θ

δθ
〉
DΩ
. (27)

It should be noticed that the function J (see Eqs. (11,12)) depends explicitly on θ only if θ = µa. For the other201

optical coefficients, ∂J(θ)
∂θ = 0. Using (10) and Eq. (20), Eq. (27) is reduced to:202

〈
∇∇∇J(θ)

∣∣∣δθ〉
D

=
〈
φc

∣∣∣∂Rc
∂θ

δθ
〉
D

+
〈
φs

∣∣∣∂Rs
∂θ

δθ
〉
DΩ

(
+
〈Φ(A(θ)−M)

M2

∣∣∣δθ〉
D

if θ = µa

)
. (28)

This is the expression that evaluates the gradient of the objective function. Applying respectively Eq. (28) to

θ = µa, θ = µs and θ = g we deduce the objective function gradient, with respect to these parameters:

∇∇∇J(µa) =
Φ(A(µa)−M)

M2
+ φc ψc +

〈
φs

∣∣∣ ψs〉
Ω
, (29)

∇∇∇J(µs) = φc ψc +
〈
φs

∣∣∣ ψs〉
Ω
−
〈
φs

∣∣∣ ∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ) ψs(rrr,ΩΩΩ

′
) dΩ

′
+ p(ΩcΩcΩc ·ΩΩΩ) ψc(rrr)

〉
Ω
, (30)

∇∇∇J(g) = −
〈
φs

∣∣∣µs(rrr)(∫
Ω′=2π

∂p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ)

∂g
ψs(rrr,ΩΩΩ

′
) dΩ

′
+
∂p(ΩcΩcΩc ·ΩΩΩ)

∂g
ψc(rrr)

)〉
Ω
. (31)

It should be noticed that if more than one collimated sources are considered, the objective function gradient is203

obtained by summing the objective function gradient for each collimated source.204

3.4 Parameter and data scaling205

In order to speed-up the iterative convergence to the local minimum, a scaling strategy of the optical parameters [16]206

in the RTE based forward model was carried out in this work. Choosing an a priori function for each optical207
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parameters, say µra, µ
r
s, gr, the parameters are searched that fluctuate about unity. This scaling leads to recover:208

σa(rrr) =
µa(rrr)

µra(rrr)
, σs(rrr) =

µs(rrr)

µrs(rrr)
, q(rrr) =

g(rrr)

gr(rrr)
, (32)

for which magnitude is of order one approximately for all these three new parameters. It results that the considered

objective function becomes J(σa, σs, q) (instead of J(µa, µs, g)). In the results presented further, the a priori func-

tions for each optical parameters were chosen as those of the background (homogeneous) medium. The objective

function gradients with respect to σa, σs and q are:

∇∇∇J(σa) = µra(rrr)∇∇∇J(µa) ; ∇∇∇J(σs) = µrs(rrr)∇∇∇J(µs);

∇∇∇J(q) = −
〈
φs

∣∣∣µs(rrr)(∫
Ω′=2π

∂p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ)

∂q
ψs(rrr,ΩΩΩ

′) dΩ
′
+
∂p(ΩcΩcΩc ·ΩΩΩ)

∂q
ψc(rrr)

)〉
AΩ
. (33)

A second scaling, as in [46], was necessary for the simultaneous reconstruction of three optical parameters dis-209

tributions. Indeed, the optical coefficients to be reconstructed from the absorbed energy density are different in210

nature, and their order of magnitude also differs. As a consequence, the objective function gradient parts associated211

with these optical coefficients also differ by roughly the same order of magnitude, which is very bad for the con-212

vergence in the optimization problem when using a gradient-based method. Then, the objective function gradients213

with respect to σa, σs and q was scaled as:214

∇∇∇Jscaled(σa) = cσa ∇∇∇J(σa) ; ∇∇∇Jscaled(σs) = cσs ∇∇∇J(σs) and ∇∇∇Jscaled(q) = cq ∇∇∇J(q). (34)

where cσa , cσs and cq are empirical coefficients that are determined after the first inverse iteration such that the215

largest element of the scaled gradient vector∇∇∇Jscaled(σa) equals 5% of the largest element of vector σ0
a:216

cσa = 0.05
max(σ0

a)

max(
∣∣∇∇∇J(σ0

a)
∣∣) . (35)
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The same holds for cσs . The results show that the best quality reconstruction are obtained when the largest element217

of ∇∇∇Jscaled(q) equals 1.5% of the largest element of q0. The scaling factors are kept constant during the recon-218

struction from the first iteration.219

In QPAT, where the dynamic range of the measured light intensities can be very large, scaling of the data may be220

needed in order to ensure numerical stability of the optimization problem. Furthermore, in this work, the data space221

was scaled similarly as in [16], where we used the logarithm of amplitude as the data.222

3.5 Implementation of the reconstruction algorithm223

A Modified Finite Volume Method (MFVM) of high accuracy [42] was used for solving the equations of the224

forward and adjoint models. This MFVM can be applied to arbitrarily shaped geometries, by using unstructured225

triangular grids. The methodology of the employed method is not repeated here, we refer the reader to [42] for226

comprehensive details. The objective function J was iteratively minimized using the quasi-Newton algorithm with227

Lm-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno) [47]. It iteratively updates an initial estimate of228

the parameters distribution along a search descent direction denoted d. Once the minimum is found, the final result229

is the unknown parameters distribution. The updating procedure is formulated as: θθθk+1 = θθθk+αk d (∇∇∇J(θk)) [47],230

where k is the current iteration of the inverse procedure and αk represents the step size obtained by the Armijo line231

search in order to provide a sufficient minimization of the objective function.232

4 Results and discussion233

We consider a 2D numerical phantom with a homogeneous background containing different inserts. In the first test234

case, the reconstruction were performed on a relatively large object of size 20 × 20 mm2 while the other test cases235

use a phantom of 10 × 10 mm2 (in all the simulations the length unit is the minimeter). The optical properties of236

the background are fixed to µa = 0.05 mm−1, µs = 5 mm−1 and g = 0.9 expect for the final test case wherein µs237

and g are assigned the value 6 mm−1 and 0.8, respectively. The optical background values were used to start the238

optimization procedure by assuming a homogeneous medium. The geometry and positions of the inserts differ for239

each test in order to carry out different situations that highlight the main issues encountered in QPAT. The intensity240
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of the Laser beam has a spatial Gaussian distribution along the x- axis or y- axis (s = x or y) such as:241

Υ(s) =
1

σs
√

2π
exp

(−(s− sc)2

2σ2
s

)
, (36)

where σs = 1 mm is the standard deviation of the Laser beam. The position sc corresponds to the source location242

at the center of the illuminated wall of the medium. The angular space was discretized with 32 control solid angles243

whereas the number of nodes of the spatial mesh is given for each test case presented further. The quality of the244

algorithm is assessed thanks to the relative estimation error ε between the retrieved β̂ββ and the exact vector βββ∗:245

ε = 100%

∣∣∣∣β̂ββ − βββ∗∣∣∣∣
2∣∣∣∣βββ∗∣∣∣∣

2

where ‖ · ‖2 denotes Euclidian norm. (37)

4.1 Anisotropy factor reconstruction246

This case points out the ability of the QPAT to reconstruct, in the multiple scattering regime, the anisotropy factor247

as an endogenous optical property of tissues. The spatial domain is discretized into 15,857 mesh nodes. Figure 1a248

illustrates the reference medium including three circular inserts centered at (4 mm; -2 mm), (10 mm; 4 mm) and249

(16 mm; -4 mm) with a radius of 2 mm. In this case, the absorption coefficient µa = 0.05 mm−1 is kept constant250

while µs and g are chosen so that their values lead to a constant value of µ′s = 0.5 mm−1 in the whole phantom.251

This configuration avoids attributing the spatial variation of g to µ′s = µs(1 − g). One Laser source was used to252

illuminate the west surface (x = 0 mm). Figure 1b shows the reconstructed image of the anisotropy factor. It can be253

seen that the retrieved image presents a good agreement with the reference object. The three inserts were spatially254

well fitted with their original positions. The estimated mean values inside the inclusions are correctly retrieved255

with respect to their exact values, even though the red-insert presents a slightly over-estimated values ĝmax = 0.96256

against g∗ = 0.95. The circular shape is also well reconstructed. This result implies that the spatial variation of g257

cannot be caused by a variation of µ′s itself. The anisotropy factor can hence be independently reconstructed and258

separated from µs with our inverse algorithm.259
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Figure 1: Reconstruction of the anisotropy factor: (a) the reference medium containing three inclusions at different spatial
positions and (b) the reconstructed image of g.

4.2 Source number effect260

After testing the capability of the proposed algorithm to reconstruct the anisotropy factor with one Laser source, we261

attempt in this case to assess the robustness of the QPAT to simultaneously reconstruct the three optical properties262

µa, µs and g. This task has not been reported in the previous optical imaging related works, for our best knowledge.263

The original medium contains two circular inserts centered at (2 mm; 2 mm) and (-2 mm; -2 mm) with a radius264

of 1 mm. The exact optical values of the top-right and bottom-left inclusions are assigned as µa = 0.06 mm−1, µs265

= 6 mm−1, g = 0.85 and µa = 0.04 mm−1, µs = 4 mm−1 and g = 0.95, respectively. The unstructured triangular266

mesh used is composed of 2,821 nodes. Two illumination configurations were carried out: in the first one, the267

west surface was illuminated with one Laser source while in the second, the phantom is sequentially illuminated268

on its fourth tissue surfaces. The calculations were carried out with an Intel Xeon Processor E5-2683v4, 2.1GHz,269

32 cores. This last uses Hyper-Threading and Intel C compiler. The computational time for the reconstruction in270

the second configuration was 40 min. where 103 iterations were required. It can be noticed that, while keeping271

the same quality of reconstruction, the logarithmic scaling allowed to reduce by about a factor four the number272

of iterations and decreased the norms of the objective function gradients (with respect to each parameter to be273

recover) by a factor 104. The obtained results for the first and second configurations are depicted in the left and274

right column of figure 2, respectively. Despite the critical inversion conditions concerning the large unknowns275

number of parameters (3 × 2,821) with only one source, the algorithm was still able to reveal the heterogeneities276
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in the medium. In addition, the retrieved local values are close to their exact values even for the relatively deeper277

insert (top-right). The localization and the circular edge were achieved with a better quality reconstruction for278

the µa coefficient compared to those of the µs coefficient and anisotropy factor. This is due to the measured279

absorbed energy density used for fitting that is directly related to the µa coefficient which explains, therefore, the280

superior quality estimation for µa (see Eq.10). From the right column, the reconstructed images were significantly281

improved and the estimated values and the localization are in a good agreement with the real solution. The relative282

estimation errors for the top-right inclusion have been decreased from 8.9%, 10.45% and 3.65% to 0.17%, 2.37%283

and 0.75% for µa, µs and g respectively when illuminating the medium with four Laser sources. Furthermore, the284

circular shape is correctly reconstructed for all the optical parameters. This configuration has led to increasing the285

amount of measured data in the inverse procedure which allows thus to better reconstruct the optical properties286

simultaneously.287

This result highlights the potential interest of using multiple sources which indeed corresponds to real experimental288

scenarios with a tomographic context. It is worth noting that the simultaneous reconstruction of the three optical pa-289

rameters is not possible with the standard optical tomography since its inverse problem is usually under-determined290

and the measured data are collected on the tissue-surface.291
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Figure 2: Simultaneous reconstruction of µa, µs and g with: (left column) only one Laser source illuminating the west
surface and (right column), four Laser sources illuminating sequentially the phantom, (top raw) absorption coefficient µa,
(middle raw) scattering coefficient µs and (bottom raw) anisotropy factor g.

4.3 Effect of anisotropy factor kept as a fixed constant292

We consider the second configuration as in the previous test case by assuming that the two inclusions represent293

heterogeneities only in µa and µs coefficients and the anisotropy factor g is fixed at a constant value in the whole294

medium. The value of g is most often in the range [0.8 - 1]. We then chose four different values of g to represent this295

interval (0.8, 0.85, 0.9 and 0.95). Figure 3 displays the reconstructed images of µa and µs for each fixed value of g.296
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The relative estimation errors of the two inclusions for µa and µs are shown in Table 1. Qualitatively, the inclusions297

in µa and µs are recovered with low contrast level for g = 0.8 and g = 0.85 (due to the high backscattering of298

light) while the reconstruction is relatively improved when the g values are increased to 0.9 and 0.95. This has299

an important realistic interest because the biological tissues are known to be highly forward scattering. Therefore,300

more pronounced local artifacts are appeared near to the detectors and in the background especially in the µs301

images. For the four values of g, the µa coefficient is correctly retrieved with respect to the exact values of the two302

inclusions (∼ 0.06 for the top-right and ∼ 0.04 for the bottom-left). However, the reconstructed µs values become303

under- and over-estimated with respect to the inclusions-original values as the g is higher since the two scattering304

parameters (µs and g) are significantly correlated.305

To assess the anisotropy factor effect, the obtained result in the previous test case (Fig. 2 right column) is compared306

with the present test case when g is fixed at 0.9 in order to be closer as possible to the simulation conditions. For307

both cases, the background medium in the µa and µs images is recovered with the same quality (clear and homo-308

geneous). The relative estimation errors for the inclusions of µa (0.11 % for top-right and 0.13 % for bottom-left)309

is approximately similar while that of µs (46.47 % for top-right and 45.64 % for bottom-left) has been increased.310

g values

ε (%) 0.8 0.85 0.9 0.95
µa (top-right inclusion) 7.59 4.49 0.11 2.72
µa (bottom-left inclusion) 8.23 5.42 0.13 2.6
µs (top-right inclusion) 18.9 8.82 46.47 167.79
µs (bottom-left inclusion) 70.57 62.98 45.64 30.22

Table 1: The relative estimation errors ε of inclusions of µa and µs parameters for the four different values of g.
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Figure 3: Simultaneous reconstruction of µa and µs when g is kept as a fixed constant in the reconstruction procedure: (left
column) absorption coefficient and (right column), scattering coefficient, (first line) g = 0.8, (second line) g = 0.85, (third line)
g = 0.9 and (last line) g = 0.95.
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4.4 Noise level effect311

In QPAT the measurements noise due to the experimental acquisition setup is unavoidable. To mimics real situa-312

tions, the simultaneous reconstructions of µa, µs and g are performed using corrupted data at different noise levels313

of 1%, 3% and 6% added as a random Gaussian distribution on the exact predictions (absorbed energy density).314

The original phantom of section 4.2 illuminated by four Laser sources is used in this test case with the same spatial315

mesh. The used data (i.e. the absorbed energy density) with 6% of noise when the top wall is illuminated is depicted316

in Figure 4. The reconstructed images are shown in Figure 5.317

The relative estimation errors of µa, µs and g parameters are given in table 2 for the three noise levels with also318

the noiseless case for comparison. They were computed over the whole reconstructed image domain. The obtained319

results show that our QPAT algorithm is able to localize the spatial positions of the inserts for the three parameters320

even with noisy data. As expected, it is seen that the image quality (characterized by its relative error) is worse as321

the noise level increases (see Tab. 2). Qualitatively, the artifacts and local perturbations become more pronounced322

and the circular shape of the inserts is degraded especially for µs and g images. It can be seen that the µa images323

strongly handle the noise levels better than the scattering parameters µs and g. This is again explained by the324

fact that the fitted data in the inverse problem of the QPAT are directly dependent on the absorption coefficient.325

Quantitatively, the estimated mean values for the top-right insert become slightly over-estimated for µa and µs and326

under-estimated for g with the noise level. Concerning the bottom-left insert, the retrieved mean values are slightly327

under-estimated for µa and µs and over-estimated for g when the noise increases.328

Figure 4: Used data (i.e. the absorbed energy density) with 6% of noise when the top wall is illuminated.
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Figure 5: Simultaneous reconstruction with noisy data at different level of: (left column) 1%, (middle column) 3% and (right
column) 6% for the absorption coefficient µa (top raw), the scattering coefficient µs (middle raw) and the anisotropy factor g
(bottom raw).

Noise levels

ε (%) 0 % 1 % 3 % 6 %

µa 0.54 1.53 3.83 8.26
µs 7.63 10.50 13.03 14.24
g 1.79 2.63 3.33 3.60

Table 2: The relative estimation errors ε of µa, µs and g parameters of the reconstruction algorithm for the four different
noise levels on the absorbed density energy data.
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4.5 Crosstalk effect329

The crosstalk problem is often encountered in optical imaging when reconstructing simultaneously the µa and330

µs coefficients. It is worth noting that the simultaneous reconstruction of µa, µs and g parameters has not been331

previously reported in the literature, for authors’ best knowledge. In this case the crosstalk problem and the inter-332

parameter effects become challenger in the recovered images. In this work, we highlight the interest of the QPAT333

to simultaneously reconstruct the three optical properties while the conventional optical imaging fails to perform334

this task. We present a test case that mimics a crosstalk problem between µa, µs and g wherein their original335

images are depicted in Figs. 6a-c, respectively. The same spatial mesh that previously presented (2, 821 nodes)336

was used. The phantom was illuminated by four Laser sources. The corresponding recovered images are shown in337

Figs. 6d-e. The reconstructed results show that the crosstalk effect is only presented in the µs and g images. The338

impact of the g-insert appears with a high contrast heterogeneity in the µs image (εcrosstalk
µs = 12%) while the µs339

insert produces, in turn, a small contrast heterogeneity in the g image (εcrosstalk
g = 1.56%). Therefore, the crosstalk340

error induced in the µs coefficient is more pronounced than that obtained for the anisotropy factor. This is due to the341

high sensitivity of this factor on the light scattering. On the other hand, none crosstalk effect was found in the µa342

image which is reconstructed in a very good agreement with its original image. Moreover, the µa inclusion has no343

impact on the µs and g images. That can be explained by the fact the absorbed energy density is directly dependent344

on the µa coefficient, which makes the fitted data more sensitive for µa than the µs and g parameters. Within the345

minimization scheme, when the algorithm is seeking to simultaneously reconstruct the three parameters (µa, µs346

and g), the µa image is accurately and quickly obtained after only few iterations of the convergence. Therefore,347

the µs and g coefficients are reconstructed as in the case that assuming the µa coefficient is fixed to its exact value.348

The superior quality reconstruction of µa, under these crucial situations, implies that the QPAT has an important349

interest for pre-clinical applications because the µa coefficient can lead to further physiological properties such as350

oxygen saturation, hemoglobin concentration, blood oxygenation, etc.351

The crosstalk is a challenging problem in QPAT which has been reported in previous works related to optical imag-352

ing. The crosstalk is induced when the µa coefficient is only changed for a particular tissue due to physiological353
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variation while its µs coefficient remains unchanged. Its practical implications can mainly concern the blood tumors354

or other tissues which not containing fibrous. The crosstalk assessment for cancer diagnosis can allow highlighting355

the robustness of the imaging system to handle the false positive tumoral inclusions. In order to overcome its effect,356

more data are needed in the reconstruction algorithm to reduce the uniqueness character of the inverse problem.357

Figure 6: Simultaneous reconstruction of µa, µs and g with a crosstalk problem: (left column) original images and (right
column) reconstructed images, (top raw) absorption coefficient µa, (middle raw) scattering coefficient µs and (bottom raw)
anisotropy factor g.
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4.6 Slabs inserts reconstruction358

In this case, we assess the performance of the QPAT to reconstruct rectangular heterogeneities with different thick-359

nesses and distance separations. To this end, two examples are studied. In the first example, four thin slabs of 200360

µm of thickness separated by 2 mm are inserted in the phantom (see Fig. 7 top-raw). In the second example, three361

slabs have 1 mm of thickness with 50 µm of separation (see Fig. 7 bottom-raw). The spatial mesh has been in-362

creased to 33,025 nodes for both cases to suitably represent the thin inserts and the small separation. The phantoms363

were illuminated by four Laser sources. The reconstructed results of the first and second example are shown in the364

left and right column of Fig. 8, respectively. Also, the reconstructions were achieved without a crosstalk problem.365

Figure 7: The original images containing the rectangular slabs inserts of the first example (top raw) and the second example
(bottom raw). The right column shows the exact values of the anisotropy factor while the left column indicates the exact values
for the µa and µs coefficients.

Figure 8 shows the robustness of our QPAT algorithm to accurately reconstruct the thin slabs heterogeneities (left366

column in Fig. 8) and also to precisely separate the small-inter-distance thick inserts (right column in Fig. 8). The367
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algorithm is able to retrieve the localization, the size, the thicknesses and also the local optical values µa, µs and368

g of the rectangular slabs inserts. Therefore, the reconstruct images were achieved with a good quantitative and369

qualitative accuracy. For both examples, these slabs are recovered with a high contrast level, contrary to optical370

imaging. The use of the local absorbed energy density, related to the initial acoustic pressure, has advantageously371

provided a potential improvement of the spatial resolution to the optical properties images.372

Figure 8: The reconstructed images of: (left column) the first example and (right column) the second example, (top raw) the
absorption coefficient µa, (middle raw) the scattering coefficient µs and (bottom raw) the anisotropy factor g.
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5 Conclusion373

The optical inverse problem of the QPAT using the RTE as light transport model was presented. The adjoint374

method was applied to efficiently compute the gradient of the objective function where its expressions for µa, µs,375

and g coefficients were explicitly obtained. For the first time, the simultaneous reconstruction of µa, µs, and g376

was possible thanks to our QPAT algorithm that uses spatially absorbed energy density data. The results showed377

that treating the anisotropy parameter as a fixed constant leads to low errors in the reconstructed images of the378

absorbing coefficient and significant errors in the reconstructed images of the scattering coefficient. Also, they379

showed that the µa images are reconstructed with a better estimation quality than µs and g images even with noisy380

data or when only one Laser source was used. Furthermore, the µa images are insensitive to the crosstalk issue381

contrary to those of µs and g parameters. The obtained results highlight the interest of the QPAT algorithm to382

advantageously complete the conventional imaging modalities for cancer diagnosis. This work was a necessary383

preliminary study to show that a complete optical imaging of tissue is possible through the QPAT modality. The384

extension of our method to 3D geometries for real applications is a significant numerical challenge which is not385

straightforward. We plan to investigate this problem.386

387

Appendix A. Calculations of adjoint operators388

It should be noted that in the calculations given below, the quantities are not divided by M2 as in (22) for the sake

of simplicity. This does not change the result. From (12), we have:

〈
A−M

∣∣∣(H̃ δψs)
〉
D

=

∫
D

(A−M)(rrr) µa(rrr)

∫
Ω=2π

δψs(rrr,ΩΩΩ) dΩ dr

=

∫
D

∫
Ω=2π

(A−M)(rrr) µa(rrr) δψs(rrr,ΩΩΩ) dΩ dr =
〈
A−M

∣∣∣(H δψs)
〉
DΩ

=

∫
D

∫
Ω=2π

µa(rrr) (A−M)(rrr) δψs(rrr,ΩΩΩ) dΩ dr =
〈
H∗(A−M)

∣∣∣δψs〉
DΩ
. (38)
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Also,

〈
A−M

∣∣∣(H δψc)
〉
D

=

∫
D

(A−M)(rrr) µa(rrr) δψc(rrr,ΩΩΩ) dr∫
D
µa(rrr) (A−M)(rrr) δψc(rrr,ΩΩΩ) dr =

〈
H∗(A−M)

∣∣∣δψc〉
D
. (39)

Thus, H∗ = H .389
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