N
N

N

HAL

open science

A hierarchical field-level inference approach to
reconstruction from sparse Lyman-a forest data

Natalia Porqueres, Oliver Hahn, Jens Jasche, Guilhem Lavaux

» To cite this version:

Natalia Porqueres, Oliver Hahn, Jens Jasche, Guilhem Lavaux. A hierarchical field-level inference
approach to reconstruction from sparse Lyman-« forest data. Astronomy and Astrophysics - A&A,

2020, 642, pp.A139. 10.1051/0004-6361/202038482 . hal-02870832

HAL Id: hal-02870832
https://hal.science/hal-02870832

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02870832
https://hal.archives-ouvertes.fr

A&A 642, A139 (2020)
https://doi.org/10.1051/0004-6361/202038482
© ESO 2020

tronomy
Astrophysics

A hierarchical field-level inference approach to reconstruction from
sparse Lyman-a forest data

Natalia Porqueres1 , Oliver Hahn?, Jens Jasche?, and Guilhem Lavaux

London SW7 2AZ, UK
e-mail: n.porqueres@imperial.ac.uk

4

Imperial Centre for Inference and Cosmology, Imperial College London, Blackett Laboratory, Prince Consort Road,

2 Laboratoire Lagrange, Université Cote d’Azur, Observatoire de la Cote d’Azur, CNRS, Bvd de I’Observatoire, CS 34229,

06304 Nice, France

3 The Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, 106 91 Stockholm, Sweden
4 CNRS & Sorbonne Université, UMR7095, Institut d’ Astrophysique de Paris, 75014 Paris, France

Received 23 May 2020 / Accepted 14 August 2020

ABSTRACT

We address the problem of inferring the three-dimensional matter distribution from a sparse set of one-dimensional quasar absorption
spectra of the Lyman-a forest. Using a Bayesian forward modelling approach, we focus on extending the dynamical model to a
fully self-consistent hierarchical field-level prediction of redshift-space quasar absorption sightlines. Our field-level approach rests
on a recently developed semiclassical analogue to Lagrangian perturbation theory (LPT), which improves over noise problems and
interpolation requirements of LPT. It furthermore allows for a manifestly conservative mapping of the optical depth to redshift space.
In addition, this new dynamical model naturally introduces a coarse-graining scale, which we exploited to accelerate the Markov chain
Monte-Carlo (MCMC) sampler using simulated annealing. By gradually reducing the effective temperature of the forward model, we
were able to allow it to first converge on large spatial scales before the sampler became sensitive to the increasingly larger space of
smaller scales. We demonstrate the advantages, in terms of speed and noise properties, of this field-level approach over using LPT as
a forward model, and, using mock data, we validated its performance to reconstruct three-dimensional primordial perturbations and

matter distribution from sparse quasar sightlines.

Key words. large-scale structure of Universe — dark matter — methods: statistical — methods: data analysis

1. Introduction

A fundamental task in cosmology consists of relating the struc-
tures we see in the late Universe with the primordial density
fluctuations when the Universe was still close to homogeneous.
While the primordial density fluctuations are well-described by
a Gaussian distribution (Planck Collaboration IX 2020), grav-
itational collapse in the cosmological context leads to intri-
cate structures with a large density contrast over the age of
the Universe. Non-linear dynamics produce a matter density
field with a highly non-Gaussian complex statistical structure,
which makes the analysis of the late-time Universe very chal-
lenging. A detailed modelling of the cosmic matter distribution
would require describing the high-order statistics correspond-
ing to the filamentary structure of the cosmic web. At present,
a closed-form description of the non-linear density field in terms
of a high-dimensional multivariate probability distribution does
not exist. Although there are approximations to reproduce the
statistical behaviour of the dark matter density field (e.g. log-
normal distribution or multivariate Gaussians, Lahav et al. 1994;
Zaroubi et al. 1999; Kitaura & Enflin 2008; Kitaura et al. 2009;
Jasche & Kitaura 2010), they only parameterise the one- and
two-point statistics and fail to reproduce more complex struc-
tures such as filaments (Baugh et al. 1995; Peacock & Dodds
1996; Smith et al. 2003).

Here, we instead follow the forward modelling approach to
relate initial conditions and observables. It consists of a data
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model that describes how the continuous three-dimensional field
of initial matter fluctuations affects a set of predicted observ-
ables, which are then compared to data. In this work, we specif-
ically focus on the observed flux in quasar absorption spectra as
our observable. We are then interested in the inverse problem:
given a set of quasar spectra, we want to infer the underlying
matter distribution and the corresponding primordial fluctua-
tions. In this context, the data model should describe everything
that may happen between the initial fluctuations and the obser-
vation of the spectra, which includes the time-evolution of the
matter density and the cosmic structure formation model, as well
as sparse sampling of the observable. In this way, every data
point is used, rather than relying on summary statistics that do
not capture all the information and whose distributions are not
well known.

Structure formation in A cold dark matter (ACDM) cosmol-
ogy proceeds through the collapse of baryons and dark mat-
ter that can be well approximated as cold in comparison to the
velocities induced by gravity. The dynamics and growth of cos-
mic structures are then described by Lagrangian perturbation
theory (LPT; Zel’dovich 1970; Bouchet et al. 1992) well, which
directly describes the motion of fluid elements. LPT is, how-
ever, only valid before the crossing of fluid trajectories and,
therefore, restricted to large scales or early times. Due to its
simplicity, especially when truncated at first or second order,
many forward modelling approaches in cosmology rely on LPT
to describe the dynamics of (cold collisionless) matter (see,
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e.g., Jasche & Wandelt 2013; Kitaura 2013; Wang et al. 2013;
Bos et al. 2019; Ata et al. 2020). Since it is no longer valid at
and after shell-crossing, LPT has to be employed in a way that
shell-crossed scales are filtered out prior to employing it (see,
e.g., Sahni & Coles 1995). However, determining the scale of
shell-crossing is approximate and usually challenging.

Another downside of LPT is that it predicts fluid trajecto-
ries, while in many cases one is instead interested in density
or velocity fields at fixed spatial, that is Eulerian, coordinates.
Numerically, an Eulerian density field can only be obtained by
interpolating the fluid elements back to an Eulerian grid. This
can be achieved using a particle injection scheme such as cloud-
in-cell deposit (CIC; Hockney & Eastwood 1981), which is
impacted by particle sampling noise. This can also be achieved
by interpolating from a tessellation of the distribution function
(e.g., Abel et al. 2012), which is computationally more expensive
than CIC. Using Eulerian perturbation theory is not an option
since it requires going to very high orders to achieve comparable
accuracy to LPT (e.g., Bouchet 1996).

An alternative exists in “‘field-based” approaches that
directly operate by predicting the Eulerian density based on
the notion of particle trajectories. The semiclassical approach
to describe cold collisionless dynamics presented in Uhlemann
et al. (2019), but see also Short & Coles (2006a,b), provides
such an alternative to LPT. This approach, which we name as
propagator perturbation theory (PPT) here, translates LPT into
an action and then uses a propagator to evolve a wave func-
tion, which encodes the cosmological perturbations. From the
evolved wave function, the Eulerian density and velocity fields
are readily obtained. The PPT approach introduces an additional
free parameter, an effective 7, which acts as a natural smooth-
ing, or coarse-graining scale. We note that PPT is fundamentally
different from Schroedinger-Poisson (SP) analogues as effective
models (cf. Widrow & Kaiser 1993; Uhlemann et al. 2014; Kopp
et al. 2017; Garny et al. 2020; Eberhardt et al. 2020) of cold
Vlasov-Poisson (VP) dynamics (VP underlies all CDM non-
linear cosmological structure formation; Peebles 1980). PPT is
not a fully non-linear model like SP but a perturbative ana-
logue to LPT, more similar in spirit to the Burgers approach of
Matarrese & Mohayaee (2002). However, PPT gives easier
access to phase space statistics than LPT by absorbing the “sum-
over-streams” into a propagator (cf. Uhlemann et al. 2019).

Before shell-crossing, the first order of the PPT approach
provides results equivalent to the first-order LPT in the limit of
vanishing 7. At shell-crossing, while LPT leads to infinite den-
sities, the PPT density remains finite and, after shell-crossing,
the PPT density presents interference patterns in multi-stream
regions. These interference patterns, therefore, provide a nat-
ural way to detect the shell-crossing scale. These oscillations
naturally encode stream-averaged velocity fields (and higher
moments) that are notoriously expensive to obtain for cold
Vlasov dynamics (cf. Pueblas & Scoccimarro 2009; Hahn et al.
2015; Buehlmann & Hahn 2019).

By predicting Eulerian fields, PPT overcomes the particle
sampling problem of LPT where particles cluster in the high-
density regions and the under-densities are affected by high
levels of shot noise, as illustrated in Fig. 1. This is especially
relevant for the analysis of Lyman-a (Ly-a) forest observations
since these data are particularly sensitive to under-dense regions
in the matter distribution (cf. Peirani et al. 2014; Sorini et al.
2016).

At present, major analyses of the Ly-a forest focus only on
the analysis of the matter power spectrum (e.g. Croft et al. 1998;
Seljak et al. 2006; Viel et al. 2006; Bird et al. 2011; Slosar et al.
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2011; Busca et al. 2013; Palanque-Delabrouille et al. 2015; Rossi
et al. 2015; Nasir et al. 2016; Yeche et al. 2017; Rossi 2017;
Bautista et al. 2017; Boera et al. 2019; Blomqvist et al. 2019;
Maitra et al. 2019). However, these approaches ignore significant
amounts of information contained in the higher-order statistics
of the matter density field as generated by non-linear gravita-
tional dynamics in the late time universe (He et al. 2018). While
various approaches to perform three-dimensional density recon-
structions have been proposed in the literature, they are based on
Wiener filter techniques (Ozbek et al. 2016; Stark et al. 2015a;
Ravoux et al. 2020; Newman et al. 2020) or they assume the
density amplitudes to be log-normally distributed (Kitaura et al.
2012; Gallerani et al. 2011). These approaches fail to reproduce
the high-order statistics of the filamentary matter distribution. To
reproduce the high-order statistics, Porqueres et al. (2019a) and
Horowitz et al. (2019) recently used a large-scale optimisation
approach to fit a gravitational structure growth model to simu-
lated Ly-« data.

In this work, we employed for the first time PPT in a
Bayesian forward model to infer the dark matter density from
the Ly-a forest. In particular, we use the extension of the BORG
framework (Jasche & Kitaura 2010; Jasche & Wandelt 2013;
Lavaux et al. 2019) to the analysis of the Ly-a forest presented in
Porqueres et al. (2019a), combined with a redshift-space optical
depth field obtained from our extension of PPT presented here.

Our inference framework consists of a Gaussian prior on
the primordial matter fluctuations, a physical model of struc-
ture formation to evolve the density field (in this case, the
PPT), and a likelihood based on the fluctuating Gunn-Peterson
approximation (FGPA, Gunn & Peterson 1965). To extract
the large-scale structure information from the data, the BORG
framework employs a Markov chain Monte-Carlo (MCMC)
sampler. MCMC methods typically require a warm-up phase
before they reach the target distribution and acquire a stationary
state. This warm-up phase can be computationally expensive.

To accelerate the warm-up phase, we exploit the fact that
PPT comes with a built-in tuneable scale parameter, 7, which
controls an effective phase space resolution. One can think of
this as an effective temperature so that a large 7 corresponds to
a high temperature. The effective temperature controls to which
features particle trajectories will be able to respond. In this work,
we show that the computational costs of the warm-up phase can
be reduced by performing a simulated annealing with the PPT
model and taking advantage of the lower complexity of coarser
scales. Such a procedure has been explored in the field of image
processing (Gidas 1989; Alexander et al. 2003) and consists of
walking down a hierarchy of scales from coarsest to finest res-
olution. At one level of resolution, we can focus on a particular
scale: coarsest scales are frozen from the lowest resolution, and
smallest scales are still evolving and will continue fluctuating in
higher resolutions. Decreasing the effective 7 over the course of
the chain thus corresponds to annealing and allows the trajecto-
ries to respond to increasingly finer structures. For high-7 mod-
elling, low spatial resolution can be used, allowing for further
speed-up. By consistently changing the resolution and 7, we can
then perform a simulated annealing that substantially reduces the
computational cost of the warm-up phase of the MCMC sampler.

The paper is organised as follows. Section 2 provides a
brief description of the PPT model and its extension to include
redshift space distortions. Section 3 gives an overview of our
Bayesian inference framework, BORG, as required for this work.
In Sect. 4, we described the simulated data employed in testing
and validating the method. The simulated annealing is described
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Fig. 1. Density field obtained with LPT (left) and corresponding signal-
to-noise due to the particle distribution (right). In the LPT model, parti-
cles cluster at high-densities, poorly sampling the low-density regimes
from which the Ly-« forest arises.

in Sect. 5, showing that this strategy reduces the computational
cost of the warm-up phase of the Markov sampler. The inference
results from Ly-« forest data in redshift space are presented in
Sect. 6.1. Finally, Sect. 7 summarises the results.

2. Propagator perturbation theory for the Ly-«
forest

In this section, we briefly describe the PPT model as relevant for
this work and present its extension to redshift space. For a more
detailed description, its derivation and proof that it has LPT as
its classical limit, we kindly refer the reader to Uhlemann et al.
(2019).

2.1. Background

The PPT model relies on semiclassical dynamics to evolve the
dark matter density using a propagator. In the Zel’dovich approx-
imation, a fluid element moves in a time D, from its initial
(Lagrangian) coordinate q to its final (Eulerian) coordinate x on
a straight line, where D, is the linear theory growth factor. The
classical action of this motion is therefore simply
1(x-¢q)
S ) ; = T
olx, q;a) 2 Dia)

This action can be promoted to a (free) propagator Ky using the
Dirac-Feynman (Dirac 1933; Feynman 1948) trick

ey

Ko(x, g;a) = 2rihD..(a)) " exp )

This propagator can be used to compute the transition amplitude
from an initial state represented by a wave function i to the
final state

Wx.a) = f g Ko(x, 4:0) Uo(q).

=S o(x. a)] .

3

Herein, 7 has no physical meaning, but instead is a free
parameter that controls an effective smoothing scale, which we
exploited to our advantage later. Uhlemann et al. (2019) have
shown that this approach converges rigorously to the Zel’dovich
approximation, and can be upgraded to second order LPT by
adding a time-independent potential to the action. Here we only
considered the free propagator however.

2.2. Implementation

We now describe our specific implementation of PPT and how
late-time density and velocity fields can be obtained. Since
the Zel’dovich approximation has pure growing-mode solutions
only, the initial state has only one degree of freedom, the “back-
scaled”! gravitational potential ¢'° which is given at a fictitious
initial time when D, = 0 and represents a homogeneous state of
the Universe before structure formation begins. The correspond-
ing wave function has to have only phase perturbations and is
given by

W@ = exp| 6| @
We note that the density associated with the initial wave func-
tion pg := wo% = 1 corresponds to the uniform mean density
(an overline denotes a complex conjugate). We often refer also
to the primordial density fluctuations, by which we mean the
field 6'° := V¢, corresponding to the linear theory total matter
density with the growth factor scaled out.

The evolved state i is obtained by computing the propa-
gation of the field ¢ through Eq. (3), which mathematically
corresponds to a convolution integral. This is numerically most
conveniently carried out as a multiplication in Fourier space.
Using the discrete Fourier transform (DFT), and exploiting cir-
cular convolution on a periodic domain, we find the full expres-
sion relating ¢'(¢q) and ¥ as

(x,a) = DFT™! [exp (—ih%zD+(a)) DFT [exp (—%(bic(q))]] ,

&)

where ¢ and x are discrete on a regular three-dimensional grid.

By construction, this wave function encodes all the phase-
space information, that is, the full cumulant hierarchy (cf.
Uhlemann 2018). In our case we are interested in the normalised
density p := 1 + 6, where ¢ is the fractional overdensity, and
the peculiar momentum field j := (1 + 0)v, where v is the pecu-
liar velocity. These are given in terms of the propagated wave
function ¥ = ¥(x,a) as

p=yy and j= % (wVy —uvy). ©6)
This density agrees with a smoothed version of the Zel’dovich
approximation before shell-crossing, where 7 controls the
smoothing2 (Short & Coles 2006a,b; Uhlemann et al. 2019).
After shell-crossing, the Zel’dovich approximation is of course
no longer valid since it does not account for secondary infall,
and collapsed structures simply disperse again. More impor-
tantly, shell-crossing is accompanied by the formation of caus-
tics, regions of infinite density, and multi-stream flow (cf. Arnold
et al. 1982; Hidding et al. 2014). While the density in the classi-
cal approach becomes infinite or multi-valued, in PPT p remains
finite and develops interference patterns in multi-stream regions,
all regulated by the finite 7.

! Back-scaling means that we think of the potential at the initial time

¢ and the linear potential ¢ at the target time Qyarge Telated by the factor
Atarget

¢]C = ¢ x D (atarget) a—0 D*;‘l).

2 Following from Nyquist-Shannon, the smallest possible 7 fulfills the
condition |[A@| / i < &, where A¢ is the difference of the gravitational
potential in neighbouring voxels.
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2.3. Redshift-space distortions

Cosmological observations take place in redshift space rather
than in comoving physical space. For all practical purposes, we
can make the approximation of a distant observer, which implies
that the redshift space distortion can be chosen to coincide with
a Cartesian axis. Specifically, a particle is not observed to be at
its Eulerian position x, as we discussed in Sect. 2.1, but instead
at its redshift space position s, because of deviations from pure
Hubble expansion (peculiar velocities). In LPT, this is given by

@)

where érps iS a unit vector pointing along the line-of-sight
(which we shall without loss of generality assume to be along
the z-axis), ¥ is the displacement field between Lagrangian and
Eulerian coordinates, ¥ := x — ¢, and f = dlog D, /dloga. This
is quite obviously simply a velocity dependent displacement, and
it can therefore be trivially included in an additional propagator
from Eulerian to redshift space, given as

s:=x+ f(a) (¥-&éLos)@Los,

i 1((s —x)-eL0s)

72 f@Di@ | ®)

Kgrsp(s,x;a) = N CXP[
with N a normalisation that has to be suitably chosen. Effec-
tively, at leading order PPT, the propagators can be trivially com-
bined into a single propagator from Lagrangian space to redshift
space, which in Fourier space takes the form

K(k: a) = exp [—% (K + f(@) (k- 2r0s)?) D+<a)]. ©)
While we did not use the next-to-leading order (NLO) version of
PPT (cf. Uhlemann et al. 2019) here, the propagation to redshift
space can also be applied at NLO, by performing the propagation
to redshift space after carrying out the “kick-drift-kick” endpoint
approximation to the path integral (their Eq. (D4)).

2.4. Modelling of the Ly-a-forest

We have explained above how PPT can be used to predict a
quasi-linear density field p = ¥, consistent with the Zel’dovich
approximation, from a wave function y propagated forwards to
time a. In order to model the absorption of photons from the
quasar, we employed the fluctuating Gunn-Peterson approxima-
tion (Gunn & Peterson 1965). The fractional transmitted flux is
given by

F=eT, (10)
where 7 is the optical depth. In Eulerian space, the optical depth
field reads

7(x) == Ap(x), (an

where A and 3 are heuristic parameters, which are given by the
physical state of the intergalactic medium. In a next and final
step, we want to map this optical depth to redshift space and
compute the transmitted quasar flux. In order to achieve this, we
construct a new wave function that transports the optical depth,
that is, we re-scale the amplitude such that

xo(x) := VAp'T (x)p(x). (12)

This new wave function obeys xox, = 7, while the phase
information (i.e. the velocity) of the evolved wave function
¥ is untouched. We note that this is essentially just a direct
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application of Madelung’s interpretation of the wave function
(Madelung 1927). This means we can exploit that the amplitude
of the wave function has a conserved current. This is a crucial
property since the optical depth 7 is conserved under the map-
ping between physical and redshift space (e.g. Seljak 2012). We
can therefore use the RSD propagator in Eq. (8) to propagate the
x field to redshift space, manifestly conserving 7, by evaluating

(s = f & x Krsp (s, %: @) yo(x). (13)

We note that this is essentially a “non-linear velocity RSD”
(cf. Cieplak & Slosar 2016, their Eq. (4.3), but at a field level
and using quasilinear Zel’dovich velocities at the order we are
considering here). In a final step, we can obtain the three-
dimensional quasar flux field F' in redshift space by evaluating
F(s) = exp[-xx]. (14)
In Fig. 2, we show a comparison of the density field obtained
with PPT (right panels) and the Zeldovich approximation (left
panels) in comoving physical space (top panels), and in redshift
space (bottom panels), showing that PPT and LPT provide the
same structures in real and redshift space. In the right panels, we
show the quasar flux field F in physical and in redshift space.

3. The BORG framework for Ly-a forest

As mentioned above, we implemented PPT as a forward model
in the BORG framework to infer the three-dimensional matter
distribution underlying Ly-a forest data. In this section, we pro-
vide a summary of the algorithm. A more detailed description of
the BORG framework can be found in Jasche & Wandelt (2013),
Jasche et al. (2015), Lavaux & Jasche (2016), Jasche & Lavaux
(2019) and, more specifically, the extension of BORG to the Ly-
«a forest analysis is described in Porqueres et al. (2019a).

The BORG framework is a Bayesian inference method aim-
ing at inferring the non-linear spatial dark matter distribution and
its dynamics from cosmological data sets. The underlying idea is
to fit full dynamical gravitational and structure formation mod-
els to observations. By using non-linear structure growth mod-
els, the BORG algorithm can exploit the full statistical power
of high-order statistics of the matter distribution imprinted by
gravitational clustering. This dynamical model links the primor-
dial density fluctuations to the present large-scale structures.
Therefore, the forward modelling approach allows translating
the problem of inferring non-linear matter density fields into
the inference of the spatial distribution of the primordial den-
sity fluctuations, which are well described by Gaussian statistics
(Planck Collaboration IX 2020). The BORG algorithm, there-
fore, infers the initial matter fluctuations, the dark matter distri-
bution and its dynamical properties from observations.

While the BORG framework incorporates several dynamical
models based on Lagrangian perturbation theory and particle-
mesh models, in this work, we include the PPT. Besides the
advantage to work directly with fields, PPT allows for a reduc-
tion of the computational costs of the algorithm (see Sect. 5).

We tested the inference with PPT by applying the BORG
framework to the analysis of simulated Ly-a forest data. The
field-based approach of the PPT provides an advantage when
analysing Ly-a forest observations since these data arise from
low-density regimes, which are impacted by particle sampling
noise in the standard LPT. To model the Ly-« forest, we used
a Gaussian likelihood based on the fluctuating Gunn-Peterson
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Fig. 2. Density fields (left and middle column) and quasar flux field in the FGP approximation (right column) in physical space (fop panels) and in
redshift space (bottom panels), with the line-of-sight direction upwards. Leftmost panels: use the Zel’dovich approximation and CIC deposit, the
others use the PPT formalism. In all cases we used 256> resolution elements, the box size (and extent of each image) used for this comparison is
256 h~! Mpc at z = 2.5. The thickness of the projected slice is 2 #~! Mpc and white pixels in the CIC panels indicate zero particles deposited.

approximation,

202

2

4 | ((Fa)x — exp(-1))

P(6°,6'|F) = ex [— ] 15
(6", 6'IF) ]_[ =0 (15)

where n labels the lines of sight and x runs over the pixels along

a line of sight. The hierarchical representation of the algorithm

is illustrated in Fig. 3.

At its core, the BORG framework employs MCMC tech-
niques. This method allows inference of the full posterior dis-
tribution from which we can quantify the uncertainties in our
results. However, the inference of the density field typically
involves O(107) free parameters, corresponding to the discretised
volume elements of the observed domain. To explore efficiently
this high-dimensional parameter-space, the BORG framework
uses a Hamiltonian Monte Carlo (HMC) method, which exploits
the information in the gradients and adapts to the geometry of the
problem. We need, therefore, the gradient of the dynamical for-
ward model. The PPT gradient is derived in Appendix A. More
details about the HMC and its implementation are described in
Jasche & Kitaura (2010) and Jasche & Wandelt (2013).

4. The data

To test the inference framework, we generated artificial mock
observations emulating the properties of present Ly-« forest sur-

veys such as the CLAMATO survey (Stark et al. 2015b; Lee
et al. 2018) and LATIS (Newman et al. 2020). In this section,
we describe the properties of the artificial data.

Mock data are constructed by first generating Gaussian ini-
tial conditions on a cubic Cartesian grid of side length of
128 h~! Mpc with a resolution of 147! Mpc. To generate pri-
mordial Gaussian density fluctuations we used a cosmological
matter power-spectrum including the baryonic wiggles calcu-
lated according to the prescription provided by Eisenstein & Hu
(1998, 1999). We further assumed a standard ACDM cosmol-
ogy with the following set of parameters: Qp,, =0.31, Q4 =0.69,
Qp=0.022, h = 0.6777, 073 = 0.83, ns =0.9611 (Planck Collabo-
ration XIII 2016). Here Hy = 100 ~km s~ Mpc™'.

To generate realisations of the non-linear density field, we
evolve the Gaussian primordial fluctuations via the forward
model (PPT or LPT, respectively). A three-dimensional quasar
flux field is generated by applying the FGPA model in Egs. (10)
and (11), assuming constant parameters A = 0.35 and 58 = 1.56 at
z = 2.5, corresponding to the values in Stark et al. (2015b). From
this three-dimensional quasar flux field, we generate individually
observed skewers by tracing lines of sight through the volume.
Specifically, we generate a total of 1024 lines of sight parallel to
the z-axis of the box, randomly distributed with a mean separa-
tion of 8 7~! Mpc. The separation between lines of sight is the
most important parameter of Ly-a surveys. Present surveys like
CLAMATO (Lee et al. 2018) and LATIS (Newman et al. 2020)
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A, B|Fops, Frara) ‘

‘ P(Fobs|Frapa) ‘

Fig. 3. Hierarchical representation of the BORG inference framework
for the analysis of Ly-«a forest data. Primordial fluctuations d;. encoded
in a a set of Fourier modes at z ~ 1000 are obtained from the prior
P(6;.|Q), where Q represents the cosmological parameters. These ini-
tial conditions are evolved to z = 2.5 using PPT, which provides the
optical depth 7ppr and the evolved density, dppr. The optical depth is
then used to generate quasar spectra based on the fluctuating Gunn-
Peterson approximation (FGPA). F, indicates the data. Purple boxes
indicate deterministic transition while green boxes are probability distri-
butions. Iterating this procedure results in a Monte Carlo Markov chain
that explores the joint posterior distribution of the three-dimensional
matter distribution underlying Ly-« forest observations.

Frapa (TPPT)

achieve an average separation of 2.4 4~! Mpc. Finally, we added
Gaussian pixel-noise to the flux with o = 0.03. This o results in
a signal-to-noise of S/N = 2, which corresponds to the majority
of lines of sight in the CLAMATO survey.

5. Simulated annealing

In this section, we describe how we use a simulated annealing
strategy to accelerate the warm-up phase of the MCMC sampler.
Specifically, PPT has a built-in coarse-graining scale through
the effective 7 which one can think of as an effective energy
(or temperature) scale. By gradually reducing 7, one can, there-
fore, implement a simulated annealing procedure for the forward
model. We compare the computational costs of the warm-up
phase to the standard LPT approach. In this comparison, we use
the PPT in physical (not redshift) space, as described in Sect. 2.2.

5.1. Annealing strategy

As discussed above, our inference method employs an MCMC
sampler. In the large sample limit, any properly set up Markov
chain is guaranteed to approach a stationary distribution that
provides an unbiased estimate of the target distribution. While
Markov chains are typically initialised from a place remote from
the target distribution, after a finite amount of transition steps,
the chain acquires a stationary state. Once the chain is in the sta-
tionary state, we may start recording samples to perform statisti-
cal analyses of the inference problem. The initial warm-up phase
of the Markov sampler can be costly since it typically requires
a high number of samples. In this work, we introduced simu-
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lated annealing to reduce the computational cost of the warm-up
phase.

The idea behind the simulated annealing is to take advantage
of the lower complexity at larger scales and work down a hierar-
chy from the coarsest to the finest scales of the density field. For
that, we start sampling only the large scales of the density field
and, once these are converged, we map the density into a finer
resolution and sample higher k-modes. This process reduces the
computational cost of the warm-up phase in two ways. First, we
only need to iterate enough to allow the relatively local struc-
ture to converge since the larger structures already converged at
coarser levels. Secondly, the number of modes to be sampled in
the coarser resolution is smaller, allowing rapid sampling.

When we increase the resolution, a key question is how to
anneal in a way that the features of interest are represented in the
current level and mapped to the next finer resolution. To answer
this question, we make use of insights from re-normalisation the-
ory, as it has been previously done in the field of image process-
ing (see, e.g. Gidas 1989; Alexander et al. 2003). The insight
from re-normalisation theory is that the effective temperature
for a given feature is scale-dependent. This temperature can be
translated into the smoothness of the density field: at some inter-
mediate resolution, coarse scales are converged (‘“frozen’), and
finer scales are still evolving (“hot”). This means that we can
concentrate on the intermediate scales and ignore the changes
in the smaller scales: we focus on the coarsest not-converged
scales. In the PPT model, this is possible by changing the 7
parameter that controls the effective phase space resolution. We
can think of 7 as an effective temperature, with high 7 cor-
responding to high temperature (coarser resolution). Gradually
decreasing 7 corresponds to allowing the algorithm to respond to
increasingly finer structures. For high 7, therefore, we can sam-
ple at low resolution since the algorithm only responds to large
scales. We then perform a simulated annealing by consistently
changing the resolution and 7. This is illustrated in Fig. 4.

In this work, we rely on heuristic rules to determine the
changes of 7 at each level. We start with a high % and a coarse
resolution of N = 323 voxels. Once the density field is con-
verged, we open new modes by increasing the number of voxels
to N = 64, The algorithm can now respond to these new modes,
which are not yet converged. For this reason, we initially keep
the same 7 and reduce it after few iterations, when the evolu-
tion of the small scales starts to saturate. Reducing 7 results in a
sharper density and, therefore, the method becomes sensitive to
smaller scales. We repeat these steps every time we change the
resolution of the density field.

5.2. The warm-up phase of the Markov chain with annealing

In this Bayesian approach, we keep the cosmology fixed, and
specify a prior on the initial power spectrum. However, the
power spectrum of the inferred matter distribution is conditioned
by the data, and we can use the posterior P(k) as a diagnostic for
the effectiveness of the inference since the power spectrum of the
simulation differs from the prior. To monitor the initial warm-up
phase of the Markov sampler, we follow a similar approach to
our previous works (Jasche & Wandelt 2013; Jasche & Lavaux
2017, 2019; Ramanah et al. 2019; Porqueres et al. 2019a,b):
we initialised the Markov chain with an over-dispersed state
and traced the systematic drift of inferred quantities towards
their preferred regions in the parameter space. Specifically, we
initialised the Markov chain with a random Gaussian initial
density field scaled by a factor 10~ and monitored the drift
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Fig. 4. Annealing of the density field. The density field is inferred hierarchically, starting with the largest scales and, once these are converged,
opening new modes. These panels correspond to N = 32% voxels (left), N = 64> (middle) and N = 128 (right). The f parameter is decreased over
the course of the chain, allowing the algorithm to respond to finer structures. From left to right: h decreased from 0.15 to 0.09.
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Fig. 5. Burn-in of the posterior initial matter power spectra. Left panel: corresponds to PPT with annealing, and the right panel corresponds to
standard LPT. The colour scale shows the evolution of the matter power spectrum with the number of samples. The dashed lines indicate the
underlying power spectrum and the 1- and 2-o- cosmic variance limits. The Markov chain is initialised with a Gaussian initial density field scaled
by a factor 1073 and the amplitudes of the power spectrum systematically drift towards the fiducial values, recovering the true matter power
spectrum at the end of the warm-up phase. Monitoring this drift allows us to identify when the Markov chain approaches a stationary distribution
and provides unbiased estimates of the target distribution. The annealing with PPT reduces significantly the number of samples required in the
warm-up phase, moving the chain faster to the target distribution. This is achieved by first sampling the coarser scales and gradually allowing the

algorithm to respond to increasingly finer scales.

of corresponding posterior power-spectra during the warm-up
phase. Figure 5 presents the results of this exercise for the stan-
dard LPT and the annealing with PPT. As can be seen, suc-
cessive measurements of the posterior power-spectrum during
the initial warm-up phase show a systematic drift of power-
spectrum amplitudes towards their fiducial values. While both
forward models correctly recover the fiducial power spectrum,
the simulated annealing with the PPT speeds up the burn-in
phase, reducing the number of samples needed to reach the tar-
get distribution. Figure 6 shows the evolution of the amplitude of

the different Fourier modes in the posterior power spectrum with
the number of MCMC samples. While the amplitudes of the P(k)
start to evolve in the first 50 samples for the PPT, the modes in
the LPT take more than 150 samples to start evolving signifi-
cantly. These results show that the annealing with PPT allows
moving the chain faster towards the high probability regions
of the parameter space, reducing the computational cost of the
warm-up phase.

To test for residual correlations between different Fourier
modes, we estimated the covariance matrix of power-spectrum
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Fig. 6. Amplitudes of the posterior primordial matter power-spectrum at
different Fourier modes traced during the warm-up phase of the MCMC
sampler for the LPT (upper panel) and PPT with annealing (lower
panel). As can be seen, initially, modes perform a coherent drift towards
the high probability region in posterior distribution and start oscillating
around their fiducial values once the Markov chain has reached a sta-
tionary state. The fiducial values are reached faster with the PPT anneal-
ing, reducing the computational cost of the warm-up phase.

amplitudes from our ensemble of Markov samples. Figure 7
shows that the covariance matrix for PPT with annealing has
a clear diagonal structure, equivalent to the covariance for the
standard LPT. This confirms that the annealing does not intro-
duce spurious correlations between scales.

5.3. Correlation length

By design, subsequent samples in Markov chains are correlated.
The statistical efficiency of an MCMC algorithm is determined
by the effective number of independent samples that can be
drawn from a chain of a given length. To estimate the statisti-
cal efficiency of the sampler, we estimate the correlation length
of the density amplitude at different locations of the box. For the
amplitude at a given voxel, 6, the auto-correlation for samples
with a given lag in the chain can be estimated as

_ 1 XTE - onE - o)
Cal®) = N-n ; Var(6)

(16)
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where n is the lag in MCMC samples, (#) is the mean and Var(6)
is the variance. We typically determine the correlation length by
estimating the lag nc at which the auto-correlation C, dropped
below 0.1. The number nc therefore presents the number of tran-
sitions required to generate one more effectively independent
sample.

Figure 8 presents the results of this test for the standard LPT
and the annealing with PPT. As can be seen, the correlation
is generally lower for the PPT. This confirms that reducing
the computational costs of the warm-up phase by annealing
does not come at the expense of introducing longer correla-
tions in the chain. Therefore, the annealing with the PPT results
in a net speed-up of the Markov sampler to reach the target
distribution.

Without annealing, the PPT shows an equivalent warm-up
phase and correlation length to LPT (350 samples). However,
the PPT is still an advantage over LPT since it provides a more
accurate description of the density at low-density regimes (see
Sect. 5.4).

5.4. Comparison to LPT

In this section, we compare the large-scale structures obtained
with LPT and PPT. More specifically, this section focuses on
comparing the profiles of cosmic structures in the density fields.
For this, we evolved a set of initial conditions with both forward
models (PPT and LPT) and compared the profiles of individual
voids and clusters.

To compare the density profiles of a cluster (or a void), we
randomly chose a local maximum (or minimum) in the final den-
sity field. We, then, determined the density profiles in spherical
concentric shells. Figure 9 shows the density profiles for a clus-
ter and a void obtained with PPT and LPT. Both models pro-
vide the same profiles, indicating that the PPT and LPT describe
equivalent cosmic structures. While the standard deviation of the
cluster profile is similar for both methods, the void profile shows
a larger uncertainty region for LPT. This larger uncertainty in the
void is due to the particle sampling noise introduced by the LPT.
Since most of the particles cluster in high-density regions, voids
are impacted by higher uncertainty in the LPT. The field-level
approach of the PPT overcomes this problem, showing a lower
standard deviation in the void profile.

6. Inference results

In this section, we present the results of applying our algorithm
to Ly-a forest data in redshift space. We show that our method
infers unbiased density fields and corresponding power-spectra
at all scales considered in this work. We also perform a poste-
rior predictive test for quasar spectra, showing that the inferred
quantities can explain the data within the noise uncertainty.

6.1. Inferred density fields

As discussed above, our method uses a forward modelling
approach, fitting a physical dynamical model to Ly-«a forest data.
This provides the full posterior distribution, from which we draw
samples of the initial matter fluctuations and the non-linear spa-
tial matter distribution at z = 2.5. In this section, the dynamical
model is the PPT in redshift space, described in Sect. 2.4. Since
the optical depth is conserved under the mapping between physi-
cal and redshift space, our inference in redshift space focuses on
the optical depth field, while the density field is obtained in real
space.
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spectrum modes, for PPT (left panel) and LPT (right panel). We computed the correlation matrix from 600 samples after the warm-up phase. The
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Figure 10 shows slices through the true fields, and the ensem-
ble mean and variances of inferred three-dimensional fields,
computed from 600 samples. A first visual comparison between
ground truth and the inferred ensemble mean final density and
optical depth fields shows that the algorithm correctly recovered
the large-scale structure from Ly-« forest data. We note that the
optical depth field is in redshift space while the final density field
is in physical space. The lower right panel of Fig. 10 shows the
corresponding standard deviations of the amplitudes, which is
estimated from the samples in the Markov chain. The estimated
density standard deviation correlates with the inferred density
field. The same is true for the optical depth field. This is expected
for a non-linear data model, which couples signal and noise.
Higher uncertainty regions correspond to over-densities since the
absorption saturates at high density, making the signal weaker.
Once the light absorption is saturated, the data only provide
information on a minimally lowest density threshold required to
explain the observations. The line saturation effectively removes
constraints from data above some lower threshold, nullifying the
impact of higher density amplitudes in the likelihood. This leads
the algorithm to use solely the prior to fill the missing pieces
in high-density regions. The inference is thus not impacted at
all by this observational limitation. In future development of the
method, tighter constraints of the density amplitude at high den-
sities could be achieved by modelling the absorption line profile
since the line saturation introduces broadening of the profile.

While the standard deviations of the fields at z = 2.5 present
a structure that correlates with the density, the standard deviation
of the initial conditions is Gaussian noise, as shown in the upper
panels of Fig. 10. This indicates that our forward model correctly
propagates the information between the initial and final density
field.

As discussed above, the mean separation between lines of
sight is the most relevant parameter in Ly-a forest surveys. A
particular challenge is to recover the density field in between
one-dimensional lines of sight. To test the performance of our
algorithm, we computed the Pearson correlation coefficients
between the true density field and several density samples in our
Markov chain. Figure 11 shows the correlation coefficients for
a slice of width 147! Mpc, indicating the value of the Pearson

coeflicient at different locations across this slice. This permits us
to track the correlations on and in-between lines of sight (indi-
cated with dashed lines). At the position of the lines of sight, the
correlation is typically >80%. For a better understanding of the
fluctuations in the correlation, we indicated the position of lines
of sight in the neighbouring slices (dotted lines). Most of the dot-
ted lines correspond to a peak in the correlation, which indicates
that the algorithm can interpolate the information between lines
of sight. Also, there are regions of 15/4~! Mpc without neigh-
bouring lines of sight where the correlation is still >70% (see
the regions centred at 36 and 100 /~! Mpc), indicating that the
method can recover the cosmic large-scale structure in the unob-
served regions between observed lines of sight. We note that this
plot is not comparable to Fig. 11 in Porqueres et al. (2019a) since
the signal-to-noise of the mock data, the distribution of lines of
sight and the width of the slice are different. A more detailed
analysis of the impact of the mean line of sight separation on the
accuracy of the results will be included in future work.

As a posterior test, we estimate the mean and variance of
posterior power-spectra measured from the ensemble of Markov
samples. The result is shown in Fig. 12. Although our method
does not sample the different modes of the power spectrum, this
is not enforced on the density samples. This means that, if the
data requires it, the primordial power spectrum can be over-
written. Reconstructing three-dimensional density fields from
one-dimensional Ly-« data is technically challenging. Previous
approaches of inferring the density field from the Ly-a forest
failed at recovering the correct power-spectrum amplitudes. For
example, Kitaura et al. (2012) used a Gibbs sampling approach
to sample the large- and small-scales of the density field sepa-
rately with a log-normal prior for the evolved density field. This
approach inferred correct power-spectrum amplitudes at large
scales k < 0.1 2~' Mpc but obtained erroneous excess power
at smaller scales. Horowitz et al. (2019) used an optimisation
approach to fit a dynamical forward model to the data, but the
method obtains power-spectra that severely underestimate the
power of density amplitudes. Typically, deviations from the fidu-
cial power spectrum indicate the breakdown of the assumptions
in the data model or the inference method. Figure 12 shows
that our method recovers the fiducial power spectrum within the
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Fig. 8. Autocorrelation of the density amplitudes as a function of the
sample lag in the Markov chain for LPT (upper panel) and PPT (lower
panel). This autocorrelation is estimated from 2000 samples after the
warm-up phase. The correlation length of the sampler can be estimated
by determining the point when correlations drop below 0.1 for the first
time. The annealing with the PPT model does not introduce longer cor-
relations in the density sampler.

1-0 cosmic variance uncertainty at scales considered in this
work. This demonstrates that our method is capable of inferring
the matter distributions with the correct power spectrum from
noisy Ly-« data in redshift space.

6.2. Posterior predictive tests

Posterior predictions allow testing of whether the inferred den-
sity fields provide accurate explanations for the data (see, e.g.,
Gelman et al. 2004). Generally, posterior predictive tests provide
good diagnostics about the adequacy of data models in explain-
ing observations and identifying possible systematic problems
with the inference. Figure 13 shows the result of this test for one
line of sight in redshift space, showing that the posterior pre-
dicted quasar spectrum recovers the data input within the obser-
vational 1o uncertainty region. The 1o region corresponds to the
standard deviation of the noise added in this line of sight. This
demonstrates that the method correctly locates absorber posi-
tions and corresponding amplitudes of the underlying densities
and, therefore, the inferred quantities can explain the data at the
level of the noise.
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Fig. 9. Comparison of density profiles obtained with PPT and LPT.
Upper panel: cluster density profile obtained by evolving the same ini-
tial conditions with PPT and LPT. Lower panel: test for a void profile.
This demonstrates that PPT and LPT provide equivalent cosmic struc-
tures. The shaded regions indicate the uncertainty region of the profiles,
corresponding to the standard deviation of 50 realisations. While the
PPT and LPT show similar uncertainty regions for the cluster profile,
the LPT has a larger standard deviation than the PPT in the void profile.
This larger uncertainty is due to the poor sampling of the voids in the
LPT model since most of the particles cluster in high-density regions.

6.3. Velocity fields from the PPT

The dynamical model in our algorithm allows us to naturally
infer the velocity field since it derives from the initial perturba-
tions. This velocity information can provide significant informa-
tion on the formation of structures since it allows discrimination
between peculiar velocities and the Hubble flow.

Figure 14 shows a slice through the line-of-sight component
of the velocity field from the ground truth and the mean and
standard deviation estimated from 200 samples. A visual com-
parison between the true and mean velocity fields shows that
the algorithm recovers the true velocity from Ly-a forest data.
This method, therefore, provides velocity fields constrained by
the data at z > 2, where this information is challenging to obtain
otherwise.

Figure 15 shows a zoom-in on the inferred mean density field
and the corresponding velocity components (vy,v,) obtained
with PPT. PPT provides more accurate peculiar velocities than
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Fig. 10. Slices through ground truth initial (left upper panel), true evolved density field (left middle panel), true optical depth field (left lower panel),
inferred ensemble mean initial (middle upper panel), ensemble mean evolved (middle-lower panel) density field and ensemble mean optical depth
(lower middle panel) computed from 600 MCMC samples. The density fields are in physical space, obtained with the PPT as indicated in Eq. (6).
The optical depth field is in redshift space, corresponding to 7 = yj with y from Eq. (13). Comparison between these panels shows that the method
recovers the structure of the true density fields with high accuracy. Right panels: standard deviations of inferred amplitudes of initial (upper right
panel), final density fields (middle right panel) and optical depth (lower right panel). We note that we plotted the standard deviation of the density
o but the mean density is plotted as log,,(2 + (5%)). We note that the uncertainty of 67 and of the optical depth present a structure that correlates
with the corresponding field. In contrast, the standard deviation of the initial conditions are homogeneous and show no correlation with the initial
density field, indicating that the dynamical model correctly propagates the information between the primordial matter fluctuations and the final

density and absorption fields.

the LPT in voids and filaments. In the LPT approach, one obtains
the momentum field since the velocities are associated with mas-
sive particles. This means that we need to divide by the den-
sity field to obtain the peculiar velocities v = j/p. This requires
smoothing of the density field to avoid empty regions with p = 0
and, in filaments, we need to average over enough particles. PPT
overcomes these problems by operating on the field.

7. Summary and discussion

While LPT provides a good description of the dynamics of cold
dark matter before shell-crossing, it requires to interpolate the
fluid elements to an Eulerian field to obtain density and veloc-
ity fields in physical space. The discrete fluid elements further
introduce a particle sampling noise in the fields. Since most of
the particles cluster in the over-densities, voids and under-dense

regions are more impacted by the sampling noise. These under-
dense regions are especially relevant when analysing Ly-a forest
observations since these data mostly arise from sheets and voids.

A recent alternative to LPT is a field-based approach that
directly predicts the Eulerian density field. The PPT, presented
in Uhlemann et al. (2019), provides such an alternative to LPT,
overcoming particle sampling noise, and giving easy access to
the full Boltzmann hierarchy. PPT uses a propagator to evolve a
wave function that encodes the density and velocity (and higher
moment) information.

In this work we employ, for the first time, PPT in a Bayesian
forward model to infer primordial fluctuations from sparse
redshift-space quasar flux spectra, connected by the dynam-
ical model and the fluctuating Gunn-Peterson approximation
(FGPA). This framework is based on a Gaussian prior for the
primordial fluctuations and a likelihood based on the quasar flux
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Fig. 11. Pearson coeflicient of the true density field and 300 density
samples in our Markov chain. The red line corresponds to the mean of
the correlation, and the shaded region indicates the standard deviation.
The correlation is computed for a slice of width 147! Mpc (the x-axis
indicate the position across this slice). The dashed lines indicate the
position of the lines of sight in the slice, and the dotted lines indicate
the position of lines of sight in neighbouring slices. The Pearson coef-
ficient is >0.7 at most of the locations in this slice, including regions
where there are no neighbouring lines of sight. This indicates that the
algorithm can interpolate the information between lines of sight and
correctly recover the structures in unobserved regions.
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Fig. 12. Mean posterior matter power-spectrum. The mean and the stan-
dard deviation of the initial matter power spectrum have been com-
puted from 300 density samples of the Markov chain obtained after the
warm-up phase. The standard deviation is plotted, but it is too small
to be visible, showing the stability of the posterior power-spectrum.
The dashed line indicates the underlying power spectrum and the 1-
and 2-0 cosmic variance limit. The algorithm recovers the fiducial
power-spectrum amplitudes within the 1-0- cosmic variance uncertainty
limit throughout the entire range of Fourier modes considered in this
work.
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Fig. 13. Posterior predictive flux for a spectrum with noise o = 0.03.
The posterior predicted flux (orange line) is computed from the ensem-
ble mean optical depth field in redshift space. The blue shaded region
indicates the 1-o- region, corresponding to the standard deviation of
the noise in this line of sight. This test checks whether the data model
can accurately account for the observations. Any significant mismatch
would immediately indicate a breakdown of the applicability of the data
model or error of the inference framework. Our method recovers the
transmitted flux fraction correctly within the noise uncertainty.

field for the Ly-« forest. We fixed the cosmology. To explore the
parameter space, our method employs MCMC techniques.

Furthermore, the PPT approach introduces a free parameter,
7, that acts as a natural smoothing (or temperature) scale. Allow-
ing 7 to evolve over time allows performing a simulated anneal-
ing, thereby selecting the features and scales that the algorithm is
sensitive to. Taking advantage of the lower complexity of coarser
scales, we decrease /1 over the course of the chain, allowing the
algorithm to respond to increasingly finer structures. By com-
paring to the standard LPT, we have shown that the PPT anneal-
ing reduces the computational cost of the warm-up phase of the
MCMC sampler. With our implementation serving as a proof-of-
concept, we find that multi-scale techniques are able to acceler-
ate MCMC burn-in significantly. More sophisticated algorithms
might be possible in the future that exploit this aspect further.

Since cosmological observations take place in redshift space,
we have derived the RSD within the PPT formalism. We showed
that RSDs can be easily included via an additional propagator
between physical Eulerian space and redshift space. Since the
optical depth is conserved under the mapping between physical
and redshift space, the RSD propagator can be applied to a wave
function that directly encodes the optical depth instead of the
density. Based on PPT, we are therefore able to provide a forward
model mapping primordial fluctuations to quasar flux in redshift
space at the field level.

We have tested our inference method in redshift space with
simulated data. These tests showed that our method recovers the
underlying initial and final density field (in physical space) and
the optical depth field (in redshift space). Our method based on
PPT is able to correctly propagate the information between the
initial matter fluctuations and the density and absorption field at
z=25.

From the dynamical forward model, we can easily derive
peculiar velocity fields constrained by the data. To obtain pecu-
liar velocities with the standard LPT, one needs to divide the
momentum field by the density. This requires to previously
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Fig. 14. Slices through ground truth (left panel) and mean (middle panel) velocity field in the direction of the line of sight, estimated from 200
samples. Comparison between these panels shows that the method recovers the true velocity field. Right panel: standard deviation.
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Fig. 15. Zoom-in on the density field. The vector field shows the veloc-
ities derived from PPT, showing matter flowing out of the void and
falling into the gravitational potential of the cluster. Our method pro-
vides consistent velocity and density fields that can be used to study
structure formation. In particular, the velocity derived from the PPT
provides more accurate estimates than the standard LPT in voids and
filaments.

smooth the density field to avoid empty regions and, in filaments,
one needs to average over a sufficient number of particles to
obtain the correct velocity in the filament. These problems are
naturally overcome by PPT since it operates at the field level.
Therefore, PPT provides a better estimate of peculiar velocities
in filaments and voids. This clearly demonstrates the advantage
of field-based over fluid-element based dynamical® models.
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Appendix A: Adjoint gradient of the PPT

The inference of the density field requires inferring the ampli-
tudes of the primordial density at different volume elements
of a regular grid, commonly between 128° and 256 volume
elements. This implies 10° to 107 free parameters. To explore
this high-dimensional parameter space efficiently, the BORG
framework employs a Hamiltonian Monte Carlo (HMC) method,
which adapts to the geometry of the problem by using the infor-
mation in the gradients. Therefore, this algorithm requires the
derivatives of the forward model. In this section, we derive the
gradient of the PPT.

More specifically, the HMC relies on the availability of a
gradient of the posterior distribution. Therefore, we need to com-
pute the gradient of the log-likelihood with respect to the gravi-
tational potential ¢'°.

A.1. Gradient of PPT in real space

First, we derive the gradient corresponding to the PPT described
in Sects. 2.1 and 2.2. The gradient of PPT in redshift space is
derived in the following section.

We want the gradient of the likelihood with respect to the
gravitational potential ¢;;

dlog L Z dlog L 06,

= = = (A1)
agic — 35t Ol

where log L is the log-likelihood function and 65 indicates the
final density field at voxel /. In the Gunn-Peterson approxima-
tion, the derivative of the data model is

dlog L Z (F,); — exp[-A(l + 6"))]
a5} B o2

x AB(1 + 6" exp| - A(1 + 6"

where n runs over the different lines of sight. However, in this
section we focus on the gradient of the dynamical forward
model, indepently of the data model. Therefore, we not specify
the derivative of the likelihood with respect to the final density.

The final density field is given by 6f = Y. Therefore,
Eq. (A.1) reads

6logL:2610g£[6¢/1_ 6&1}.
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The derivative of  with respect to the initial gravitational
potential is

oy _ P _igic
and
oy —= i ic
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where M indicate Fourier transforms and K, = exp [—i %hkiDJr]

is the free propagator in Fourier space.
Finally, the gradient reads
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(A.6)

A.2. Gradient PPT with RSD

Here we derived the gradient of the PPT in redshift for the Ly-
a forest, described in Sect. 2.4. As before, the HMC requires
the gradient of the likelihood with respect to the gravitational
potential ¢'°.

OlogL Z Olog L a1

0gs AL og;
where 77 is the optical depth at voxel /. In this case, the derivative
of the data model is

dlog L _ (Fo)i — exp( 1)
o ST e

(A7)

exp(=71) (A.8)

where n runs over the lines of sight.
The optical depth is given by 7 = yy. Therefore, Eq. (A.7) is

ol 0l ) 0
gL _ > OgL[ X+ X]} (A.9)
s — 0t | o) a¢
Developing the first term, we obtain
dlog L oy _ dlog L _
671 a¢ipc/\'/l 7 8‘1’] Xl
- CRINTS

mn%

X Z My, (IA(RSD)m Z M
m n

where M indicate a Fourier transform and Kgsp is the propagator
in Eq. (9).

=]
Introducing yo = VA () 7  in the previous equation, we
get
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Similarly, we can obtain the second term of Eq. (A.9) and
combine them, obtaining
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with the derivatives from Eqgs. (A.4) and (A.5).
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