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Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Although browser fingerprints have primarily been studied as a web tracking tool, they can contribute to improve the current state of web security by augmenting web authentication mechanisms. In this paper, we investigate the adequacy of browser fingerprints for web authentication. We make the link between the digital fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints according to properties inspired by biometric authentication factors. These properties include their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a simple verification mechanism. We assess these properties on a large-scale dataset of 4, 145, 408 fingerprints composed of 216 attributes and collected from 1, 989, 365 browsers. We show that, by time-partitioning our dataset, more than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints are known to evolve, an average of 91% of the attributes of our fingerprints stay identical between two observations, even when separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes and take a few seconds to collect. Finally, by processing a simple verification mechanism, we show that it achieves an equal error rate of 0.61%. We enrich our results with the analysis of the correlation between the attributes and their contribution to the evaluated properties. We conclude that our browser fingerprints carry the promise to strengthen web authentication mechanisms.

INTRODUCTION

Web authentication widely relies on the use of identifier-password pairs defined by the end user. The password authentication factor is easy to use and to deploy, but has been shown to suffer from severe security flaws when used without any additional factor. Real-life users indeed use common passwords [START_REF] Hunt | Troy Hunt: 86% of Passwords are Terrible (and Other Statistics)[END_REF], which paves the way to brute-force or guessing attacks [START_REF] Bonneau | The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords[END_REF]. Moreover, they tend to use similar passwords across different websites [START_REF] Das | The Tangled Web of Password Reuse[END_REF], which increases the impact of successful attacks. Phishing attacks are also a major threat to the use of passwords. Over the course of a year, Thomas et al. [START_REF] Thomas | Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials[END_REF] achieved to retrieve 12.4 million credentials stolen by phishing kits. These flaws bring the need for supplementary security layers, primarily through multi-factor authentication [START_REF] Bonneau | Passwords and the Evolution of Imperfect Authentication[END_REF], such that each additional factor provides an additional security barrier. However, this usually comes at the cost of usability (i.e., users have to remember, possess, or do something) and deployability (i.e., implementers have to deploy dedicated hardware or software, teach users how to use them, and maintain the deployed solution).

In the meantime, browser fingerprinting [START_REF] Laperdrix | Browser Fingerprinting: A Survey[END_REF] gains more and more attention. The seminal Panopticlick study [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] is the first work to highlight the possibility to build a browser fingerprint by collecting attributes from a browser (e.g., the userAgent property of the navigator JavaScript object). In addition to being widely used for web tracking purposes [START_REF] Acar | The Web Never Forgets: Persistent Tracking Mechanisms in the Wild[END_REF][START_REF] Englehardt | Online Tracking: A 1-million-site Measurement and Analysis[END_REF][START_REF] Iqbal | Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors[END_REF] (raising legal, ethical, and technical issues), browser fingerprinting is already used as an additional web authentication factor in real-life. The browser fingerprints constitute a supplementary factor that is verified at login with the other factors, as depicted in Figure 1 (see Section 6.1 for an example of an authentication mechanism that relies on browser fingerprints). Browser fingerprints are indeed a good candidate as an additional web authentication factor thanks to their distinctive power, their frictionless deployment (e.g., no additional software or hardware to install), and their usability (no secret to remember, no additional object to possess, and no supplementary action to carry out). As a result, companies like MicroFocus [START_REF]Device Fingerprinting for Low Friction Authentication[END_REF] or SecureAuth [START_REF]Device / Browser Fingerprinting -Heuristic-based Authentication[END_REF] include this technique in their authentication mechanisms.

However, to the best of our knowledge, no large-scale study rigorously evaluates the adequacy of browser fingerprints as an additional web authentication factor. On the one hand, most works about the use of browser fingerprints for authentication concentrate on the design of the authentication mechanism [START_REF] Goethem | Accelerometer-Based Device Fingerprinting for Multi-factor Mobile Authentication[END_REF][START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF][START_REF] Preuveneers | SmartAuth: Dynamic Context Fingerprinting for Continuous User Authentication[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF][START_REF] Spooren | Leveraging Battery Usage from Mobile Devices for Active Authentication[END_REF][START_REF] Unger | SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting[END_REF]. On the other hand, the large-scale empirical studies on browser fingerprints focus on their effectiveness as a web tracking tool [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF]. Such a mismatch between the understanding of browser fingerprints for authentication -currently poorand their ongoing adoption in real-life is a serious harm to the security of web users. The lack of documentation from the existing authentication tools (e.g., about the used attributes, about the distinctiveness and the stability of the resulting fingerprints) only adds up to the current state of ignorance, all this whereas security-by-obscurity directly contradicts the most fundamental security principles. Moreover, the distinctiveness of browser fingerprints that can be achieved when considering a wide-surface of fingerprinting attributes on a large population is, to the best of our knowledge, unknown. On the one hand, the studies that analyze browser fingerprints in a largescale (more than 100, 000 fingerprints) consider fewer than 35 attributes [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF][START_REF] Vastel | FP-STALKER: Tracking Browser Fingerprint Evolutions[END_REF]. This underestimates the distinctiveness of the fingerprints (e.g., [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] and [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] report a unique fingerprint rate of about 35%), as it increases the chances for browsers to share the same fingerprint. All this whereas more than a hundred attributes are accessible. On the other hand, the studies that consider more than fifty attributes either work on less than two thousands users [START_REF] Amin Faiz Khademi | An Empirical Evaluation of Web-Based Fingerprinting[END_REF][START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF], or do not analyze the resulting fingerprints at all [START_REF] Nasser | Beyond Cookie Monster Amnesia: Real World Persistent Online Tracking[END_REF]. The current knowledge about the hundreds of accessible attributes (e.g., their stability, their collection time, their correlation) is, to the best of our knowledge, also incomplete. Indeed, previous studies either consider few attributes [START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF][START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF][START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF][START_REF] Sjösten | Discovering Browser Extensions via Web Accessible Resources[END_REF] or focus on a single aspect of them (e.g., their evolution [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF][START_REF] Vastel | FP-STALKER: Tracking Browser Fingerprint Evolutions[END_REF]).

Our contributions. We conduct the first large-scale data-centric empirical study of the fundamental properties of browser fingerprints when used as an additional web authentication factor. We base our findings on an in-depth analysis of a real-life fingerprint dataset collected over a period of 6 months, that contains 4, 145, 408 fingerprints composed of 216 attributes. In particular, our dataset includes nine dynamic attributes of three types, which values depend on instructions provided by the fingerprinter: five HTML5 canvases [START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF], three audio fingerprinting methods [START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF], and a WebGL canvas [START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF]. The dynamic attributes are used within state-of-the-art web authentication mechanisms to mitigate replay attacks [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF]. Each dynamic attribute has been studied singularly, but their fundamental properties have not yet been studied simultaneously on the same browser population. To the best of our knowledge, no related work considers a dataset of this scale, in terms of both fingerprints and attributes, together with various dynamic attributes. We formalize, and assess on our dataset, the properties necessary for paving the way to elaborate browser fingerprinting authentication mechanisms. We make the link between the digital fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints according to properties inspired by biometric authentication factors [START_REF] Gamassi | Quality Assessment of Biometric Systems: A Comprehensive Perspective based on Accuracy and Performance Measurement[END_REF][START_REF] Maltoni | Handbook of Fingerprint Recognition[END_REF][START_REF] Zorkadis | On Biometrics-based Authentication and Identification from a Privacyprotection Perspective: Deriving Privacy-enhancing Requirements[END_REF]. The properties aim at characterizing the adequacy and the practicability of browser fingerprints, independently of their use within future authentication mechanisms. In particular, we measure the size of the browser anonymity sets through time, the proportion of identical attributes between two observations of the fingerprint of a browser, the collection time of the fingerprints, their size, the loss of efficacy between device types, and the accuracy of a simple illustrative verification mechanism. To comprehend the results obtained on the complete fingerprints, we include an in-depth study of the contribution of the attributes to the properties of the fingerprints. Moreover, we discuss the correlation between the attributes, make a focus on the contribution of the dynamic attributes, and provide the exhaustive list of the attributes together with their properties. To the best of our knowledge, no previous work analyzed browser fingerprinting attributes at this scale, in terms of the number of attributes, the number of fingerprints, and the variety of properties (e.g., stability, collection time).

In a nutshell, we make the following contributions:

(1) We formalize the fundamental properties that browser fingerprints should provide to be usable and practical as a web authentication factor. (2) About their adequacy, we show that (1) considering a wide surface of 216 fingerprinting attributes on our large population provides a proportion of unique fingerprints -also called unicity rate -of 81.8% on our complete dataset, (2) by time-partitioning our dataset, the unicity rates are stable on the long term at around 81.3%, and 94.7% of our fingerprints are shared by 8 browsers or fewer, (3) on average, a fingerprint has more than 91% of identical attributes between two observations, even when separated by nearly 6 months, (4) our mobile browsers lack distinctiveness, as they show a unicity rate of 42%. (3) About their practicability, we show that (1) the generated fingerprints weigh a dozen of kilobytes, (2) they are collected within seconds, (3) the accuracy of a simple illustrative verification mechanism is close to perfect, as it achieves an equal error rate of 0.61%. (4) We enrich our results with (1) a precise analysis of the contribution of each attribute (a) to the distinctiveness, and show that 10% of the attributes provide a normalized entropy higher than 0.25, (b) to the stability, and show that 85% of the attributes stay identical for 99% of the consecutive fingerprints coming from the same browser, (c) to the collection time, and show that only 33 attributes take more than 5ms to collect, (d) to the fingerprint size, and show that only 20 attributes weigh more than 100 bytes, (2) a discussion about the correlation of the attributes, and show that only 49 attributes can completely be inferred when knowing another attribute, (3) a focus on the properties of the nine dynamic attributes. [START_REF]createDataChannel" | Can I use[END_REF] We provide an in-depth description of our methodology and our dataset, with the goal of making our results reproducible. In particular, we include the exhaustive list of the collected attributes together with their properties, and a detailed description of the preprocessing of the fingerprints.

This paper is a major extension of work originally presented in [START_REF] Andriamilanto | Guess Who?" Large-Scale Data-Centric Study of the Adequacy of Browser Fingerprints for Web Authentication[END_REF], and brings more than 50% of new material. Specifically, we clarify the obtained results by discussing them further, we evaluate the accuracy of a simple illustrative verification mechanism, we highlight the contribution of the attributes to the properties, and we provide a comprehensive list of the attributes, together with their properties and their concrete implementation. In a summary, we make the following additions:

(1) Section 2 gains a description of the studied browser population. This includes the share of the families of browser and operating system, and insights about the bias towards French browsers. We also add a description of the data preprocessing step, and a comparison between our dataset and the dataset of previous studies. (2) Section 3 gains the accuracy of a simple illustrative verification mechanism as an additional performance property. (3) Section 4 gets the results further discussed, and gains the results of the accuracy of the simple illustrative verification mechanism. (4) Section 5 is entirely new. It discusses the contribution of the attributes to the fingerprint properties, the correlation between the attributes, and the properties of the dynamic attributes. (5) Section 6 is entirely new. It describes how browser fingerprints can be integrated in a web authentication mechanism and discusses the attacks that are possible on such mechanism. (6) Section 7 is entirely new. It provides related works about the use of browser fingerprinting for authentication. [START_REF]Support tables for HTML5, CSS3[END_REF] The appendices are entirely new. Appendix A describes the concrete implementation of the studied attributes for reproducibility. Appendix C provides the keywords used to classify the fingerprints. Appendix B discusses a side effect encountered by our fingerprinting script that results in anomalous high collection time of some fingerprints or attributes. Appendix D discusses a more complex verification mechanism that relies on distance functions on the attributes to compare fingerprints. Appendix E provides the complete list of the attributes with their properties (e.g., number of distinct values, stability).

The rest of the paper is organized as follows. Section 2 describes the dataset analyzed in this study. Section 3 presents and formalizes the properties evaluated in the analysis. Section 4 presents the experimental results. Section 5 breaks down the analysis to the attributes to comprehend the results on the complete fingerprints. Section 6 describes how browser fingerprinting can contribute to an authentication mechanism and discusses the attacks that are possible on such mechanism. Section 7 positions this study with the related works. Finally, Section 8 concludes.

DATASET

In this section, we describe the browser fingerprint dataset that is analyzed in this study. First, we present the conditions of the collection and describe the precautions taken to protect the privacy of the experimenters. Then, we detail the preprocessing steps to cleanse the raw dataset. Finally, we describe the working dataset and compare it with the large-scale datasets of previous studies.

Fingerprints collection

To study the properties of browser fingerprints on a real-world browser population, we launched an experiment in collaboration with the authors of the Hiding in the Crowd study [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF], together with an industrial partner that controls one of the top 15 French websites according to the site ranking service Alexa [START_REF]Top Sites in France -Alexa[END_REF]. The authors of the Hiding in the Crowd study only consider the 17 attributes of their previous work [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] and focus on the issue of web tracking. On the contrary, we consider in this work more than one order of magnitude more attributes -216 attributes -and focus on the use of browser fingerprinting as an additional web authentication factor. Our dataset contains more fingerprints than [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] because two browsers that show different fingerprints for a given set of attributes can come to the same fingerprint if a subset of these attributes is considered. As a result, the authors of [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] remove more duplicated fingerprints due to the higher chances for a browser to present the same fingerprint for 17 attributes than for 216 attributes. To differentiate two browsers in future analysis, we assigned them a unique identifier (UID) as a 6-months cookie, which was sent alongside fingerprints. Similarly to previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], we coped with the issue of cookie deletion by storing a oneway hash of the IP address computed by a secure cryptographic hash function. We refer the interested reader to Section 2.3 for more details on the measures taken to protect the privacy of the experimenters.

Browser fingerprinting attributes.

The fingerprinting script used in the experiment includes 216 attributes divided in 200 JavaScript properties, together with their collection time, and 16 HTTP header fields. In particular, they include three types of dynamic attributes that comprise five HTML5 canvases [START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF], three audio fingerprinting methods [START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF], and a WebGL canvas [START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF].

We sought to evaluate the properties of browser fingerprints when considering as many attributes as possible, to estimate more precisely what can really be achieved. We compiled the attributes from previous studies and open source projects. If the value of an attribute is not accessible, a flag explaining the reason is stored instead, as it is still exploitable information. Indeed, two browsers can be distinguished if they behave differently on the inaccessibility of an attribute (e.g., returning the value undefined is different from throwing an exception). We also configure a timeout after which the fingerprint is sent without waiting for every attribute to be collected. The attributes that were not collected are set to a specific flag. The complete list of attributes and their properties is available in Appendix E.

Client-side attributes only consist of JavaScript properties. No plugins (e.g., Flash, Silverlight) are used due to their removal and replacement by HTML5 functionalities [START_REF]Flash & The Future of Interactive Content[END_REF]. Moreover, the fingerprinting script collects the HTTP headers from requests sent by JavaScript, hence the dataset contains no fingerprint of browsers having JavaScript disabled.

Browser population bias

The previously presented datasets were collected through dedicated websites and are biased towards privacy-aware and technically-skilled persons [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF]. Our dataset is more general audience oriented and is not biased towards this type of population. Nevertheless, the website audience is mainly French-speaking users, resulting in biases that we discuss below. We emphasize that the obtained browser fingerprints -and accordingly, their properties -depend on the browser Table 1. Comparison of the share of browser and operating system families between the studies Panopticlick (PTC), AmIUnique (AIU), Hiding in the Crowd (HitC), the average share of each family computed by StatCounter for the worldwide and French browser populations between January 2017 and June 2017, and this study. The symbol -denotes missing information. The families are ordered from the most common to the least common in this study. The shares for the AIU and the HitC studies both come from the HitC paper in which they are provided for the desktop and the mobile browsers. We calculated and provide here the shares for the complete browser population for comparability. We stress that the classification methodology can vary between the populations that are compared, and refer to Appendix C for a description of our methodology.

PTC [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] AIU [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] Worldwide [START_REF]Browser Market Share Worldwide | StatCounter Global Stats[END_REF][START_REF]Operating System Market Share Worldwide | StatCounter Global Stats[END_REF] France [START_REF]Browser Market Share France | StatCounter Global Stats[END_REF][START_REF]Operating System Market Share France | StatCounter Global Stats[END_REF] This study population. A verifier that seeks to use browser fingerprints as an authentication factor should analyze the fingerprints of a browser population that is as close as possible to the target population. Some browser populations can show inadequate properties, like the standardized browsers of a university which lack distinctiveness [START_REF]Leveraging Browser Fingerprinting for Web Authentication[END_REF]. In the following analysis (see Section 4), we evaluate our properties on the complete browser population and on the subpopulations of the browsers running on desktop and mobile devices. A finer-grained analysis -down to a given browser family in a given version -can be done by sampling the population on the wanted subset. Studying the fingerprints at this level is out of the scope of this paper. We let such analysis as future works.

We match the userAgent JavaScript property with manually selected keywords (see Appendix C) to infer the operating system and browser family of our browser population. Table 1 compares the share of each operating system and browser family between the previous works that include such statistics [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], the average share of each family between January 2017 and June 2017 measured by StatCounter for the worldwide [START_REF]Browser Market Share Worldwide | StatCounter Global Stats[END_REF][START_REF]Operating System Market Share Worldwide | StatCounter Global Stats[END_REF] and French browser populations [START_REF]Browser Market Share France | StatCounter Global Stats[END_REF][START_REF]Operating System Market Share France | StatCounter Global Stats[END_REF], and our browser population. We stress that the browser population that visits a website varies through time as the browser market evolves [START_REF]Usage Share of Internet Browsers 1996 -2019[END_REF] and depends on the website (e.g., only a subset of the worldwide browser population is expected to visit a local news website). Among our browser population, 82.1% run on a Windows operating system, resulting in a high proportion of Internet Explorer (26%) and Edge (7.8%) browsers. This can be explained by the population visiting the website being less technically savvy, hence using more common web environments (e.g., a Firefox on a Windows operating system) than technical environments (e.g., Linux-based operating systems).

Among the desktop browsers, the most common browsers are Firefox (31.4%), Internet Explorer (28.3%), and Chrome (26.2%). Our dataset contains more Firefox browsers and less Chrome browsers than the French population observed by StatCounter [START_REF]Browser Market Share France | StatCounter Global Stats[END_REF]. According to previous studies, the fingerprints of Firefox and Chrome browsers are among the most distinctive [START_REF] Mohammed | Not All Browsers are Created Equal: Comparing Web Browser Fingerprintability[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. Firefox and Chrome both include automated updates, which results in higher instability of the fingerprints collected from these browsers [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. Internet Explorer and Edge supported badly WebRTC at the time of the experiment [START_REF]createDataChannel" | Can I use[END_REF][START_REF] Mohammed | Not All Browsers are Created Equal: Comparing Web Browser Fingerprintability[END_REF]. On these browsers, no information could have been collected using WebRTC, which reduces the distinctiveness of this attribute on these browsers. However, Edge is considered as one of the browsers that provide highly distinctive fingerprints [START_REF] Mohammed | Not All Browsers are Created Equal: Comparing Web Browser Fingerprintability[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF].

The vast majority of our mobile browsers runs on an Android platform (84.4%), followed by Windows Phone (8.8%), and iOS (5.2%). The browsers running on Android devices tend to be more distinguishable than the ones running on iOS [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], due to the plurality of device vendors and models that embark the Android operating system. The browser fingerprints of iOS devices show more updates than these of other mobile operating systems [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF], which can result in increased instability of the fingerprints of iOS devices. The most common mobile browser is Samsung Internet (45.1%), followed by Chrome (38.5%), Internet Explorer mobile (8.4%), and Safari (6.7%). Smartphones embark a default browser, which can explain this distribution that includes the four default browsers1 of the major operating systems. Using another browser than the default browser results in an increased distinctiveness as the combination of operating system and browser becomes less common [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. Although Chrome is one of the default browser of Android devices, it provides highly distinctive information in its UserAgent [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. As a result, Firefox and Chrome are known as the two most distinctive mobile browsers [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF].

The contextual attributes related to the time zone or to the configured language are less distinctive in our dataset than in previous studies (see Section 5.1.2). For example, the normalized entropy of the Timezone JavaScript property is of only 0.008, against 0.161 for the Panopticlick study [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF], and 0.198 for the AmIUnique study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. These attributes also tend towards the typical French values: 98.48% of the browsers have a Timezone value of -1, 98.59% of the browsers have the daylight saving time enabled, and fr is present in 98.15% of the values of the Accept-Language HTTP header.

The browsers of our dataset mostly belong to general audience French users. Counter-intuitively, considering an international population may not reduce the distinctiveness. Indeed, we can expect foreign users to have a combination of contextual attributes (e.g., the time zone, the configured languages) different from the French users, making them distinguishable even if the remaining attributes have identical values. Forging new browser fingerprints from a dataset to realistically simulate a different browser population is a difficult task. First, it requires to know the distribution of the values that the target population would show for each attribute. The value of some attributes can be inferred easily (e.g., the typical time zone of a given location), but the typical value that other attributes would present is harder to infer (e.g., the textual value of the UserAgent of a new browser family). Second, although we could sample the value of each individual attribute from their hypothetical distribution, the value of the attributes should be picked with respect to the correlations that occur between them. When forging a browser fingerprint, the lack of consideration of the correlations between the attributes leads to unrealistic fingerprints [START_REF] Mohammed | Too Little Too Late: Can We Control Browser Fingerprinting[END_REF][START_REF] Broenink | Using Browser Properties for Fingerprinting Purposes[END_REF][START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Torres | FP-Block: Usable Web Privacy by Controlling Browser Fingerprinting[END_REF].

Privacy concerns

The browser fingerprints are sensitive due to their identification capacity. We complied with the European directives 2002/58/CE [1] and 2009/136/CE [2] in effect at the time of the experiment, and took additional measures to protect the participating users. First, the script was set on two web pages of a single domain in a first-party manner, hence providing no extra information about the browsing activity of the users. The content of the web pages are generic, hence they do not leak any information about the interests of the users. Second, we restricted the collection to the users having consented to cookies, as required by the European directives 2002/58/CE and 2009/136/CE. Third, a unique identifier (UID) was set as a cookie with a 6-months lifetime, corresponding to the duration of the experiment. Fourth, we deleted the fingerprints for which the cookieEnabled property was not set to true. Finally, we hashed the IP addresses by passing them through the HMAC-SHA256 algorithm using a key that we threw afterward. It was done using the secret and the hmac libraries of Python3.6. These one-way hashed IP addresses are only used for the UIDs resynchronization (see Section 2.4.2) and are not used as an attribute in the working dataset.

Data preprocessing

Given the experimental aspect of browser fingerprints, and the scale of our collection, the raw dataset contains erroneous or irrelevant samples. That is why we perform several preprocessing steps before any analysis. The dataset is composed of entries in the form of (𝑓 , 𝑏, 𝑡) tuples so that the fingerprint 𝑓 was presented by the browser 𝑏 at the given time 𝑡. We talk here about entries (i.e., (𝑓 , 𝑏, 𝑡) tuples) and not fingerprints (i.e., only 𝑓 ) to avoid confusion. The preprocessing is divided in four steps: the cleaning, the UIDs resynchronization, the deduplication, and the derivation of the extracted attributes. Initially, we have 8, 205, 416 entries in the raw dataset.

Dataset cleaning.

The dataset cleaning step filters out 70, 460 irrelevant entries, following the method described below. The fingerprinting script prepares, sends, and stores the entries in string format consisting of the attribute values separated by semicolons. We remove 769 entries that have a wrong number of fields, mainly due to truncated or unrelated data (e.g., the body of a post request). We filter out 53, 251 entries that belong to robots, by checking whether blacklisted keywords are present in the User-Agent HTTP header (see Appendix C for the list of keywords). We reduce the entries that have multiple exact copies (down to the same moment of collection) to a single instance. Finally, we remove 18, 591 entries that have the cookies disabled, and 2, 412 entries that have a time of collection that falls outside the time window of the experiment.

2.4.2 Unique IDs resynchronization. The resynchronization step replaces 181, 676 UIDs with a total of 116, 708 other UIDs, following the method described here. Each entry includes a UID which was stored and retrieved using the cookie mechanism of the browser. The cookies are considered an unreliable browser identification solution [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF], hence we undergo a cookie resynchronization step similarly to the Panopticlick study [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF]. We consider the entries that have the same (fingerprint, IP address hash) pair to belong to the same browser, even if they show different UIDs. We group the entries by their pair of (fingerprint, IP address hash) and assign the entries of each group a single UID taken from those observed for this group. The resynchronization is processed on all the groups at the exception of the groups that show interleaved UIDs for which we do not modify the UID of their entries. These groups contain entries that have the same (fingerprint, IP address hash) pair but which UID values are interleaved (e.g., 𝑏 1 , 𝑏 2 , then 𝑏 1 again). The interleaved UIDs are a good indicator that several genuine identical browsers operate on the same private network and share the same public IP address [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF].

2.4.3 Deduplication. The deduplication step constitutes the biggest cut in our dataset, and filters out 2, 420, 217 entries. To avoid storing duplicates of the same fingerprint observed several times for a browser, the usual method is to ignore a fingerprint if it was already seen for a browser during the collection [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. Our script collects the fingerprint on each visit, no matter if it was already seen for this browser or not. To stay consistent with common methodologies, we deduplicate the fingerprints offline. For each browser, we hold the first entry that contains a given fingerprint, and ignore the following entries if they also contain this fingerprint. This method takes the interleaved fingerprints into account, which are the fingerprints so that we observe 𝑓 1 , 𝑓 2 , then 𝑓 1 again. For example, if a browser 𝑏 has the entries {(𝑓 1 , 𝑏, 𝑡 1 ), (𝑓 2 , 𝑏, 𝑡 2 ), (𝑓 2 , 𝑏, 𝑡 3 ), (𝑓 1 , 𝑏, 𝑡 4 )}, we only hold the entries {(𝑓 1 , 𝑏, 𝑡 1 ), (𝑓 2 , 𝑏, 𝑡 2 ), (𝑓 1 , 𝑏, 𝑡 4 )} after the deduplication step.

We hold the interleaved fingerprints to realistically simulate the state of the fingerprint of each browser through time. We find that 10.59% of our browsers showed at least one case of interleaved fingerprints. The interleaved fingerprints can come from attributes that switch between two values. An example is the screen size that changes when an external screen is plugged or unplugged. Previous studies discarded the fingerprints that were already encountered for a given browser [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], hiding the interleaved fingerprints.

2.4.4 Extracted attributes. We derive 46 extracted attributes of two types from 9 original attributes. First, we have the extracted attributes that are parts of an original attribute, like an original attribute that is composed of 28 triplets of RGB (Red Green Blue) color values that we split in 28 single attributes. Then, we have the extracted attributes that are derived from an original attribute, like the number of plugins derived from the list of plugins. The extracted attributes do not increase the distinctiveness as they come from an original attribute, and they are at most as distinctive as their original attribute. However, the extracted attributes can offer a higher stability than their original attribute, as the latter is impacted by any little change among the extracted attributes. For example, if exactly one of the 28 RGB values changes between two fingerprint observations, the original attribute is counted as having changed, but only one of the extracted attributes will be.

2.4.5 Working dataset. The working dataset obtained after preprocessing the raw dataset contains 5, 714, 738 entries (comprising the identical fingerprints that are interleaved for each browser), with 4, 145, 408 fingerprints (comprising no identical fingerprint for each browser), and 3, 578, 196 distinct fingerprints. They are composed of 216 original attributes and 46 extracted attributes, for a total of 262 attributes. The fingerprints come from 1, 989, 365 browsers, 27.53% of which have multiple Table 2. Comparison between the datasets of the studies Panopticlick (PTC), AmIUnique (AIU), Hiding in the Crowd (HitC), Long-Term Observation (LTO), Who Touched My Browser Fingerprint (WTMBF), and this study. As the LTO study tests various attribute sets, we present the ranges of the results obtained by their attribute selection method. The symbols -denotes missing information and * denotes deduced information from the paper. The attributes comprise the derived attributes. The fingerprints are counted after data preprocessing.

PTC [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] AIU [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] LTO [START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF] WTMBF [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] This study fingerprints. Table 2 displays a comparison between the dataset of the studies Panopticlick [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF], AmIUnique [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], Hiding in the Crowd [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF], Long-Term Observation [START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF], Who Touched My Browser Fingerprint [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF], and this study.

Comparison with previous studies

We compare our working dataset with the datasets of previous studies in Table 2, notably by the unicity rate which is the proportion of the fingerprints that have been observed for a single browser.

We have a slightly lower unicity rate compared to the studies Panopticlick (PTC) [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] and AmIUnique (AIU) [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. Considering a larger browser population generally increases the chances for two browsers to share the same fingerprint, which can reduce the unicity rate. However, considering a wider surface of fingerprinting attributes usually reduces these chances, which can increase the unicity rate. The importance of these two effects depends on the browser population and on the attributes. The larger browser population and the larger surface of fingerprinting attributes can explain the slight decrease of the unicity rate compared to PTC and AIU. We also observe a lower unicity rate for the fingerprints of mobile browsers compared to the fingerprints of desktop browsers, confirming the findings of previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF]. However, we emphasize that our dataset and the datasets of these studies miss attributes that could improve the distinctiveness of the fingerprints of mobile browsers like the sensor API [START_REF] Waldron | Generic Sensor API[END_REF] that is used in real-life [START_REF] Das | The Web's Sixth Sense: A Study of Scripts Accessing Smartphone Sensors[END_REF][START_REF] Iqbal | Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors[END_REF][START_REF] Marcantoni | A Large-scale Study on the Risks of the HTML5 WebAPI for Mobile Sensor-based Attacks[END_REF].

The authors of the Hiding in the Crowd (HitC) study [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] worked on fingerprints collected from the same experiment and browser population as us. However, to stay consistent with their previous AIU study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], they consider the same set of 17 attributes. This explains our higher number of fingerprints, as two browsers that have different fingerprints for a given set of attributes can come to the same fingerprint if a subset of these attributes is considered. As a result, they remove more duplicated fingerprints than us due to the higher chances for a browser to present the same fingerprint for 17 attributes than for 216 attributes. Our unicity rate is also higher, being at 81.8% for the complete dataset against 33.6% for HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF]. This is due to the larger set of considered attributes that distinguish browsers more efficiently, as each additional attribute can provide a way to distinguish browsers. Our little drops on the proportion of desktop and mobile browsers come from a finer-grained classification, as we have 4.8% of the browsers that are classified as belonging to tablets, smart TVs, or game consoles.

The recent study about the evolution of fingerprints by Song Li and Yinzhi Cao [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] analyzes a large-scale dataset of 7, 246, 618 fingerprints collected from a European website. They focus on the evolution of the fingerprints and their composing attributes. Their fingerprints show a low unicity rate of approximately 0.350. The high number of collected fingerprints and the low number of used attributes can explain this lower unicity rate2 . We remark that this unicity rate is close to the unicity rate of HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] which includes fewer attributes (17 against 35 for [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]) and fewer fingerprints (2, 067, 942). The unicity rate of the mobile browsers of [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] is close to the unicity rate of their desktop browsers, contrary to previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF] and ours. This can be explained by the inclusion of new attributes that provide more distinctiveness to the mobile fingerprints. The attributes that they have in addition to the previous studies 3 are the features that they infer from the IP address. Song Li and Yinzhi Cao [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] focus on the evolution of fingerprints and analyze what they call dynamics. They define a dynamic as a representation of the evolutions between two different and consecutive fingerprints that belong to the same browser. They generate 960, 853 dynamics from their seven million fingerprints whereas we generate 3, 725, 373 dynamics (see Section 4.2) from our four million fingerprints. This difference is explained by our fingerprints being composed of more attributes, which increases the chances for two consecutive fingerprints to differ. Indeed, the change of any attribute between the consecutive fingerprints generates a dynamic, and the more attributes there is the more chances one of them changes between two evolutions 4 .

AUTHENTICATION FACTOR PROPERTIES

Biometric authentication factors and browser fingerprints share strong similarities. They both work by extracting features from a unique entity, which is a person for the former and a browser for the latter, that can be used for identification or authentication. Although the entity is unique, the extracted features are a digital representation of the entity which can show imperfections (e.g., the fingerprints of two different persons can show similar representations). Previous studies [START_REF] Gamassi | Quality Assessment of Biometric Systems: A Comprehensive Perspective based on Accuracy and Performance Measurement[END_REF][START_REF] Maltoni | Handbook of Fingerprint Recognition[END_REF][START_REF] Zorkadis | On Biometrics-based Authentication and Identification from a Privacyprotection Perspective: Deriving Privacy-enhancing Requirements[END_REF] identified the properties for a biometric characteristic to be usable5 as an authentication factor, and the additional properties for a biometric authentication scheme to be practical. We evaluate browser fingerprints according to these properties because of their similarity with biometric authentication factors.

The four properties needed for a biometric characteristic to be usable as an authentication factor are the following.

• Universality: the characteristic should be present in everyone.

• Distinctiveness: two distinct persons should have different characteristics.

• Permanence: the same person should have the same characteristic over time. We rather use the term stability. • Collectibility: the characteristic should be collectible and measurable.

The three properties that a biometric authentication scheme requires to be practical are the following.

• Performance: the scheme should be accurate, consume few resources, and be robust against environmental changes. • Acceptability: the users should accept to use the scheme in their daily lives.

• Circumvention: it should be difficult for an attacker to deceive the scheme.

The properties that we study are the distinctiveness, the stability, and the performance. We consider that the universality and the collectibility are satisfied, as the HTTP headers that are automatically sent by browsers constitute a fingerprint. However, we stress that a loss of distinctiveness occurs when no JavaScript attribute is available. About the circumvention, we discuss the design of an authentication mechanism that leverages browser fingerprints and the possible attacks on such mechanism in Section 6. As for the acceptability, we refer to [START_REF]Leveraging Browser Fingerprinting for Web Authentication[END_REF] for a survey about the acceptability of an authentication mechanism that relies on browser fingerprinting, and emphasize that such mechanisms are already used in real-life [START_REF]Device Fingerprinting for Low Friction Authentication[END_REF][START_REF]Device / Browser Fingerprinting -Heuristic-based Authentication[END_REF][START_REF] Wiefling | Is This Really You? An Empirical Study on Risk-Based Authentication Applied in the Wild[END_REF].

Distinctiveness

To satisfy the distinctiveness property, the browser fingerprints should distinguish two different browsers. The two extreme cases are every browser sharing the same fingerprint, which makes them indistinguishable from each other, and no two browsers sharing the same fingerprint, making every browser distinguishable. The distinctiveness falls between these extremes, depending on the attributes and the browser population. We consider the use of browser fingerprinting as an additional authentication factor. Hence, we do not require a perfect distinctiveness, as it is used in combination with other authentication factors to improve the overall security.

The dataset entries are composed of a fingerprint, the source browser, and the moment of collection in the form of a Unix timestamp in milliseconds. We denote 𝐵 the domain of the unique identifiers, 𝐹 the domain of the fingerprints, and 𝑇 the domain of the timestamps. The fingerprint dataset is denoted 𝐷 and is formalized as:

𝐷 = {(𝑓 , 𝑏, 𝑡) | 𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 } (1)
We use the size of the browser anonymity sets to quantify the distinctiveness, as the browsers that belong to the same anonymity set are indistinguishable. We denote B (𝑓 , D) the browsers that provided the fingerprint 𝑓 in the dataset 𝐷. It is formalized as:

B (𝑓 , D) = {𝑏 ∈ 𝐵 | ∀(𝑔, 𝑏, 𝑡) ∈ D, 𝑓 = 𝑔} (2)
We denote A (𝜖, D) the fingerprints that have an anonymity set of size 𝜖 (i.e., that are shared by 𝜖 browsers) in the dataset 𝐷. It is formalized as:

A (𝜖, D) = {𝑓 ∈ 𝐹 | card(B (𝑓 , D)) = 𝜖} (3) 
A common measure of the fingerprint distinctiveness is the unicity rate [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], which is the proportion of the fingerprints that were observed for a single browser. We denote U (D) the unicity rate of the dataset D, which is formalized as:

U (D) = card(A (1, D)) card({(𝑓 , 𝑏) | ∃𝑡 ∈ 𝑇 , (𝑓 , 𝑏, 𝑡) ∈ D}) (4) 
Previous studies measured the anonymity set sizes on the whole dataset [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. We measure the anonymity set sizes on the fingerprints currently in use by each browser, and not on their whole history. Two different browsers, sharing the same fingerprint on different time windows, are then distinguishable (e.g., a browser was updated before the other). Moreover, a browser that runs in a fancy web environment (e.g., having a custom font) and that has several fingerprints in the dataset (e.g., fifty), will bloat the proportion of unique fingerprints and bias the study (e.g., fifty fingerprints are unique whereas they come from a single browser).

We evaluate the anonymity set sizes on the time-partitioned datasets composed of the last fingerprint seen for each browser at a given time. Let S 𝜏 (D) be the time-partitioned dataset originating from D that represents the state of the fingerprint of each browser after 𝜏 days. With 𝑡 𝜏 the last timestamp of this day, S 𝜏 (D) is defined as:

S 𝜏 (D) = {(𝑓 𝑖 , 𝑏 𝑗 , 𝑡 𝑘 ) ∈ D | ∀(𝑓 𝑝 , 𝑏 𝑞 , 𝑡 𝑟 ) ∈ D, 𝑏 𝑗 = 𝑏 𝑞 , 𝑡 𝑟 ≤ 𝑡 𝑘 ≤ 𝑡 𝜏 } (5) 

Stability

To satisfy the stability property, the fingerprint of a browser should stay sufficiently similar between two observations to be recognizable. Browser fingerprints have the particularity of evolving through time, due to changes in the web environment like a software update or a user configuration. We measure the stability by the average similarity between the consecutive fingerprints of browsers, given the elapsed time between their observation. The two extreme cases are every browser holding the same fingerprint through its life, and the fingerprint changing completely with each observation. A lack of stability makes it harder to recognize the fingerprint of a browser between two observations. We denote C(Δ, D) the function that provides the pairs of consecutive fingerprints of D that are separated by a time-lapse comprised in the Δ time range. It is formalized as:

C(Δ, D) = {(𝑓 𝑖 , 𝑓 𝑝 ) | ∀((𝑓 𝑖 , 𝑏 𝑗 , 𝑡 𝑘 ), (𝑓 𝑝 , 𝑏 𝑞 , 𝑡 𝑟 )) ∈ D 2 , 𝑏 𝑗 = 𝑏 𝑞 , 𝑡 𝑘 < 𝑡 𝑟 , (𝑡 𝑟 -𝑡 𝑘 ) ∈ Δ, (𝑓 𝑐 , 𝑏 𝑑 , 𝑡 𝑒 ) ∈ D, 𝑏 𝑑 = 𝑏 𝑗 , 𝑓 𝑐 ≠ 𝑓 𝑖 , 𝑓 𝑐 ≠ 𝑓 𝑝 , 𝑡 𝑘 < 𝑡 𝑒 < 𝑡 𝑟 } (6) 
We consider the Kronecker delta 𝛿 (𝑥, 𝑦), being 1 if 𝑥 equals 𝑦 and 0 otherwise. We consider the set Ω of the 𝑛 used attributes. We denote 𝑓 [𝜔] the value taken by the attribute 𝜔 for the fingerprint 𝑓 . Let sim(𝑓 , 𝑔) be the proportion of identical attributes between the fingerprints 𝑓 and 𝑔, which is formalized as:

sim(𝑓 , 𝑔) = 1 𝑛 ∑︁ 𝜔 ∈Ω 𝛿 (𝑓 [𝜔], 𝑔[𝜔]) (7) 
We define the function avsim(Δ, D) that provides the average similarity between the pairs of the consecutive fingerprints, for a given time range Δ and a dataset 𝐷. It is formalized as:

avsim(Δ, D) = (𝑓 ,𝑔) ∈ C (Δ,D) sim(𝑓 , 𝑔) card(C(Δ, D)) (8) 

Performance

We consider four aspects of the performance of browser fingerprints for web authentication: their collection time, their size in memory, the loss of efficacy between different device types, and the accuracy of a simple illustrative verification mechanism. Browser fingerprinting can easily be deployed by adding a script on the authentication page, and by preparing servers to handle the reception, the storage, and the verification of the fingerprints. The users solely rely on their regular web browser and do not have to run any dedicated application, nor possess specific hardware, nor undergo a configuration step. The main additional load is on the supplementary consumption of memory and time resources. Moreover, the web environment differs between device types (e.g., mobile browsers have more limited functionalities than desktop browsers) and through time (e.g., modern browsers differ from the browsers from ten years ago), impacting the efficacy of browser fingerprinting. Finally, we evaluate the accuracy of a simple illustrative verification mechanism under fingerprints evolution.

Collection time.

The browser fingerprints can be solely composed of passive attributes (e.g., HTTP headers) that are transmitted along with the communications with the server. In this case, the fingerprints are collected without the user perceiving any collection time, but major attributes are set aside. The client-side properties collected through JavaScript provide more distinctive attributes, at the cost of an additional collection time. We measure the collection time of the fingerprints considering only the JavaScript attributes, and ignore the HTTP headers that are transmitted passively.

Size.

Browser fingerprinting consumes memory resources on the clients during the buffering of the fingerprints, on the wires during their sending, and on the servers during their storage. The memory consumption depends on the storage format of the fingerprints. For example, a canvas can be stored as an image encoded in a base64 string, or as a hash which is shorter. A trade-off has to be done between the quantity of information and the memory consumption. The less memoryconsuming choice is to store the complete fingerprint as a single hash. However, the fingerprints evolve through time -even more when they are composed of many attributes -which results in the use of a hash of the complete fingerprint being impractical. Due to the unspecified size of the attributes (e.g., the specification of the User-Agent HTTP header does not define a size limit [START_REF] Roy | RFC 7231 -Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content[END_REF]), we measure their size given a fingerprint dataset.

Loss of efficacy.

The loss of efficacy is the loss of stability, distinctiveness, or performance of the fingerprints. It can occur either for a group of browsers (e.g., mobile browsers) or resulting from changes brought to web technologies. First, previous works showed differences in the properties of the fingerprints coming from mobile and desktop devices [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF], notably a limited distinctiveness for the mobile browsers. Following these findings, we compare the properties shown by the mobile and the desktop browsers. We match keywords on the userAgent JavaScript property (see Appendix C) to differentiate the browsers running on a desktop or a laptop (referred to as desktops) from the browsers running on a mobile phone (referred to as mobiles). Second, browser fingerprinting is closely dependent on the evolution of web technologies. As new technologies are integrated into browsers, new attributes are accessible and conversely for removal. Similarly, functionality updates can lead to a change in the fingerprint properties. For example, Kurtz et al. [START_REF] Kurtz | Fingerprinting Mobile Devices Using Personalized Configurations[END_REF] detected an iOS update by the sudden instability of an attribute that provides the iOS version. Following their finding, we verify whether the evolution of web technologies provokes major losses in the properties of the fingerprints.

Accuracy of a simple verification mechanism.

We evaluate the accuracy of a simple illustrative verification mechanism under the evolution of fingerprints. This mechanism counts the identical attributes between the presented and the stored fingerprint, and considers the evolution legitimate if this number is above a threshold Θ. The simplicity of this mechanism gives us an idea of the accuracy that can be easily achieved without having to engineer more complex rules. More elaborate mechanisms can obviously be designed (see Appendix D).

EVALUATION OF BROWSER FINGERPRINTS PROPERTIES

In this section, we evaluate the browser fingerprints of our dataset according to the properties of distinctiveness, stability, and performance. We present here the results on the complete fingerprints and let Section 5 provide insights on the contribution of the attributes to each property. We show that, by time-partitioning our dataset, our fingerprints provide a unicity rate of more than 81.3% which is stable through time. However, our fingerprints of mobile browsers are less distinctive than our fingerprints of desktop browsers 6 , with a respective unicity rate of 42% against 84% considering the time-partitioned datasets. We also show that, on average, a fingerprint has more than 91% of identical attributes between two observations, even when they are separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes and are collected within seconds. The accuracy of the simple illustrative verification mechanism is close to perfect, as it achieves an equal error rate of 0.61%. This results from most of the consecutive fingerprints coming from a browser having at least 234 identical attributes, whereas most of the fingerprints of different browsers have fewer. overall fingerprints have a stable unicity rate of more than 81.3% for the partitioned-datasets, and more than 94.7% of the fingerprints are shared by at most 8 browsers. The overall fingerprints comprise those collected from desktop and mobile browsers, but also those of tablets, game consoles, and smart TVs. The comparisons are done using fingerprint hashes, resulting in 4 hash collisions which we deem negligible.

Distinctiveness

The anonymity sets tend to grow as more browsers are encountered due to the higher chances of collision. However, the fingerprints tend to stay in small anonymity sets, as can be seen by the growth of the anonymity sets of size 2 being more important than the growth of the anonymity sets of size 8 or higher. The unicity rate of the time-partitioned datasets (81.3%) is lower than the unicity rate of the complete dataset (81.8%). This is due to browsers having multiple unique fingerprints in the complete dataset, which typically occurs when a browser having a unique web environment is fingerprinted multiple times. Considering the time-partitioned datasets removes this over-counting effect.

New browsers are encountered continually. However, starting from the 60th day, the arrival frequency stabilizes around 5, 000 new browsers per day. Before this stabilization, the arrival frequency is variable and has major spikes that seem to correspond to events that happened in France. These events could lead to more visits and explain these spikes. For example, the spike on the 38th day corresponds to a live political debate on TV, and the spike on the 43rd correlates with the announcement of a cold snap.

4.1.2 Distinctiveness of desktop and mobile browsers. Figure 3 presents the unicity rate through the time-partitioned datasets for the overall, the mobile, and the desktop browsers. The fingerprints of mobile browsers are more uniform than those of desktop browsers, with a unicity rate of approximately 42% against 84% considering the time-partitioned datasets. The unicity rate of the desktop browsers slightly increases by 1.04 points from the 60th to the 183th day, from 84.99% to 86.03%. On the contrary, the unicity rate of the mobile browsers slightly decreases by 0.29 points on the same period, from 42.42% to 42.13%. These results are in line with previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF] that also observed a reduction of the distinctiveness among the fingerprints of mobile browsers 
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Overall Desktops Mobiles Fig. 3. Unicity rate for the overall, the mobile, and the desktop browsers, through the time-partitioned datasets obtained after each day.

compared to those of desktop browsers. However, we acknowledge that our dataset misses attributes that could improve the distinctiveness of the fingerprints of mobile browsers. A good candidate attribute is the sensor API [START_REF] Waldron | Generic Sensor API[END_REF] that is already used by real-life fingerprinters [START_REF] Das | The Web's Sixth Sense: A Study of Scripts Accessing Smartphone Sensors[END_REF][START_REF] Iqbal | Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors[END_REF][START_REF] Marcantoni | A Large-scale Study on the Risks of the HTML5 WebAPI for Mobile Sensor-based Attacks[END_REF].

Stability

Figure 4 displays the average similarity between the pairs of consecutive fingerprints as a function of the time difference, together with the number of compared pairs for each time difference. The ranges Δ are expressed in days, so that the day 𝑑 on the x-axis represents the fingerprints that are separated by Δ = [𝑑; 𝑑 + 1[ days. We ignore the comparisons of the time ranges that have less than 10 pairs to have samples of sufficient size without putting too many comparisons aside. We also ignore the bogus comparisons that have a time difference higher than the limit of our experiment (182 days). These two sets of ignored comparisons account for less than 0.03% of each group. The results are obtained by comparing a total of 3, 725, 373 pairs of consecutive fingerprints, which include 2, 912, 860 pairs for the desktop browsers and 594, 591 pairs for the mobile browsers. Two consecutive fingerprints are necessarily different as we remove the duplicated consecutive fingerprints (see Section 2.4.3). Considering (𝑓 1 , 𝑓 2 , 𝑓 3 ) the fingerprints collected for a browser that are ordered by the time of collection. The resulting set of consecutive fingerprints is {(𝑓 1 , 𝑓 2 ), (𝑓 2 , 𝑓 3 )}.

Our stability results are a lower bound, as the consecutive fingerprints are necessarily different (i.e., their similarity is strictly lower than 1). Our fingerprints are stable, as on average more than 91% of the attributes are expected to not change, considering up to 174 elapsed days (nearly 6 months) between two observations. In a web authentication context, we assume that the users would connect more frequently or would accept to undergo the account recovery process (see Section 6.1). The fingerprints of mobile browsers are generally more stable than those of desktop browsers, as suggests their respective similarity curve. Few attributes of our script are highly instable. They are discussed in Section 5.1. of these attributes could reduce the distinctiveness of the fingerprints, but would improve their stability.

Number of compared pairs

Performance

4.

3.1 Time consumption. Figure 5 displays the cumulative distribution of the collection time of our fingerprints in seconds with the outliers removed. We measure the collection time by the difference between two timestamps, one recorded at the starting of the script and the other one just before sending the fingerprint. Some fingerprints take a long time to collect that span from several hours to days. We limit the results to the fingerprints that take 30 seconds or less to collect and consider the higher values as outliers. The outliers account for less than 1% of each group and are discussed in Appendix B. Half of our fingerprints are collected in less than 2.92 seconds, and the majority (95%) in less than 10.42 seconds. The time to collect the fingerprints is lower for the desktop browsers than for the mobile browsers. Half of the fingerprints of the desktop browsers are collected in less than 2.64 seconds, and the majority (95%) in less than 10.45 seconds. These numbers are respectively of 4.44 seconds and 10.16 seconds for the mobile browsers. The median collection time of our fingerprints is less than the estimated median time taken by web pages to load completely [START_REF]Median Loading Time of Web Pages[END_REF], which is 6.5 seconds for the desktop browsers and 17.9 seconds for the mobile browsers at the date of May 1, 2021. Mobile devices generally have less computing power than desktop devices, which can explain the longer collection time together with the throttling of inactive tabs. The collection time of the fingerprints of mobile browsers has less variance than those of desktop browsers. This can be explained by the former having more uniform computing power than the latter. This is supported by the presence in our dataset of desktop browsers running on old systems like Windows Vista or Windows XP.

Our script takes several seconds to collect the attributes that compose the fingerprints. However, we stress that this script is purely experimental and was developed to collect many attributes to get closer to what a fingerprinter may achieve in real-life. Although collecting the fingerprint induces an additional collection time on the authentication page, such page is expected to be lightweight 
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Overall Desktops Mobiles Fig. 5. Cumulative distribution of the collection time of the fingerprints in seconds. We consider the fingerprints that take more than 30 seconds to collect as outliers, which account for less than 1% of each group.

and fast to load. Moreover, the time to collect the fingerprint can be reduced by ways that we describe below. The attributes that are longer to collect and that are less distinctive can be removed without a major loss of distinctiveness [START_REF] Andriamilanto | FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms[END_REF]. For example, our method to detect an ad-blocker waits a few seconds for a simulated advertisement to be removed, but only provides a Boolean value.

We discuss the longest attributes to collect in Section 5.1.4. The attributes can also be collected in parallel or in the background. In their recent work, Song Li and Yinzhi Cao [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] collect their attributes in parallel and manage to collect the fingerprints of desktop and mobile browsers within one second. Our script can also be updated to leverage the most advanced web technologies, like the OffscreenCanvas API [START_REF] Gasperowicz | OffscreenCanvas -Speed up Your Canvas Operations with a Web Worker[END_REF] that migrates the generation of the canvases off the main thread to another thread. More generally, we can use the Service Workers API [START_REF] Mozilla | Service Worker API -Web APIs | MDN[END_REF] to collect the attributes concurrently in the background to reduce the perceived collection time.

4.3.2 Memory consumption. Figure 6 displays the cumulative distribution of the size of our fingerprints in bytes with the outliers removed. Our fingerprints are encoded in UTF-8 using only ASCII characters and the canvases are stored as sha256 hashes. One character then takes one byte and the results can be expressed in both units. The fingerprint sizes comprise the value of the 262 attributes without the metadata fields (e.g., the UID, the timestamp). The average fingerprint size is of 𝜇 = 7, 692 bytes, and the standard deviation is of 𝜎 = 2, 294. We remove 1 fingerprint from a desktop browser considered an outlier due to its size being greater than 𝜇 + 15 • 𝜎.

The memory consumption takes place on three components: on the client during the buffering of the fingerprints, on the wire during their sending, and on the server during their storage. Half of our fingerprints take less than 7, 550 bytes, 95% less than 12 kilobytes, and all of them less than 22 kilobytes. This is negligible given the current storage and bandwidth capacities. We observe a difference between the fingerprints of mobile and desktop browsers, with 95% of the fingerprints weighing respectively less than 8, 020 bytes and 12, 082 bytes. This is due to heavy attributes being 
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Fig. 6. Cumulative distribution of the fingerprint size in bytes, for the overall, the mobile, and the desktop browsers. We ignore one outlier collected from a desktop browser that shows an extremely higher size.

lighter on mobile browsers, like the list of plugins or mime types that are most of the time empty. We discuss the heaviest attributes in Section 5.1.5.

Accuracy of the simple verification mechanism.

The accuracy of the simple illustrative verification mechanism is measured according to the following methodology. First, we split our dataset in six samples, one for each month. We assume that a user would spend at most one month between two connections, and otherwise would accept to undergo a heavier fingerprint update process. Two sets are afterward extracted from each sample. They are composed of pairs of compared fingerprints that we call comparisons. The same-browser comparisons are composed of the consecutive fingerprints of each browser, and the different-browsers comparisons are composed of two randomly picked fingerprints of different browsers. After constituting the same-browser comparisons for each month, we sample the different-browsers comparisons to have the same size as the same-browser comparisons. The month sampling also helps the different-browsers comparisons to be realistic by pairing fingerprints that are separated by at most one month. Both the two sets of comparisons contain a total of 3, 467, 289 comparisons.

Figure 7 displays the distribution of the identical attributes between the same-browser comparisons and the different-browsers comparisons, starting from 34 identical attributes as there are no observed value below. Figure 8 presents a focus that starts from 227 identical attributes, below which there are less than 0.005 of the same-browser comparisons. We can observe that the two sets of comparisons are well separated, as 99.05% of the same-browser comparisons have at least 234 identical attributes, and 99.68% of the different-browsers comparisons have fewer. The differentbrowsers comparisons have generally a fewer, and a more diverse, number of identical attributes compared to the same-browser comparisons. The different-browsers comparisons have between 34 and 253 identical attributes, with an average of 127.41 attributes and a standard deviation of 44.06 attributes. The same-browser comparisons have between 72 and 252 identical attributes, with an average of 248.64 attributes and a standard deviation of 3.91 attributes. Figure 9 displays the false match rate (FMR) which is the proportion of the same-browser comparisons that are classified as different-browsers comparisons, and the false non-match rate (FNMR) which is the inverse. The displayed results are the average for each number of identical attributes among the six month-samples. As there are few same-browser comparisons that have less than 234 identical attributes, the FNMR is null until this value. However, after exceeding this threshold, the FNMR increases as the same-browser comparisons begin to be classified as different-browsers comparisons. The equal error rate, which is the rate where both the FMR and the FNMR are equal, is of 0.61% and is achieved for 232 identical attributes. Although the verification mechanism does not have a perfect accuracy of 100%, this is acceptable. Indeed, a user getting his browser unrecognized can undergo the fallback authentication process (see Section 6.1). Moreover, we consider the use of browser fingerprinting as an additional authentication factor, hence the other factors can prevent a falsely recognized browser. Both these events are expected to rarely occur as can be seen by the low equal error rate.

These results are tied to the distinctiveness and the stability of the fingerprints. Indeed, as more than 94.7% of the fingerprints are shared by less than 8 browsers, two random fingerprints have little chances to match. Moreover, more than 244 attributes (96.64%) are identical between the consecutive fingerprints of a browser 7 , on average and when separated by less than 31 days. This is consistent with the 248.64 identical attributes on average among the same-browser comparisons8 .

Conclusion

About the distinctiveness, and considering the time-partitioned datasets, our fingerprints provide a unicity rate of more than 81.3% which is stable on the long-run. Moreover, more than 94.7% of our fingerprints are shared by at most 8 browsers. About the stability, and on average, a fingerprint has more than 91% of its attributes that stay identical between two observations, even when they are separated by nearly 6 months. About the performance, the majority (95%) of our fingerprints weigh less than 12 kilobytes and are collected in less than 10.42 seconds. We do not remark any significant loss in the properties offered by our fingerprints through the 6 months of our experiment. However, we fall to the same conclusion as previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF] about the fingerprints of mobile browsers lacking distinctiveness. Their unicity rate in the time-partitioned datasets falls down to approximately 42%. We remark that, in our dataset, the consecutive fingerprints of a browser have at least 234 identical attributes, whereas the majority of the fingerprints of different browsers have fewer. This results in our simple verification mechanism achieving an equal error rate of 0.61%.

ATTRIBUTE-WISE ANALYSIS

In this section, we discuss the contribution of the attributes to the properties of the fingerprints. Then, we show that most of the attributes are correlated with at least another one (i.e., they provide less than 1 bit of entropy when the other one is known). Finally, we focus on the properties of the dynamic attributes (e.g., their collection time). We refer the reader to Appendix A for more information about the implementation of each attribute.

Contribution of particular attributes

In this section, we discuss the contribution of the attributes to the fingerprint properties of distinctiveness, stability, and performance. We express the stability of the attributes as the sameness rate, which is the proportion of the consecutive fingerprints where the value of the attribute stays identical. Appendix E provides the exhaustive list of the attributes and their properties. attributes are composed of elements having a fixed set of possibilities, but their combination provides a high number of values. It is the case for the attributes that are related to languages that typically are a combination of language identifiers (e.g., fr) that can be weighted (e.g., 𝑞 = 0.80). These attributes also comprise the list of fonts that is composed of Boolean values that indicates the presence of a font. Other attributes are integers or floating-point numbers, resulting in a large set of possible values. This category comprises any size-related attribute (e.g., the screen width and height) and our audio fingerprinting method which value is a floating-point number with a high precision of more than 8 digits. Other attributes are textual information that can include version numbers, which results in a high number of distinct values. Moreover, as new values appear through time (e.g., new versions, new software components), the set of the observed values is expected to grow over the observations. Examples are the UserAgent or the list of plugins which are composed of the name and version of hardware and software components. Table 3 compares the number of distinct attributes of our dataset with the numbers reported by the studies AmIUnique [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], Hiding in the Crowd [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF], and Who Touched My Browser Fingerprint [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. We emphasize that the more fingerprints are observed, the more chances there is to observe new attribute values. We find two attributes missing from previous studies that show a high number of distinct values: the WebRTC fingerprinting method which includes numerous information about an instance of a current WebRTC connection, and the list of mime types.

Three attributes have a higher number of distinct values in our study than in the comparison studies [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]: the list of plugins, the canvas, and the list of HTTP headers. For the list of plugins, this increase can be explained by the higher number of observed fingerprints compared to [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] and by the higher proportion of desktop browsers9 compared to [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. The increase of distinct values of the canvas is due to the larger set of instructions that we use for the custom canvas compared to the comparison studies (see Section 5.3). The increase of distinct values of the HTTP Table 3. Comparison of the distinct attribute values between the studies AmIUnique (AIU), Hiding in the Crowd (HitC), Who Touched My Browser Fingerprint (WTMBF), and this study. The attributes are composed of the five attributes showing the most distinct values for this study and the attributes reported by the previous studies that are in this study. The attributes are ranked according to this study. The symbol -denotes missing information and * denotes the attributes that are not collected exactly the same way (e.g., using different set of instructions or methods) among the studies.

Attribute

AIU [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] WTMBF [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] a This number is displayed in Figure 11 of [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] as the number of distinct fingerprints, but it also corresponds to the number of raw fingerprints. Every fingerprint would be unique if the number of distinct and collected fingerprints are equal. Hence, we are not confident in this number, but it is the number provided by the authors.

headers list is explained by the comparison studies storing the name of the headers, whereas we store both the name and the value of the headers that we do not store in a dedicated attribute.

Other attributes have a higher number of distinct attributes because we store a flag that indicates the type of error when one is encountered (e.g., the value was not collected in time, its collection raised an exception). For example, the support of the local storage has 4 distinct values instead of 2 for the previous studies [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. Moreover, for the detection of an ad-blocker, we verify several modifications that a potential ad-blocker would make on a dummy advertisement (e.g., set its visibility to hidden) and store a list of whether each modification was done. Four attributes have more distinct values in the study of Laperdrix et al. [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]: the list of fonts, the platform, and three HTTP headers that are accept, content language, and content encoding. The increase for the list of fonts is due to their usage of the Flash plugin that directly accesses the list of installed fonts. Due to the deprecation of plugins, we infer the presence of 66 fonts through the size of text boxes [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF]. The increase for the four other attributes can be explained by the diversity of the configurations of their browser population and by users modifying their browser fingerprint (e.g., they found users modifying the platform attribute and counted 5, 426 inconsistent fingerprints).

Four attributes have more distinct values in the study of Song Li and Yinzhi Cao [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]: the user agent, the list of fonts, the content language, and the WebGL canvas. The increase of distinct values of the user agent can be explained by their higher proportion of mobile browsers, which tend to have more information in the user agent (e.g., the device model [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]). The increase for the list of fonts can be explained by their higher number of fonts that are detected, which is of 96 fonts compared to 66 in our study. As for the content language, they collect their fingerprints from a European website and observe connections coming from 226 countries. Although they remark that some connections are made through proxies, we can still suppose that the user population span over several countries. As a result, their dataset contains more diverse language configurations than our dataset which was collected from a French website. The increase of distinct values of the WebGL canvas can be explained by their set of instructions being more complex than ours (see Section 5.3). Unfortunately, they do not provide any example of generated images or description of the instructions they used.

Attributes distinctiveness.

We measure the distinctiveness of the attributes as the normalized entropy for comparability with previous studies. The normalized entropy was proposed by Laperdrix et al. [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] to cope with the problem of comparing the entropy of attributes between Table 4. Comparison of the normalized entropy between the studies Panopticlick (PTC), AmIUnique (AIU), Hiding in the Crowd (HitC), and this study. The attributes are ranked from the most to the least distinctive in this study. The symbol -denotes missing information and * denotes the attributes that are not collected exactly the same way (e.g., using different set of instructions or methods) among the studies.

Attribute

PTC [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] AIU [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] HitC [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF] fingerprint datasets of dissimilar sizes. The normalized entropy 𝐻 𝑛 (𝑋 ) is defined as the ratio of the entropy 𝐻 (𝑋 ) of the attribute to the maximum entropy 𝐻 𝑀 = log 2 (𝑁 ), with 𝑁 being the number of fingerprints. The entropy can be retrieved as 𝐻 (𝑋 ) = 𝐻 𝑛 (𝑋 ) * 𝐻 𝑀 . In our case, 𝐻 𝑀 = 21.983 bits and an entropy of 1 bit is equivalent to a normalized entropy of 0.045. Figure 11 displays the cumulative distribution of the normalized entropy and entropy (in bits) among the attributes. We have 10% of the attributes that provide a low normalized entropy of less than 0.003, and another 10% that provide a normalized entropy between 0.25 and 0.42. The majority of the attributes (80%) provide a normalized entropy comprised between 0.003 and 0.25. The most distinctive attributes of previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] also belong to the most distinctive attributes of our study. The three canvases are among the 10 most distinctive attributes. Our designed canvas in PNG has a normalized entropy of 0.420, the canvas similar to the canvas presented in the Morellian study [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF] has a normalized entropy of 0.385, and the canvas inspired by the AmIUnique study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] has a normalized entropy of 0.353. The userAgent collected from the JavaScript property is more distinctive than its HTTP header counterpart, as they respectively have a normalized entropy of 0.394 and 0.350. Finally, the list attributes are also highly distinctive. The list of plugins has a normalized entropy of 0.394, the list of supported mime types has a normalized entropy of 0.311, and the list of fonts has a normalized entropy of 0.305. Table 4 compares the normalized entropy between the studies Panopticlick [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF], AmIUnique [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], Hiding in the Crowd [START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF], and this study. The attributes are ranked from the most to the least distinctive in this study. The normalized entropy of our attributes are lower than what is reported in these studies, which can be explained by the following factors. First, the maximum entropy 𝐻 𝑀 increases with the number of fingerprints. However, an attribute that has 𝑛 possibilities (e.g., a Boolean attribute has only two possible values) have a normalized entropy of at most log 2 (𝑛). As the number 𝑁 of fingerprints increases, the normalized entropy decreases due to the entropy of the attribute being capped at log 2 (𝑛) whereas the ratio is to log 2 (𝑁 ). Second, contextual attributes are biased towards the French population (see Section 2.2) and provide a lower normalized entropy. For example, the time zone and the Accept-Language HTTP header (named content language in Table 4) provide a respective normalized entropy of 0.008 and 0.124, against 0.198 and 0.351 for the AmIUnique study. The third reason is the evolution of the web technologies since the Panopticlick and the AmIUnique study. For example, the list of plugins is less distinctive due to the replacement of plugins by HTML5 functionalities or extensions [START_REF]Flash & The Future of Interactive Content[END_REF]. Another example is the list of fonts that was collected through plugins [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], but now has to be inferred from the size of text boxes [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF]. Although the 17 attributes in common have a lower normalized entropy, we supplement them with more than a hundred attributes, resulting in the fingerprints showing a unicity rate above 80%.

Interestingly, four attributes unreported by the previous large-scale studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] are found to be highly distinctive. The innerHeight and outerHeight properties of the window JavaScript object, mentioned by [START_REF] Schwarz | JavaScript Template Attacks: Automatically Inferring Host Information for Targeted Exploits[END_REF][START_REF] Vastel | FP-Crawlers: Studying the Resilience of Browser Fingerprinting to Block Crawlers[END_REF] but without any distinctiveness measure, have a respective normalized entropy of 0.388 and 0.327. The size of bounding boxes was used by [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF] as a method of font fingerprinting. From the entropy reported in [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF], we obtain a normalized entropy of 0.761 against 0.369 in our dataset. To the best of our knowledge, no previous study use the width and the position of a newly created div element as a fingerprinting attribute. However, it is highly distinctive as it achieves a normalized entropy of 0.324 in our dataset. All the mentioned attributes provide a sameness rate above 90%, except for the size of bounding boxes that goes down to 47%. However, when looking at its extracted parts, we observe that they have a sameness rate higher than 90% at the exception of the height of the first bounding box that has a sameness rate of 49%. This illustrates the necessity to break down some attributes to parts, as removing this part from the original attribute would drastically increase its sameness rate.

5.1.3

Attributes sameness rate. Figure 12 displays the cumulative distribution of the sameness rate among the attributes. Only 6 attributes (2.29%) provide a sameness rate below 85%, 5.7% of the attributes provide a sameness rate comprised in [85, 95]%, 10.7% provide a sameness rate comprised in [START_REF]Carat Project Statistics[END_REF][START_REF] Unger | SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting[END_REF]%, and more than 80% of the attributes have a sameness rate above 99%. Among the 3, 725, 373 pairs of consecutive fingerprints, only 5 attributes never change (i.e., they show a sameness rate of 100%). They comprise whether cookies are enabled, and four non-standard HTTP headers [START_REF] Jonarne | Useful "X headers" -mobiForge[END_REF] that are X-ATT-DeviceId, X-UIDH, X-WAP-Profile, and X-Network-Info. These headers are typically added by mobile network operators to the communications of mobile devices [START_REF] Vallina-Rodriguez | Header Enrichment or ISP Enrichment?: Emerging Privacy Threats in Mobile Networks[END_REF]. The cookie enabling state is stable because the working dataset only contains fingerprints that have this functionality activated (see Section 2.4). As for the non-standard headers, the two first headers are always missing from the headers. The X-Network-Info header has three non-missing values that were seen on a single browser each. The X-WAP-Profile has three values that were seen on 37 browsers and consist of URL links directing to an XML document that describes the device. The most common link is shared by 35 browsers and concerns the Samsung B550H mobile phone [START_REF] Samsung | SAMSUNG UMTS Handset UA Prof[END_REF].

The attributes that have a sameness rate below 85% are the size of bounding boxes, three extracted attributes derived from the bounding boxes, and two other attributes that we describe here. The instability of the size of bounding boxes is already explained in Section 5.1.2. The Cache-Control HTTP header allows the browser to specify the cache policy used during requests. It is the second most instable attribute with a sameness rate of 70.63%. This header is instable because it is not always sent and some of its values contain the max-age parameter that can vary between requests. The third most instable attribute is the WebRTC fingerprinting method that has a sameness rate of 76.46%. This is due to three factors. First, the experimental state of this attribute and the bad support of the WebRTC API at the time of the experiment [START_REF]createDataChannel" | Can I use[END_REF][START_REF] Mohammed | Not All Browsers are Created Equal: Comparing Web Browser Fingerprintability[END_REF] results in it being unsupported, undefined, or erroneous for 75.23% of the observed fingerprints. Then, it contains local IP addresses 10 which can change between two observations. Finally, it is composed by numerous pieces of information about an instance of a WebRTC connection, hence the change of any information modifies the value of the whole attribute. We reduce this effect by collecting these pieces of information from two connections and only keeping the identical values.

Attributes collection time.

Most of the attributes are HTTP headers or JavaScript properties that are collected sequentially and in a negligible amount of time. We call asynchronous attributes the attributes that are collected asynchronously (i.e., in parallel). Only 33 attributes have a median collection time (MCT) higher than 5ms. They are presented in Figure 13 and are thoroughly described in Appendix A. All these attributes are asynchronous at the exception of the canvases, hence the total collection time of the fingerprint is not their sum. These attributes can be separated in three classes: extension detection, browser component, and media related. Their high collection time can be explained by these attributes waiting for the web page to render, executing heavy processes (e.g., graphical computation), or being asynchronous attributes that are affected by the side effect described in Appendix B. We consider the fingerprints that take more than 30 seconds to collect as outliers. We configured our fingerprinting script to collect the attributes in a given amount of time, after which the fingerprint is sent without waiting for all the attributes. In such case, the missing attribute do not have a collection time, and we ignore their collection time in the presented results. For all the attributes except five asynchronous attributes, these two types of 
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Overall Desktops Mobiles Fig. 13. Median collection time in seconds of the 33 attributes that have a median collection time higher than 5ms. The attributes are ranked from the slowest to the fastest to collect for the overall browsers. We consider the fingerprints that take more than 30 seconds to collect as outliers. The attributes that were not collected in time are not counted in these results. These two types of outliers account for less than 1% of the overall, desktop, and mobile entries, at the exception of the five asynchronous attributes discussed in Appendix B.

outliers account for less than 1% of the overall, desktop, and mobile entries. Appendix B discusses these two types of outliers.

The first class of the attributes that take time to collect are the methods of extension detection. All these attributes are asynchronous. The 9 slowest attributes detect an extension by the changes it brings to the content of the web page [START_REF] Starov | XHOUND: Quantifying the Fingerprintability of Browser Extensions[END_REF]. They have a median collection time (MCT) of approximately 2.2 seconds due to the waiting time before checking the changes on the web page. There is a clear difference between desktop and mobile browsers that show a respective MCT of approximately 2 seconds against 3.3 seconds. The 22nd to the 29th slowest attributes detect an extension based on web-accessible resources [START_REF] Sjösten | Discovering Browser Extensions via Web Accessible Resources[END_REF], which consist in checking whether an image embarked in an extension is accessible or not. They have a MCT of around 56ms, which is lower than the method that relies on detecting changes brought to the web page.

The second class of the attributes that take time to collect infer the availability of browser components. All these attributes are asynchronous. The list of speech synthesis voices is ranked 14th with a MCT of 546ms. This is due to this attribute being a list and the collection method that, for some browsers, requires to be done during an onvoiceschanged event which takes time to be triggered. The list of fonts and the inference of the default font are ranked 15th and 19th with a respective MCT of 450ms and 99ms. This is due to the detection method that measures the size of newly created text boxes [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF]. The size of bounding boxes, the browser component colors, and the width and position of a newly created div element are ranked 18th, 20th, and 21st, with a MCT ranging from 84ms to 197ms. This is due to their waiting for and manipulation of the web page that takes time. The WebRTC fingerprinting method is ranked 13th with a MCT of 771ms. This is due to the creation of two WebRTC connections that are needed to gather information about the WebRTC configuration. The heaviest to the lightest attribute for the overall browsers The third class of the attributes that take time to collect are those that generate a media file (e.g., a sound, an image) and are discussed in Section 5.3. The methods of advanced audio fingerprinting are asynchronous and ranked 10th, 11th, and 12th. Our designed canvases are ranked 16th and 17th. The canvases inspired by the AmIUnique study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] are ranked 31st and 33rd. The canvas similar to the canvas of the Morellian study [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF] is ranked 32nd.

Attributes size. Most of our attributes have a negligible median size (MS).

We have 137 attributes with a MS below 5 bytes, 105 attributes with a MS between 5 bytes and 100 bytes, and 20 attributes with a MS above 100 bytes. Figure 14 displays the median size of the 20 heaviest attributes in bytes, ranked from the heaviest to the lightest attribute for the overall browsers. We discuss below these 20 heaviest attributes.

The heaviest attributes are composed of list attributes and verbose textual attributes. The three heaviest attributes are list attributes. The list of the properties of the navigator object is the heaviest attribute with a MS of 502 bytes, the list of colors of layout components is second with a MS of 492 bytes, and the list of WebGL extensions is third with a MS of 401 bytes. Examples of verbose textual attributes are the appVersion that is 18th with a MS of 107 bytes, and the userAgent JavaScript property that is 14th with a MS of 115 bytes, which is more verbose than its HTTP header counterpart that is 19th with a MS of 108 bytes.

On mobile browsers, some list attributes are most of the time empty due to their lack of customization (e.g., plugins are mostly unsupported). They are the list of speech synthesis voices that is 4th, the list of the constraints supported by the mediaDevices object that is 8th, the list of plugins that is 12th, and the list of supported mime types that is 17th. On the contrary, the verbose attributes are slightly heavier on mobile browsers, which is explained by the presence of additional information like the device model. 

Correlation between attributes

We can expect to have correlations occurring between the attributes when considering more than 200 attributes. We provide here an overview of the correlation between the attributes, that include the nine dynamic attributes, and refer the reader to Appendix E for insight in the correlation of each attribute.

For comparability with the results of attributes distinctiveness, we express the correlation by the conditional entropy H(𝑎 𝑗 |𝑎 𝑖 ) of an attribute 𝑎 𝑗 when another attribute 𝑎 𝑖 is known, normalized to the maximum entropy 𝐻 𝑀 . We call this measure the normalized conditional entropy. It is comprised between 0.0 if knowing 𝑎 𝑖 allows to completely infer 𝑎 𝑗 , and the normalized entropy of 𝑎 𝑗 if knowing 𝑎 𝑖 provides no information on the value of 𝑎 𝑗 (i.e., they are independent). We denote 𝑉 𝑖 the domain of the attribute 𝑎 𝑖 and 𝑒 𝑖 𝑣 the event that the attribute 𝑎 𝑖 takes the value 𝑣. We consider the relative frequency 𝑝 of the attribute values among the considered fingerprints. The measure of the conditional entropy H(𝑎 𝑗 |𝑎 𝑖 ) of 𝑎 𝑗 given 𝑎 𝑖 is expressed as

H(𝑎 𝑗 |𝑎 𝑖 ) = - ∑︁ 𝑣 ∈𝑉 𝑖 ,𝑤 ∈𝑉 𝑗 𝑝 (𝑒 𝑖 𝑣 , 𝑒 𝑗 𝑤 ) log 𝑝 (𝑒 𝑖 𝑣 , 𝑒 𝑗 𝑤 ) 𝑝 (𝑒 𝑖 𝑣 ) (9) 
Figure 15 displays the normalized conditional entropy (NCE) of the attributes given the knowledge of another attribute and Figure 16 displays the minimum, the average, and the maximum NCE of an attribute when the value of another attribute is known. In these two figures, the attributes are ordered identically by the average NCE. We recall that the maximum entropy is 𝐻 𝑀 = 21.983 bits and that a conditional entropy of 1 bit is equivalent to a NCE of 0.045. 

Normalized conditional entropy

Maximum conditional entropy Average conditional entropy Minimum conditional entropy In Figure 16, we ignore the 9 source attributes from which the extracted attributes are derived and the comparison of an attribute with itself. These cases are irrelevant as the extracted attributes are completely correlated with their source attribute, and an attribute is completely correlated with itself. We obtain a total of 253 attributes. We stress that the maximum NCE of an attribute is always equal to the normalized entropy of this attribute. This is due to the cookie enabling state that is always true. As a result, it provides a null entropy and knowing its value does not provide any information on the value of the other attributes. We can see three parts in this figure. First, 19 attributes have a low normalized entropy of less than 10 -3 and their NCE when knowing another attribute is at most as much. Few different values have been observed for these attributes. Then, 194 attributes have an average NCE between 10 -3 and 10 -1 . The minimum normalized conditional entropy (MinNCE) of these attributes is near 0.0, hence there exists another attribute that can be used to efficiently infer their value. Finally, 40 attributes have an average NCE higher than 10 -1 and generally have a strictly positive MinNCE. These attributes help to efficiently distinguish browsers and are less correlated to other attributes.

The minimum normalized conditional entropy (MinNCE) is an interesting indicator of the efficiency to infer the value of an attribute if the value of another attribute is known. We have 49 attributes that have a null MinNCE and can completely be inferred when another attribute is known. Moreover, 192 attributes have a MinNCE comprised in the range ]0, 0.045], hence knowing the value of another attribute helps to infer their value but not completely. Finally, 12 attributes have a MinNCE higher than 0.045, which is equivalent to having a minimum conditional entropy higher than 1 bit. They are displayed in Table 5. They consist of highly distinctive attributes that concern the screen or window size (e.g., W.screenX, W.innerHeight), browser components (e.g., the list of fonts or plugins), and verbose information about the browser (e.g., the UserAgent) or about external components (e.g., WebRTC fingerprinting).

As the attributes tend to be correlated with each other, a subset of them can provide sufficient distinctiveness or the same distinctiveness as when using all the attributes. Several attribute selection methods were proposed by previous works. The most common methods weight the attributes (e.g., by the entropy) and successively pick the attribute of the highest weight until the obtained set reaches a threshold (e.g., on the number of attributes) [START_REF] Blakemore | Fingerprinting for Web Applications: From Devices to Related Groups[END_REF][START_REF] Hraška | Browser Fingerprinting[END_REF][START_REF] Amin Faiz Khademi | An Empirical Evaluation of Web-Based Fingerprinting[END_REF][START_REF] Pedro | noPhish -Anti-phishing System using Browser Fingerprinting[END_REF][START_REF] Tanabe | Combining Features in Browser Fingerprinting[END_REF]. Other selection methods leverage the correlation that occur between the attributes and pick the next attribute according to the attributes that are already selected [START_REF] Andriamilanto | FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms[END_REF][START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF][START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF]. In particular, the authors of the FPSelect study [START_REF] Andriamilanto | FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms[END_REF] apply three attribute selection methods to a sample of our dataset and compare the methods according to the distinctiveness and the usability of the resulting fingerprints.

Focus on dynamic attributes

Previous studies highlight the possibility to fingerprint browsers by rendering media files inside the browser, given instructions that are provided by the fingerprinter (e.g., WebGL canvas [START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF], HTML5 canvas [START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF], audio fingerprinting [START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF]). Later on, these attributes were integrated within challenge-response mechanisms [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF] that mitigate replay attacks. We call these attributes the dynamic attributes and include nine of them in our script: five HTML5 canvases, three audio fingerprinting methods, and a WebGL canvas. To the best of our knowledge, no study evaluates the properties of several dynamic attributes on a browser population, together with the evaluation of various set of instructions. In this section, we seek to fill this gap and focus on the properties offered by the nine dynamic attributes of our fingerprinting script.

HTML5 canvas.

The HTML5 canvas consists in asking the browser to draw an image using the canvas API within the two-dimensional context called 2d. This method is already studied in several works, whether it is about its efficacy [START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], its use on the web [START_REF] Englehardt | Online Tracking: A 1-million-site Measurement and Analysis[END_REF][START_REF] Le | Towards Accurate Detection of Obfuscated Web Tracking[END_REF], or the distinctiveness provided by various sets of instructions [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF]. However, to the best of our knowledge, no study evaluates the different properties (e.g., distinctiveness, stability, collection time) offered by various sets of complex instructions (i.e., mixes of texts, emojis, mathematical curves, drawn using different colors). We seek to fill this gap and evaluate the properties of five HTML5 canvases generated following three sets of instructions and in two image formats (PNG and JPEG). We name the canvases given the set of instructions and the format. We call AmIUnique canvas the canvas generated by the set of instructions inspired by the AmIUnique11 study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. We extract it in PNG format only. We call Morellian canvas the canvas generated by the set of instructions that is similar to the Morellian study [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF]. We extract it in PNG and JPEG format. We call custom canvas the canvas generated by a set of instructions that we designed. We extract it in PNG and JPEG format. We generate the canvas using the API, then we collect the base64 representation of the image in PNG and JPEG format using the toDataURL function. The quality parameter of this function goes from 0.0 to 1.0 and allow us to control the level of compression of the JPEG versions. As we seek to compare the PNG canvases that are compressed without loss with their JPEG counterparts using a high level of compression, we set the quality to 0.1 for the JPEG versions. An example of the custom canvas in PNG format is displayed in Figure 17. Examples of the AmIUnique and Morellian canvas are provided in Appendix A.

We observe that canvases are less distinctive and more stable in JPEG format than in PNG format. For example, the custom canvas has a normalized entropy of 0.420 when exported in PNG against 0.399 for the JPEG version. However, the PNG version has a sameness rate of 92.16% against 93.59% for the JPEG version. These differences are due to distinct images in PNG format ending up the same after the lossy compression of the JPEG format. Acar et al. [START_REF] Acar | The Web Never Forgets: Persistent Tracking Mechanisms in the Wild[END_REF] consider that a canvas generated in a lossy compression format as JPEG is not an indicator of a fingerprinting attempt. Although the JPEG version provides a lower distinctiveness than the PNG version, it is still highly distinctive when generated using a complex set of instructions. Indeed, it is the second most distinctive attribute among ours (see Section 5.1.2). The time overhead induced by the additional extraction in JPEG format is negligible. For example, the custom canvas has a median collection time (MCT) increased by 5ms for the JPEG version compared to the PNG version that has a MCT of 257ms. We do not account the size differences as both formats are hashed and the resulting hashes weigh 64 bytes. The PNG and the JPEG versions are also highly correlated, as knowing the value in the PNG format of the custom canvas leaves a normalized conditional entropy (NCE) of 5.28 × 10 -4 on the value of the JPEG format. On the opposite, knowing the value of the JPEG format provides a higher NCE of 0.021 on the value of the PNG format.

The properties of the three PNG canvases differ, with the custom canvas being the most distinctive. First, the Morellian canvas is an enhanced version of the AmIUnique canvas with additional curves. This enhancement provides an increase of the distinctiveness, with a normalized entropy of 0.385 for the Morellian canvas against 0.353 for the AmIUnique canvas. However, it comes with a loss of stability with a respective sameness rate of 94.71% against 98.64%. Then, the custom canvas is more complex than the Morellian canvas as it includes several emojis, two strings including Swedish letters, many overlapping ellipses, a background with a color gradient, and a rotation of all these elements if the functionality is available. These improvements provide a higher normalized entropy of 0.420, but a lower sameness rate of 92.16%. The main drawback of adding more complexity to the custom canvas is the temporal cost. It has a MCT of 257ms against 37ms for the Morellian canvas and 31ms for the AmIUnique canvas. However, it represents less than 10% of the total median collection time of the fingerprints which is 2.92 seconds, and less than 5% of the median loading time of a web page on a desktop browser which is 6.5 seconds [START_REF]Median Loading Time of Web Pages[END_REF]. Finally, knowing the value of the custom canvas leaves less variability on the value of the two other canvases than the opposite. When knowing the value of the Morellian or AmIUnique canvas, the custom canvas has a respective NCE of 0.079 and 0.103. However, knowing the value of the custom canvas results in the Morellian canvas showing a NCE of 0.044 and the AmIUnique canvas showing a NCE of 0.037. To conclude, adding more instructions for the canvas drawing usually provides more distinctiveness, as each instruction can induce a difference between browsers. However, it comes at the cost of additional computation time and loss of stability as each additional instruction can constitute an instability factor.

WebGL canvas.

The WebGL canvas is an image that is drawn using the canvas API within the webgl or webgl2 contexts. These contexts use the WebGL library [START_REF]WebGL[END_REF] that leverages hardware accelerations to render and manipulate two-dimensional graphics and three-dimensional scenes. Canvas fingerprinting was first introduced by Mowery et al. [START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF] using the webgl context, but afterward most studies focused on the 2d context [START_REF] Mohammed | Not All Browsers are Created Equal: Comparing Web Browser Fingerprintability[END_REF][START_REF] Baumann | Disguised Chromium Browser: Robust Browser, Flash and Canvas Fingerprinting Protection[END_REF][START_REF] Bursztein | Picasso: Lightweight Device Class Fingerprinting for Web Clients[END_REF][START_REF] Vastel | FP-STALKER: Tracking Browser Fingerprint Evolutions[END_REF]. This can result from the unreliability of the WebGL context encountered by Laperdrix et al. [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] for which Cao et al. [START_REF] Cao | Cross-)Browser Fingerprinting via OS and Hardware Level Features[END_REF] proposed a remedy by setting specific parameters.

Our WebGL canvas consists in sequential triangles with a color gradient and is simpler than our designed HTML5 canvas. It provides a normalized entropy of 0.263 against 0.420 for the custom HTML5 canvas. It is more stable that the other canvases with a sameness rate of 98.97%, and has a median collection time of 41ms against 257ms for the custom HTML5 canvas. Figure 18 displays an example of our WebGL canvas.

Web Audio.

Web Audio fingerprinting was discovered by Englehardt et al. [START_REF] Englehardt | Online Tracking: A 1-million-site Measurement and Analysis[END_REF] when assessing the use of web tracking methods on the web, and was studied thoroughly by Queiroz et al. [START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF]. It consists in processing audio signals in the browser and collecting the rendered result. Similarly to canvases, this processing relies on software and hardware components, and variations occur between different component stacks. It works by creating an Audio Context, which in our case is the OfflineAudioContext12 , in which we manipulate Audio Nodes. The Audio Nodes are of three types. Source nodes generate an audio signal (e.g., from a microphone or an audio stream), destination nodes render the signal (e.g., playing it through speakers), and manipulation nodes manipulate the signal (e.g., increase its volume). These nodes are linked together to form a network that goes from source nodes to destination nodes and passes through manipulation nodes. We refer the reader to [START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF] for a broader description of the main audio nodes.

We have three audio fingerprinting attributes. The audio FP simple (AFS) attribute relies on a simple process. The attributes audio FP advanced (AFA) and audio FP advanced frequency data (AFA-FD) rely on a more advanced process. Their concrete implementation is described in Appendix A. The most distinctive audio attribute is the AFA-FD that has a normalized entropy of 0.161, followed by the AFS (0.153), and the AFA (0.147). They all have a sameness rate of approximately 95%. Their values are the string representations of floating-point numbers, hence they have a median size of 17 bytes. The simple process has a median collection time (MCT) of 1.38 seconds and the advanced process has a MCT of 1.64 seconds. The AFA-FD is collected from the advanced version and has a MCT increased by 3ms compared to the AFA.

DISCUSSION

This section describes how browser fingerprinting can be integrated in a web authentication mechanism and discusses the attacks that are possible on such mechanism.

Browser fingerprinting-based authentication mechanism

Browser fingerprinting can enhance an authentication mechanism by providing an additional barrier at a low usability and deployability cost. In this section, we provide an example of how it can concretely be implemented. The verifier controls a web platform on which her users are registered. Each registered account is associated to an identifier and to a set of authentication factors. They include a simple password and the fingerprints of the browsers used by the account owner. We emphasize that dynamic attributes can be integrated to the browser fingerprints to enforce a challenge-response mechanism that mitigates replay attacks [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF].

6.1.1 Enrollment. The enrollment consists for a user to create his account and to register the authentication factors. During this step, the user and the verifier agrees on the account identifier (e.g., username, email address, phone number) and on the authentication factors (e.g., password, email address, phone number) that are assigned to the user. The fingerprint of the browser in use during the enrollment is collected and stored as the first browser fingerprint of the user. To register an additional browser, the user is required to authenticate using other strong factors (e.g., a physical token, a one time password) before getting the fingerprint of the new browser registered.

Authentication.

During each authentication, the user claims an account by providing the identifier and presenting the authentication factors. The verifier compares the presented authentication factors with the ones stored for this user. If they match, the user is deemed legitimate and is given access to the account. Otherwise, the access is denied to the user and the verifier can take preventive actions [START_REF] Golla | Will Any Password Do?" Exploring Rate-Limiting on the Web[END_REF] according to her policy (e.g., blocking the account). The verifier notably compares the collected browser fingerprint with the fingerprints of the browsers registered to the account. If the other factors match and the fingerprint of one of the registered browser matches the collected fingerprint, the fingerprint stored for this browser is updated to the newly collected one. By using the User-Agent HTTP header, it would also be possible to reduce the set of the stored fingerprints against which to compare the presented fingerprint (e.g., recognizing the family of the browser in use and getting the stored fingerprints of this family).

6.1.3 Account Recovery. It happens that legitimate users are not able to provide the authentication factors (e.g., a password is forgotten, a physical token is lost). When it occurs, users are given access to an account recovery mechanism [START_REF] Markert | Work in Progress: A Comparative Long-Term Study of Fallback Authentication[END_REF] that leverages other authentication factors than the usual ones (e.g., face-to-face verification, email verification). Users cannot mistake their browser fingerprint, but it can become hard to recognize if too many changes are brought to the web environment of the browser. In this case, the user is asked to undergo the account recovery step and select the registered browser for which to update its fingerprint.

Attacks on the authentication mechanism

We discuss in this section the attacks that are possible on the browser fingerprinting-based authentication mechanism. We consider an attacker that can access the authentication page and seeks to impersonate as many legitimate users as possible. To impersonate a legitimate user, the attacker has ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

to find the right combination of identifier and authentication factors. Below, we make assumptions about the attacker and describe the attacks that he can execute.

6.2.1 Assumptions about the attacker. We focus on the contribution of browser fingerprinting to the authentication mechanism and make the following assumptions. The attacker knows the identifiers of the targeted users and the authentication factors (e.g., their password) at the exception to the browser fingerprint 13 . A concrete example is an attacker that obtained these pieces of information from a data leak or theft. The attacker cannot tamper with the authentication server of the verifier nor with the device or the browser of the user. The attacker cannot tamper nor eavesdrop the communications between the server of the verifier and the browser of the user. The attacker knows the attributes that are collected by the fingerprinting script. This knowledge can be obtained from static or dynamic analysis of the script [START_REF] Ashouri | A Large-Scale Analysis of Browser Fingerprinting via Chrome Instrumentation[END_REF][START_REF] Bird | Actions Speak Louder than Words: Semi-supervised Learning for Browser Fingerprinting Detection[END_REF][START_REF] Rizzo | Unveiling Web Fingerprinting in the Wild Via Code Mining and Machine Learning[END_REF]. The attacker knows the domains of the attributes and the domain of the fingerprints. The latter is the Cartesian product of the former. This knowledge can stem from publicly accessible resources like statistics [START_REF]Carat Project Statistics[END_REF], documentation, or fingerprint datasets [START_REF] Henning Tillmann | Browser Fingerprinting: 93% of all user configurations are unique | Henning Tillmann[END_REF][START_REF] Vastel | FP-STALKER: Tracking Browser Fingerprint Evolutions[END_REF]. It can also come from malicious sources like stolen fingerprints [START_REF] Marks | Dark Web's Doppelgängers Aim to Dupe Antifraud Systems[END_REF], phishing attacks [START_REF] Thomas | Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials[END_REF], or a set of controlled browsers [START_REF] Papadopoulos | Master of Web Puppets: Abusing Web Browsers for Persistent and Stealthy Computation[END_REF]. The attacker can control the values of the attributes that compose the fingerprint by using open source tools like Disguised Chromium Browser [START_REF] Baumann | Disguised Chromium Browser: Robust Browser, Flash and Canvas Fingerprinting Protection[END_REF] or Blink [START_REF] Laperdrix | Mitigating Browser Fingerprint Tracking: Multi-level Reconfiguration and Diversification[END_REF], commercial solutions like Multilogin [START_REF]Multilogin -Replace Multiple Computers With Virtual Browser Profiles -Multilogin[END_REF] or AntiDetect [START_REF]Antidetect[END_REF], or by altering the network packets that contain the fingerprint with tools like BurpSuite [START_REF]Burp Suite -Application Security Testing Software -PortSwigger[END_REF]. The attacker can submit a limited number of arbitrary fingerprints to try to impersonate a targeted user. We emphasize that the reach of the attacker depends on the number of attempts similarly to guessing attacks on passwords [START_REF] Bonneau | The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords[END_REF][START_REF] Wang | Targeted Online Password Guessing: An Underestimated Threat[END_REF]. In our online authentication context, the number of attempts depends on the rate limiting policy of the verifier [START_REF] Golla | Will Any Password Do?" Exploring Rate-Limiting on the Web[END_REF][START_REF] Lu | A Measurement Study of Authentication Rate-Limiting Mechanisms of Modern Websites[END_REF]. After a given number of failed attempts, the verifier can lock the account and ask the account owner to update his authentication factors (e.g., change his password, update his fingerprint).

Brute force attack.

The brute force attack consists in the attacker submitting randomly sampled fingerprints from the fingerprint domain. In practice, the attacker randomly picks the value of each attribute, forges a fingerprint by combining them, and submits this fingerprint. The attacker repeats this process until the account is locked out or after a number of attempts decided by herself. The reach of the brute force attack depends on the space of the possible fingerprints that the attacker manages to cover in the limited number of attempts. Two factors greatly limit this reach. First, the domain of the fingerprint grows exponentially with the domain of the composing attributes. Second, the fingerprints are sampled randomly from the possibility space, which can lead to highly improbable combination of attribute values due to contradicting or incompatible values. Contradicting values occur when two attributes that always provide the same value, like the logicalXDPI and logicalYDPI properties of the screen JavaScript object, are chosen with diverging values. Incompatible values occur when two attributes that are correlated are chosen with incompatible values, like one value that indicates a mobile device (e.g., a UserAgent typically observed on mobile devices) and the other value indicating a desktop device (e.g., a large screen size). On our experimental setup, these two factors are important and greatly reduce the reach of brute force attacks. Indeed, our dataset is composed of 262 attributes (including the extracted ones) among which 20% have more than a thousand distinct values (see Section 5). Moreover, our attributes tend to be highly correlated with each other: 49 attributes have a null conditional entropy when the value of another attribute is known (see Section 5.2). Although the fingerprint verification mechanism can allow differences between the fingerprints, a randomly sampled fingerprint is expected to have a lower number of identical attributes compared to the fingerprint of the targeted user. For a given attribute, there is only one chance over the size of the attribute domain for the attribute to be identical, and there may be more chances for it to be similar. However, for the randomly sampled fingerprint to match the target fingerprint, there should be sufficient identical or similar attributes, whereas the chances for this to happen decreases with the number and domain size of the attributes. 6.2.3 Dictionary attack. The dictionary attack consists for an attacker to infer a distribution of the fingerprints (e.g., from stolen fingerprints [START_REF] Marks | Dark Web's Doppelgängers Aim to Dupe Antifraud Systems[END_REF]) and to submit the most probable fingerprints. The reach of the dictionary attack depends on the correspondence between the fingerprint distribution among the protected users and the fingerprint distribution known by the attacker. We take the example of an attacker having the knowledge of a fingerprint distribution obtained from mobile browsers configured in English, but targeting users of desktop browsers configured in French. In this example, the fingerprints submitted by the attacker would have few chances to match as some attributes (e.g., the screen size, the browser language) would differ. The users that are impersonated are those for which one of the registered fingerprints matches with one of the most probable fingerprints given the knowledge of the attacker. The authors of the FPSelect study [START_REF] Andriamilanto | FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms[END_REF] measured the reach of a dictionary attack on a sample of 30, 000 fingerprints of our dataset, considering an attacker that knows the exact distribution of the target fingerprints and a verification mechanism that allows differences between the compared fingerprints. They found out that 0.21% of the users are impersonated when the attacker is able to submit the 4 most common fingerprints, which goes up to 0.51% for the 16 most common fingerprints. These proportions are a higher bound on the proportion of the fingerprints that are shared respectively by the 4 and the 16 most common fingerprints due to the differences allowed by the verification mechanism. These proportions are slightly lower than the share of the most common passwords measured in previous studies. Thomas et al. [START_REF] Thomas | Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials[END_REF] analyzed nearly two billion passwords and found out that the 4 most common passwords are shared by 0.72% of the users, which goes up to 1.01% for the 10 most common passwords. Wang et al. [START_REF] Wang | Targeted Online Password Guessing: An Underestimated Threat[END_REF] worked on nine password datasets and found out that the ten most common passwords are shared by 0.79% to 10.44% of the users, with an average of 3.06% among the datasets.

6.2.4 Replay attack. The replay attack consists for an attacker to collect the fingerprint of a user (e.g., through a phishing attack) and to submit this fingerprint to impersonate the user. Recent works [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF] proposed to use dynamic attributes -notably the HTML5 canvas -to design challenge-response mechanisms to thwart replay attacks. These challenge-response mechanisms leverage the value of the dynamic attributes which depends on the set of instructions that is used (e.g., the drawing instructions of the canvas). The challenge is then the set of instructions and the response is the value generated by the browser. By varying the challenge on each authentication, a fingerprint that would have been collected by the attacker would be invalid as it would be the response to a previous challenge. We refer to the work of Laperdrix et al. [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF] for a thorough analysis of the level of security provided by such challenge-response mechanism. Section 5.3 analyzes the nine dynamic attributes of three different types that are included in our study. 6.2.5 Relay attack. The relay attack consists for an attacker to pose as a legitimate user to the verifier, to pose as the verifier to a targeted user, and to relay the communications from one to the other. A relay attack is divided in the three following steps. First, the attacker sets a phishing website that embarks an authentication page similar to the verifier. Then, the attacker lures a victim to visit this fake page. At the same time, the attacker connects to the authentication page of the verifier and forwards the fingerprinting script to the victim. The victim enters her credentials and gets her browser fingerprint collected. Finally, the attacker submits these pieces of information to the authentication page of the verifier. Amnesty International reports the usage of relay attacks in real life and shows that relay attacks are able to break two-factor authentication [START_REF]When Best Practice Isn't Good Enough: Large Campaigns of Phishing Attacks in Middle East and North Africa Target Privacy-Conscious Users[END_REF]. Laperdrix et al. [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF] acknowledge that a challenge-response mechanism is theoretically vulnerable to relay attacks. However, they discuss the practical implications of relay attacks and explain that relay attacks are costly for the attackers to execute in practice. Outside the web context, distance bounding protocols [START_REF] Avoine | Security of Distance-bounding[END_REF] were proposed to defend against relay attacks [START_REF] Francillon | Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars[END_REF]. We let the design of a distance bounding protocol that leverages the time taken by the browser and the server to communicate as a future work.

RELATED WORKS

In this section, we present related works about the use of browser fingerprinting for authentication. In addition, Section 2.5 compares our dataset with the previously studied large-scale datasets [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF][START_REF] Pugliese | Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective[END_REF] and Section 5 compares the distinctiveness of our attributes with the distinctiveness reported in previous studies.

We stress that most studies about browser fingerprinting focus on their use for identification. The use of browser fingerprinting for identification and for authentication differ in the objective when given a presented fingerprint 𝑓 . In identification, we seek to find the identity (e.g., an account, an advertisement profile) to which 𝑓 belongs among a pool of 𝑁 candidate identities. If 𝑓 is unrecognized, it is associated to a new identity that is then added to the candidate identities. Hence, in identification we operate a 1 to 𝑁 comparison. Depending on the matching method, the matching time can be proportional to 𝑁 and become unrealistic in a large-scale setting [START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF]. On the contrary, in authentication the identity is already given (e.g., the claimed account) and we seek to verify that 𝑓 legitimately belongs to this identity. Hence, in authentication we operate a 1 to 1 comparison 14 . The studies about the use of browser fingerprinting for identification usually evaluate the threat posed to privacy by browser accessible information [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF][START_REF] Queiroz | A Web Browser Fingerprinting Method Based on the Web Audio API[END_REF][START_REF] Starov | XHOUND: Quantifying the Fingerprintability of Browser Extensions[END_REF], propose counter-measures to avoid being tracked by this technique [START_REF] Baumann | Disguised Chromium Browser: Robust Browser, Flash and Canvas Fingerprinting Protection[END_REF][START_REF] Laperdrix | FPRandom: Randomizing Core Browser Objects to Break Advanced Device Fingerprinting Techniques[END_REF], or measure its usage on the web [START_REF] Acar | The Web Never Forgets: Persistent Tracking Mechanisms in the Wild[END_REF][START_REF] Bird | Actions Speak Louder than Words: Semi-supervised Learning for Browser Fingerprinting Detection[END_REF][START_REF] Englehardt | Online Tracking: A 1-million-site Measurement and Analysis[END_REF][START_REF] Iqbal | Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors[END_REF].

The first works about the use of browser fingerprinting for authentication focused on its use for continuous authentication [START_REF] Preuveneers | SmartAuth: Dynamic Context Fingerprinting for Continuous User Authentication[END_REF][START_REF] Spooren | Leveraging Battery Usage from Mobile Devices for Active Authentication[END_REF][START_REF] Unger | SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting[END_REF]. Their objective is to verify that the authenticated session is not hijacked. These studies focus on the integration of browser fingerprinting in an authentication mechanism and provide few insights about the properties of the fingerprints (e.g., only [START_REF] Spooren | Leveraging Battery Usage from Mobile Devices for Active Authentication[END_REF] analyzes fingerprints and focuses on their classification efficacy). On the contrary, we identify several properties of authentication factors with which we evaluate real-life browser fingerprints, and explain the results by highlighting the contribution of single attributes. Moreover, these studies only consider a small fraction of the hundreds of available attributes and do not include the dynamic attributes that can be used in a challenge-response mechanism to thwart replay attacks. We include more than 200 attributes -including 9 dynamic attributes -for which we provide the implementation and the properties (e.g., number of distinct values, normalized entropy).

Alaca et al. [START_REF] Alaca | Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods[END_REF] provided a classification of the fingerprinting attributes according to properties that include the stability, the distinctiveness, and the resource usage. They qualitatively estimate these properties given the nature of the attributes. For some attributes, they provide the entropy measured in previous studies and acknowledge that further study is needed on this subject. We stress that comparing the attributes entropy between datasets of different sizes leads to comparability problems as explained by [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] (e.g., the attribute of a dataset of 𝑁 fingerprints provides at most an entropy of log 2 (𝑁 ) bits). We provide the quantitative measure of these properties on our attributes from the analysis of real-life fingerprints, and also evaluate the accuracy of a simple verification mechanism. About the attributes considered by [START_REF] Alaca | Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods[END_REF], they include attributes that require interactions from the user (e.g., her location) or that are related to the network protocol (e.g., the TCP/IP stack fingerprinting that analyzes the response to specially crafted messages). Moreover, their classification leads to different attributes being grouped under a single designation, like the "major software and hardware details" that includes the attribute family of the JavaScript properties that we describe in Appendix A. The attributes of this family can show diverse properties, like the UserAgent that provides a normalized entropy of 0.394 and a sameness rate of 0.98%, whereas the screenX property of the window object provides a normalized entropy of 0.125 and a sameness rate of 0.93%. We show that more than 200 attributes are easily accessible (i.e., they require few lines of JavaScript) and do not require any interaction from the user, which would reduce the usability (e.g., the user being asked permissions several times). Moreover, we provide the exhaustive list of the attributes with their concrete implementation and their properties. We also evaluate the properties of distinctiveness, stability, and resource usage on the complete fingerprints that combine as many attributes.

Markert et al. [START_REF] Markert | Work in Progress: A Comparative Long-Term Study of Fallback Authentication[END_REF] recently presented a work in progress about the long-term analysis of fallback authentication methods. They plan to measure the recovery rate of the evaluated methods after an elapsed time of 6, 12, and 18 months. These methods include browser fingerprinting, for which they acknowledge that "not much about browser fingerprinting-based security systems is known".

Rochet et al. [START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF] and Laperdrix et al. [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF] proposed challenge-response mechanisms that rely on dynamic attributes, especially the HTML5 canvas. The instructions provided to the canvas API are changed on each authentication, making the generated image vary on each fingerprinting. Trivial replay attacks then fails as the awaited canvas image changes each time. In this study, we propose the evaluation of nine dynamic attributes that include five HTML5 canvases, one WebGL canvas, and three audio fingerprinting methods.

CONCLUSION

In this study, we conduct the first large-scale empirical study of the properties of browser fingerprints when used for web authentication. We make the link between the digital fingerprints that distinguish Humans, and the browser fingerprints that distinguish browsers, to evaluate the latter according to properties inspired by biometric authentication factors. We formalize and evaluate the properties for the browser fingerprints to be usable and practical in a web authentication context. They include the distinctiveness of the fingerprints, their stability, their collection time, their size, the loss of efficacy among browser types, and the accuracy of a simple illustrative verification mechanism. We evaluate these properties on a real-life large-scale fingerprint dataset collected over a period of 6 months that contains 4, 145, 408 fingerprints composed of 216 attributes. The attributes include nine dynamic attributes which are used in state-of-the-art authentication mechanisms to mitigate replay attacks. We thoroughly describe the preprocessing steps to prepare the dataset and the browser population that, contrary to most of the previous studies, is not biased towards technically-savvy users. We show that, considering time-partitioned datasets, our browser fingerprints provide a unicity rate above 81.3% which is stable over the 6 months, and more than 94.7% of the fingerprints are shared by at most 8 browsers. We observe a loss of distinctiveness from mobile browsers that show a lower unicity rate of 42%. About the stability and on average, more than 91% of the attributes are identical between two observations of the fingerprint of a browser, even when they are separated by nearly 6 months. About the memory and the time consumption of our fingerprints, we show that they weigh a dozen of kilobytes and take a few seconds to collect. Our simple verification mechanism achieves an equal error rate of 0.61%. It comes from most of the consecutive fingerprints of a browser having at least 234 identical attributes, whereas most of the fingerprints of different browsers have fewer. To better comprehend the results on the complete fingerprints, we evaluate the contribution of the attributes to each fingerprint property. We show that although the attributes show a lower distinctiveness compared to previous studies, 10% of the attributes provide a normalized entropy higher than 0.25. Moreover, four attributes missing from the previous large-scale studies are part of the most distinctive of our attributes. They concern the size and position of elements of the browser interface. About the stability, 85% of the attributes stay identical between 99% of the pairs of consecutive fingerprints coming from the same browser. Few attributes consume a high amount of resources. Only 33 attributes take more than 5ms to collect and only 20 attributes weigh more than 100 bytes. When looking at the correlation between the attributes, we find that 49 attributes can completely be inferred when the value of another attribute is known. We remark that the dynamic attributes are part of the most time-consuming attributes, but also among the most distinctive attributes. We show the importance of the set of instructions which influences both the distinctiveness and the stability of the generated values (e.g., the canvas image). We conclude that the browser fingerprints obtained from the combination of the studied browser population, and the large surface of fingerprinting attributes, carry the promise to strengthen web authentication mechanisms.

enumerate the list of plugins and the list of mime types (i.e., the supported data format). The list of fonts is an asynchronous attribute. To collect it, we check the size of text boxes [START_REF] Fifield | Fingerprinting Web Users Through Font Metrics[END_REF] to infer the presence of 66 fonts. Additionally, we collect the list of speech synthesis voices from the speechSynthesis property of the window object or one of its variant (e.g., prefixed with webkit).

To do so, we use the getVoices function of this property. On some browsers, we have to wait for the onvoiceschanged event to be triggered before getting access to the list. This attribute is then asynchronous.

A.3.2 Support of video, audio, and streaming codecs. We infer the support of video codecs by creating a video element and checking whether it can play a given type using the canPlayType() function. The support of audio codecs is inferred by applying the same method on an audio element. We infer the support of streaming codecs by calling the isTypeSupported() function of the window.[WebKit, moz, ms, ∅]MediaSource object and checking the presence of both the audio and the video codecs. We apply the same method to infer the support of recording codecs from the MediaRecorder object.

A.3.3 List of video codecs. The 15 video codecs for which we infer the presence are the following: video/mp2t; codecs="avc1.42E01E,mp4a.40.2", video/mp4; codecs="avc1.42c00d", video/mp4; codecs-="avc1.4D401E", video/mp4; codecs="mp4v.20.8", video/mp4; codecs="avc1.42E01E", video/mp4; codecs="avc1.42E01E, mp4a.40.2", video/mp4; codecs="hvc1.1.L0.0", video/mp4; codecs="hev1.1.L0.-0", video/ogg; codecs="theora", video/ogg; codecs="vorbis", video/webm; codecs="vp8", video/webm; codecs="vp9", application/dash+xml, application/vnd.apple.mpegURL, audio/mpegurl. A.3.4 List of audio codecs. The 9 audio codecs for which we infer the presence are the following: audio/wav; codecs="1", audio/mpeg, audio/mp4; codecs="mp4a.40.2", audio/mp4; codecs="ac-3", audio/mp4; codecs="ec-3", audio/ogg; codecs="vorbis", audio/ogg; codecs="opus", audio/webm; codecs="vorbis", audio/webm; codecs="opus". 

A.4 Extension detection

The list of the installed browser extensions cannot be directly accessed, but their presence can be inferred. We check the changes that are brought to the web page [START_REF] Starov | XHOUND: Quantifying the Fingerprintability of Browser Extensions[END_REF] by the 8 extensions that are listed in Table 6 and the availability of the web accessible resources [START_REF] Karami | Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting[END_REF][START_REF] Sjösten | Discovering Browser Extensions via Web Accessible Resources[END_REF] of the 8 extensions that are listed in Table 7. All these 16 attributes are asynchronous.

A.4.1 Detection of an ad-blocker. We infer the presence of an ad-blocker by creating an invisible dummy advertisement and checking whether it is removed or not. This attribute is then asynchronous. To detect the removal, we check whether the common methods used by ad-blockers are applied. They consist into removing the DOM element, setting its size to zero (e.g., using the offsetWidth or clientHeight property), setting its visibility to hidden, or setting its 

Extension

Web accessible resource display to none. The dummy advertisement is a created division which has the id property set to "ad_ads_pub_track", the class set to "ads .html?ad= /?view=ad text-ad textAd text_ad text_ads text-ads", and the style set to "width: 1px !important; height: 1px !important; position: absolute !important; left: -1000px !important; top: -1000px !important;".

A.5 Size and color of web page elements

A.5.1 Bounding boxes. The attributes related to the bounding boxes concern a div element to which we append a span element. These attributes are asynchronous. The div element has his style property set to the values displayed in Table 8. The span element contains a specifically crafted text that is provided below. The size of bounding boxes (i.e., the width and the height of the rectangles of the div and the span elements) are then collected using the getClientRects function. The text of the span element is "\ua9c0 \u2603 \u20B9 \u2604 \u269b \u2624 \u23B7 \u262c \u2651 \u269d \u0601 \u0603 \uaac1 \u060e \u06dd \ud83c\udfe1 mmmmmmmmmmlil \u102a". The characters that start with "\u" are special Unicode characters (e.g., emojis, letters of a non-latin alphabet).

A.5.2 Width and position of a created div. The attribute named width and position of a created div is the properties of width and transform-origin of a newly created div element which are obtained from the getComputedStyle function. This attribute is asynchronous. This created div element is afterward used to infer the color of layout components as described below. The attribute colors of layout components is obtained by applying the color of several layout components (e.g., the scroll bar) to the created div element denoted new_div, and getting the color back from the property W.getComputedStyle(new_div).color. Each of the tested component gets its color extracted this way and their colors are aggregated in this attribute. The color of each element is afterward extracted as a single attribute (see Section 2.4).

They are displayed at the end of Table 16 that lists the attributes and their properties. These attributes are asynchronous.

A.6 WebGL properties

Our script collects several properties from the WebGL API. To obtain them, we create a canvas element and get its WebGL context by calling getContext() using any of the following parameters: webgl, webgl2, moz-webgl, experimental-webgl, or experimental-webgl2.

The property MAX_TEXTURE_MAX_ANISOTROPY_EXT is obtained from one of [WEBKIT_EXT_, MOZ-_EXT_, EXT_]texture_filter_anisotropic. To get the unmasked vendor and renderer, we first get an identifier named id from the unmasked property of the getExtension('WEBGL_debug_ren-derer_info') object, and then get the actual value by calling getParameter(id). The unmasked property of the renderer is named UNMASKED_RENDERER_WEBGL and the one of the vendor is named UNMASKED_VENDOR_WEBGL. Finally, to get the COMPRESSED_TEXTURE_FORMATS property, we have to load the [WEBKIT_]WEBGL_compressed_texture_s3tc extension first.

A.7 WebRTC fingerprinting

We include a WebRTC fingerprinting method similar to the method proposed by Takasu et al. [START_REF] Takasu | A Survey of Hardware Features in Modern Browsers: 2015 Edition[END_REF]. The method consists in getting information about the Session Description Protocol of a generated WebRTC connection. Due to the variability of this information, we create two different connections and hold only the values that are identical between them. As this method leaks local IP addresses, we hash them directly on the client before sending this attribute. This attribute is asynchronous.

A.8 HTML5 canvases inspired by previous studies

Our script includes a canvas inspired by the AmIUnique study [START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] in both PNG and JPEG formats, and an enhanced version similar to the Morellian study [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF]. Figure 19 and Figure 20 respectively display an example of a canvas generated using these set of instructions. We refer to Section 5.3 for a focus on the dynamic attributes. A.9 Audio fingerprinting In this section, we provide the concrete implementation and the network of AudioNode objects used within each audio fingerprinting methods. These methods are inspired by the work of Englehardt et al. [START_REF] Englehardt | Online Tracking: A 1-million-site Measurement and Analysis[END_REF]. They are designed to form complex networks of AudioNode objects to have more chances to induce fingerprintable behaviors. The three audio fingerprinting attributes are asynchronous. We refer to Section 5.3 for a focus on the dynamic attributes.

A.9.1 Simple audio fingerprinting method. The simple process consists of three OscillatorNode objects that generate a periodic wave, connected to a single DynamicsCompressorNode, and finishing to a AudioDestinationNode. The architecture of the network of AudioNode objects for the simple process is depicted in Figure 21 with the parameters set for each node. The OscillatorNode objects are started one after the other and overlap at some time. The sequence of events is the following: (1) the triangle oscillator node is started at 𝑡 = 0 seconds, (2) the square oscillator is started at 𝑡 = 0.10 seconds, (3) the triangle oscillator is stopped at 𝑡 = 0.20 seconds and the sine oscillator node is started, and finally (4) the square oscillator is stopped at 𝑡 = 0.25 seconds. When the rendering of the audio context is done, the complete event is triggered and gives access to a renderedBuffer that contains the audio data encoded as 32 bits floating-point numbers. The audio FP simple (AFS) attribute is an integer computed as the sum of these numbers cast to absolute integers.

A.9.2 Advanced audio fingerprinting method. The advanced process consists of four Oscillator-Node objects, two BiquadFilterNode objects, two PannerNode objects, one DynamicsCompressor-Node, one AnalyserNode, and one AudioDestinationNode. The architecture of the network of AudioNode objects for the advanced process is depicted in Figure 22 with the parameters set for each node. The OscillatorNode objects are started one after the other and overlap at some time. The sequence of events is the following: (1) the triangle oscillator node and the sine oscillator node with a frequency of 280 are started at 𝑡 = 0 seconds, (2) the square oscillator is started at 𝑡 = 0.05 seconds, (3) the triangle oscillator is stopped at 𝑡 = 0.10 seconds, (4) the sine oscillator with a frequency of 170 is stopped at 𝑡 = 0.15 seconds, (5) the square oscillator is stopped at 𝑡 = 0.20 seconds. When the rendering of the audio context is done, the complete event is triggered and gives access to a renderedBuffer that contains the audio data encoded as 32 bits floating-point numbers. The audio FP advanced (AFA) attribute is an integer computed as the sum of these numbers cast to absolute integers. The audio FP advanced frequency data (AFA-FD) attribute is the sum of the frequency data obtained through the getFloatFrequencyData function of the AnalyserNode.

B ANOMALOUS COLLECTION TIMES

In this section, we describe a side effect encountered by our script that results in some fingerprints and attributes showing a high collection time above 30 seconds. These high collection times concern the sending of the fingerprint and the collection of the attributes that require the body to be set or that are collected asynchronously. In total, 27 base attributes are impacted by these high collection We measure the collection time of the fingerprints by the difference between two timestamps, one recorded at the starting of the script and the other one just before sending the fingerprint. Some fingerprints take a long time to collect that span from several hours to days. The high collection time of these fingerprints is explained below. Our fingerprinting script waits for the page body to load before collecting the attributes that require the body to be available, like the extension detection attributes. Due to a side effect, the script also waits for the body to be set before sending the fingerprint. We manage the waiting times using the setTimeout JavaScript function. The implementation of setTimeout in Chrome [START_REF] Google | Background Tabs in Chrome 57[END_REF] and Firefox [START_REF] Mozilla | WindowOrWorkerGlobalScope.setTimeout() -Web APIs | MDN[END_REF] throttles the time-out of the scripts that are running in inactive tabs to at least one second, and Firefox for Android increases up this threshold to 15 minutes. The waiting for the page body to load and the throttling applied by major browser vendors to inactive tabs result in the high collection time of some fingerprints. Less than 1% of the entries of each device group (i.e., overall, mobiles, and desktops) are impacted by these high collection time and considered as outliers.

We configured our fingerprinting script to collect the attributes in at most one second after the page body have been loaded. After this delay, the fingerprint is sent without waiting for all the attributes and the missing attributes do not have a collection time. All the attributes except five have less than 1% of the entries of each device group either having a high collection time (i.e., we deem the fingerprint an outlier) or missing the collection time. The five asynchronous attributes that miss collection time in more than 1% of the entries of each device group are presented in Table 9. The processing of these attributes take more time than the attributes which are a simple property. Moreover, they consist of complex processes that rely on components external to the browser (e.g., a real-time connection). As a result, the time limit can be reached before collecting the value and setting the collection time of these attributes. Mobile browsers show a higher proportion of missing collection time for the list of speech synthesis voices and the attributes related to the Web Audio API. This is due to the lack of support of these two APIs on mobile browsers at the time of the experiment [START_REF]SpeechSynthesis" | Can I use[END_REF][START_REF]Support tables for HTML5, CSS3[END_REF].

C KEYWORDS

In this section, we provide the keywords used to infer the browser family, the operating system, and whether the browser is a robot. We match these keywords on the userAgent JavaScript property which is first set to lower case. We manually compiled the keywords by searching for meaningful keywords inside the collected UserAgents.

C.1 Robot keywords

We ignore the fingerprints that come from robots (i.e., an automated tool and not a genuine visitor).

To detect these fingerprints, we verify that the UserAgent does not contain the keywords, nor is set to the exact values, that are listed in Table 10.

C.2 Device type

To infer the device type of a browser, we match keywords sequentially with the UserAgent of the browser. Table 11 lists the keywords that we leverage to infer each device type. The set of keywords can overlap between two device types (e.g., the UserAgent of tablet browsers often contain keywords of mobile browsers like mobile). Due to this overlapping problem, we apply the following methodology. The mobile devices are smartphones and do not include tablets. We check that their UserAgent contains a mobile keyword and no tablet nor miscellaneous keywords.

To infer that a device is a tablet, we check that its UserAgent contains a tablet keyword and no miscellaneous keywords. The miscellaneous devices are game consoles and smart TVs. We check that their UserAgent contains a miscellaneous keyword. Finally, to infer that a device is a desktop computer, we check that its UserAgent does not contain any of the mobile, tablet, or miscellaneous keywords. In Table 11, we omit a miscellaneous keyword due to its size: "opera/9.80 (linux i686; u; fr) presto/2.10.287 version/12.00 ; sc/ihd92 stb".

C.3 Browser and operating system families

Table 12 lists the keywords that we use to infer the family of a browser, and Table 13 lists the keywords that we use to infer the operating system family of a browser. As a keyword can be in the UserAgent of two different families, we check the keywords sequentially in the order presented in the tables, and classify a device in the first family for which a keyword matches.

D ADVANCED VERIFICATION MECHANISM Section 3.3.4 describes a simple verification mechanism that checks that the number of identical attributes between the presented and the stored fingerprint is below a threshold. In this section, we present the results obtained using an advanced verification mechanism that incorporates matching functions that authorize limited changes between the attribute values of the presented and the stored fingerprint. The methodology to obtain the datasets is the same as described in Section 4.3.3. 

D.1 Attributes matching

The advanced verification mechanism leverages matching functions for the comparison of the attributes. It counts the attributes that match between the two compared fingerprints, given the matching functions, and deems the evolution legitimate if this number is above a threshold. More formally, we seek to compare the stored fingerprint 𝑓 to the presented fingerprint 𝑔. To do so, we compare the values 𝑓 [𝑎] and 𝑔[𝑎] of the attribute 𝑎 for the fingerprints 𝑓 and 𝑔, using the matching function ≈ 𝑎 . The matching function ≈ 𝑎 of the attribute 𝑎 verifies that the distance between 𝑓 [𝑎] and 𝑔[𝑎] is below a threshold 𝜃 𝑎 . Finally, we deem 𝑔 a legitimate evolution of 𝑓 if the total number of matching attributes between 𝑓 and 𝑔 is above a threshold Θ.

Similarly to previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Kang | Zero-Permission Mobile Device Identification Based on the Similarity of Browser Fingerprints[END_REF][START_REF] Vastel | FP-STALKER: Tracking Browser Fingerprint Evolutions[END_REF], we consider a distance measure that depends on the type of the attribute. We use the minimum edit distance [START_REF] Jurafsky | Speech and Language Processing[END_REF] for the textual attributes, the Jaccard distance [START_REF] Wu | Efficient Fingerprinting-Based Android Device Identification with Zero-Permission Identifiers[END_REF] for the set attributes, the absolute difference for the numerical attributes, and the identity function for the categorical attributes. The distance thresholds of each attribute is obtained by training a Support Vector Machines [START_REF] Hearst | Support Vector Machines[END_REF] model on the two classes of each month sample and extract the threshold from the resulting hyperplane. At the exception of the dynamic attributes that are required to be identical (i.e., the distance threshold is null) as they would contribute to a challenge-response mechanism [START_REF] Laperdrix | Morellian Analysis for Browsers: Making Web Authentication Stronger With Canvas Fingerprinting[END_REF][START_REF] Rochet | SWAT: Seamless Web Authentication Technology[END_REF]. 

D.2 Distribution of matching attributes

Figure 23 displays the distribution of the matching attributes between the same-browser comparisons and the different-browsers comparisons, starting from 51 matching attributes as there are no observed value below. Figure 24 presents a focus that starts from 214 matching attributes, below which there are less than 0.001 of the same-browser comparisons. We can observe that the two sets of comparisons are well separated, as 99% of the same-browser comparisons have at least 235 matching attributes, and 99% of the different-browsers comparisons have fewer. The differentbrowsers comparisons have generally a fewer, and a more diverse, number of matching attributes compared to the same-browser comparisons. The different-browsers comparisons have between 51 and 253 matching attributes, with an average of 134.59 attributes and a standard deviation of 43.25 attributes. The same-browser comparisons have between 81 and 253 matching attributes, with an average of 249.45 attributes and a standard deviation of 3.69 attributes.

D.3 Distribution of match rates

Figure 25 displays the false match rate (FMR) which is the proportion of the same-browser comparisons that are classified as different-browsers comparisons, and the false non-match rate (FNMR) which is the inverse. The displayed results are the average for each number of matching attributes among the six month-samples. As there are no same-browser comparisons that have less than 235 matching attributes, the FNMR is null until this value. However, after exceeding this threshold, the FNMR increases as the same-browser comparisons begin to be classified as different-browsers comparisons. The equal error rate, which is the rate where both the FMR and the FNMR are equal, is of 0.66% and is achieved for 234 matching attributes.

D.4 Comparison with identical matching

The matching functions of the advanced verification mechanism leads to more matching attributes than identical attributes between two fingerprints. The higher number of matching attributes happens for the same-browser comparisons, but also for the different-browsers comparisons. This reduces the False Non-Match Rate (FNMR), but increases the False-Match Rate (FMR). Due to the FMR being higher, the equal error rate is slightly higher for the advanced verification mechanism that leverages matching functions. Table 14 compares the results of the simple verification mechanism that leverages the identical attributes, and the advanced verification mechanism that leverages the matching attributes.

Table 15. The minimum, the average, the maximum, and the standard deviation (Std. dev.) of the distinct values, the normalized entropy, the minimum normalized conditional entropy, the median collection time in seconds, the median size in bytes, and the sameness rate of the attributes. Table 16. Browser fingerprinting attributes with their number of distinct values (Values), their normalized entropy (N. Ent.), their minimum normalized conditional entropy (MinNCE), their stability (% Same), their median size (Size), and their median collection time (Time). The comparisons of the attribute with itself and with the source attributes from which we derive the extracted ones are ignored for the MinNCE result.
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 1 Fig. 1. A simplified web authentication mechanism that relies on browser fingerprinting.
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4.1. 1 Fig. 2 .

 12 Fig. 2. Anonymity set sizes and frequency of browser arrivals through the time-partitioned datasets obtained after each day. The new browsers are displayed in hundreds of thousands.

Fig. 4 .

 4 Fig.4. Average similarity between the pairs of consecutive fingerprints as a function of the time difference, with the number of compared pairs, for the overall, the mobile, and the desktop browsers.

Fig. 7 .Fig. 8 .Fig. 9 .

 789 Fig. 7. The number of identical attributes between the same-browser comparisons and the differentbrowsers comparisons.

5.1. 1 Fig. 10 .

 110 Fig. 10. Cumulative distribution of the number of distinct values of the attributes in logarithmic scale.

Fig. 11 .

 11 Fig. 11. Cumulative distribution of the normalized entropy and entropy (in bits) among the attributes.

Fig. 12 .

 12 Fig. 12. Cumulative distribution of the sameness rate of the attributes among the consecutive fingerprints.

Fig. 14 .

 14 Fig. 14. Median size of the 20 heaviest attributes in bytes. The attributes are ranked from the heaviest to the lightest for the overall browsers.

Fig. 15 .

 15 Fig. 15. The normalized conditional entropy (NCE) of the attributes given the knowledge of another attribute. Given the known attribute of index 𝑗 on the vertical axis, the remaining NCE of the inferred attribute of index 𝑖 on the horizontal axis is read in the cell (𝑖, 𝑗). The attributes are ordered by the average normalized conditional entropy and the indices match with Figure 16.

Fig. 16 .

 16 Fig. 16. Minimum, average, and maximum normalized conditional entropy of an attribute when the value of another attribute is known. The attributes are ordered by the average normalized conditional entropy and the indices match with Figure 15.

Fig. 17 .

 17 Fig. 17. A sample of our designed HTML5 canvas in PNG format. Fig. 18. A sample of our designed WebGL canvas in PNG format.

Fig. 19 .

 19 Fig. 19. A sample of the HTML5 canvas that is inspired by the AmIUnique [60] study. Fig. 20. A sample of the HTML5 canvas that is similar to the Morellian [56] study.

Fig. 23 .Fig. 24 .

 2324 Fig. 23. The number of matching attributes between the same-browser comparisons and the differentbrowsers comparisons.

  2.1.1 Experiment. The experiment consisted in integrating a fingerprinting script on two general audience web pages that are controlled by our industrial partner, which subjects are political news and weather forecast. The script was active between December 7, 2016, and June 7, 2017. It fingerprinted the visitors who consented to the use of cookies in compliance with the European directives 2002/58/CE [1] and 2009/136/CE [2].

  This number is displayed in Figure11of[START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] as the number of distinct fingerprints, but it also corresponds to the number of raw fingerprints. Every fingerprint would be unique if the number of distinct and collected fingerprints are equal. Hence, we are not confident in this number, but it is the number provided by the authors.

	01-02/2010 11/2014-02/2015 12/2016-06/2017 02/2016-02/2019 12/2017-07/2018 12/2016-06/2017	3 weeks 3-4 months* 6 months 3 years 8 months 6 months	8 17 17 305 35 262	455,604* 119,818* --1,329,927 1,989,365	----661,827 (49.76%) 547,672 (27.53%)	470,161 118,934 2,067,942 88,088 7,246,618 4,145,408	409,296 142,023 a -9,822-16,541 1,586,719 3,578,196	-0.890* 0.879 0.697*-0.707* -0.805	-0.110* 0.121 0.293-0.303 -0.134	0.836 0.894 0.336 0.954-0.958 ≈ 0.350* 0.818	-0.810 0.185 0.916-0.941 ≈ 0.350* 0.399	-0.900 0.357 0.974-0.978 ≈ 0.350* 0.884
	Collection period	Collection duration	Attributes	Browsers	Browsers seen multiple times	Fingerprints	Distinct fingerprints	Ratio of desktop fingerprints	Ratio of mobile fingerprints	Unicity of overall fingerprints	Unicity of mobile fingerprints	Unicity of desktop fingerprints
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Table 5 .

 5 The attributes that have a minimum normalized conditional entropy (MinNCE) higher than 0.045, which is equivalent to a minimum conditional entropy higher than 1 bit. The minimum conditional entropy is in bits. W refers to the window JavaScript object, WG refers to an initialized WebGL context, and [...] denotes a truncated part.

	Attribute	MinNCE Minimum conditional entropy (in bits)
	W.innerHeight	0.181	3.98
	WebRTC fingerprinting	0.144	3.17
	W.outerHeight	0.117	2.58
	List of fonts	0.110	2.42
	List of plugins	0.100	2.21
	W.outerWidth	0.074	1.63
	WebGL renderer (unmasked)	0.073	1.61
	Height of first bounding box	0.070	1.53
	S.availHeight	0.058	1.27
	W.screenY	0.049	1.08
	W.screenX	0.047	1.04
	userAgent JavaScript property	0.046	1.00

  A.3.5 List of detected fonts. The 66 fonts for which we infer the presence are the following: Andale

	Mono; AppleGothic; Arial; Arial Black; Arial Hebrew; Arial MT; Arial Narrow; Arial Rounded MT
	Bold; Arial Unicode MS; Bitstream Vera Sans Mono; Book Antiqua; Bookman Old Style; Calibri;
	Cambria; Cambria Math; Century; Century Gothic; Century Schoolbook; Comic Sans; Comic Sans
	MS; Consolas; Courier; Courier New; Garamond; Geneva; Georgia; Helvetica; Helvetica Neue;
	Impact; Lucida Bright; Lucida Calligraphy; Lucida Console; Lucida Fax; LUCIDA GRANDE; Lucida
	Handwriting; Lucida Sans; Lucida Sans Typewriter; Lucida Sans Unicode; Microsoft Sans Serif;
	Monaco; Monotype Corsiva; MS Gothic; MS Outlook; MS PGothic; MS Reference Sans Serif; MS
	Sans Serif; MS Serif; MYRIAD; MYRIAD PRO; Palatino; Palatino Linotype; Segoe Print; Segoe Script;
	Segoe UI; Segoe UI Light; Segoe UI Semibold; Segoe UI Symbol; Tahoma; Times; Times New Roman;
	Times New Roman PS; Trebuchet MS; Verdana; Wingdings; Wingdings 2; Wingdings 3.

Table 6 .

 6 Extensions detected by the changes they bring to the page content.

	Extension Page content change
	Privowny	W.privownyAddedListener[EXT] is supported
	UBlock	D.head has display: none !important; and :root as style
	Pinterest	D.body.data-pinterest-extension-installed is supported
	Grammarly D.body.data-gr-c-s-loaded is supported
	Adguard	W.AG_onLoad is supported
	Evernote	Element with style-1-cropbar-clipper as id exists
	TOTL	W.ytCinema is supported
	IE Tab	W.ietab.getVersion() is supported

Table 7 .

 7 Extensions detected by the availability of their web accessible resource. C stands for chrome and R stands for resource.

Table 8 .

 8 Properties of the div element that is measured to generate the value of the attributes related to the bounding boxes.

	Property	Value
	position	absolute
	left	-9999px
	textAlign	center
	objectFit	scale-down
	font	68px / 83px Helvetica, Arial, Sans-serif
	zoom	66%
	MozTransform scale(0.66)
	visibility	hidden
	A.5.3 Colors of layout components.	

Table 9 .

 9 The five attributes which collection time is missing in more than 1% of the overall, desktop, and mobile entries. The attributes are all asynchronous, and are ordered from the highest to the lowest proportion for the overall entries. which we extract 45 attributes. The single extracted attribute that is not concerned is the number of WebGL extensions. The remaining 189 base attributes and one extracted attribute are not impacted.

	Attribute	Overall Desktop Mobile
	WebRTC fingerprinting	24.04%	26.10%	20.31%
	Audio FP advanced	13.20%	7.16%	31.57%
	Audio FP advanced frequency data 13.20%	7.16%	31.57%
	Audio FP simple	12.48%	6.39%	31.07%
	List of speech synthesis voices	4.28%	1.15%	19.83%
	Total entries	5,714,738 4,610,640 808,318
	times, from			

Table 10 .

 10 The keywords and the exact UserAgent values that we use to detect robot browsers. The long values are cut at a blank space and displayed with indentations.

	Blacklisted keyword Blacklisted value
	googlebot	mozilla/4.0 (compatible; msie 7.0; windows nt 6.1; trident/7.0; slcc2;
	evaliant	.net clr 2.0.50727; .net clr 3.5.30729; .net clr 3.0.30729;
	bot.html	media center pc 6.0; .net4.0c; .net4.0e)
	voilabot	mozilla/5.0 (x11; linux x86_64) applewebkit/537.36 (khtml, like gecko)
	google web preview	chrome/52.0.2743.116 safari/537.36
	spider	mozilla/5.0 (windows nt 6.3; rv:36.0) gecko/20100101 firefox/36.0
	bingpreview	mozilla/5.0 (macintosh; intel mac os x 10.10; rv:38.0) gecko/20100101
		firefox/38.0

Table 11 .

 11 The keywords that we use to infer the device type of browsers.

	Mobile	Tablet	Miscellaneous
	phone	ipad	wii
	mobile	tablet	playstation
	android	terra pad smart-tv
	iphone	tab	smarttv
	blackberry		googletv
	wpdesktop		opera tv
			appletv
			nintendo
			xbox

Table 12 .

 12 The keywords that we use to infer the device type of browsers.

	Browser Family Keywords
	Firefox	Firefox
	Edge	Edge
	Internet Explorer MSIE, Trident/7.0
	Samsung Internet SamsungBrowser
	Chrome	Chrome
	Safari	Safari

Table 13 .

 13 The keywords that we use to infer the operating system family of browsers.

	Operating System Family Keywords
	Windows 10	windows nt 10.0
	Windows 7	windows nt 6.1
	Other Windows	windows nt, windows 7, windows 98, windows 95,
		windows ce
	Mac OS	mac os x (but not ipad, nor iphone)
	Linux-based	linux, cros, netbsd, freebsd, openbsd, fedora, ubuntu,
		mint
	Android	android
	Windows Phone	windows phone
	iOS	ipad, iphone (but not mac os x)
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Samsung Internet is the default browser on some Android devices manufactured by Samsung. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October

The authors of[START_REF] Li | Who Touched My Browser Fingerprint? A Large-Scale Measurement Study and Classification of Fingerprint Dynamics[END_REF] emphasize that the unicity rate is "relatively low because many browsers visited their collection website more than once". This can indicate that they set the identical fingerprints collected from the same browser in an anonymity set. As a result, this set is at least of size 2 (non-unique) whereas the fingerprints may have been seen for this single browser only, which makes them actually unique.

The Panopticlick study[START_REF] Eckersley | How Unique is Your Web Browser?[END_REF] leverages IP address hashes to resynchronize fingerprints (see Section 2.4.2) but do not include any information related to the IP address in the fingerprints. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Would all the additional attributes never change, their addition would not induce more changes between the consecutive fingerprints. However, our dataset only contains

attributes that never presented any change between the three million consecutive fingerprints (see Section 5.1.3).[START_REF]createDataChannel" | Can I use[END_REF] Here, usable refers to the adequacy of the characteristic to be used for authentication, rather than the ease of use by the users.ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Our study is in line with previous studies[START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF][START_REF] Spooren | Mobile Device Fingerprinting Considered Harmful for Risk-based Authentication[END_REF] about the fingerprints of mobile browsers showing less distinctiveness. However, we emphasize that our dataset and the datasets of these studies miss attributes that could improve the distinctiveness of the fingerprints of mobile browsers like the sensor API[START_REF] Waldron | Generic Sensor API[END_REF] that is used in real-life[START_REF] Das | The Web's Sixth Sense: A Study of Scripts Accessing Smartphone Sensors[END_REF][START_REF] Iqbal | Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors[END_REF][START_REF] Marcantoni | A Large-scale Study on the Risks of the HTML5 WebAPI for Mobile Sensor-based Attacks[END_REF].

On average, more than 90% of the attributes stay identical between the consecutive fingerprints, but these attributes are not always the same. We do not restrict the pairs of consecutive fingerprints to the subset of the identical attributes as these attributes differ between these pairs.

The difference is due to the fingerprints of the same-browser comparisons belonging to the same month, whereas the consecutive fingerprints can overlap over two consecutive months. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Due to a lack of personalization, the browsers that run on mobile devices tend to have fewer plugins than those that run on desktops or laptops[START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Our script hashes these local IP addresses in MD5 directly on the clients, see[START_REF] Takasu | A Survey of Hardware Features in Modern Browsers: 2015 Edition[END_REF] for more information about how the WebRTC API gives access to this information. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Contrarily to the AmIUnique study[START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF], we only have one sentence and one smiling face emoji instead of two. Also, we do not draw a colored rectangle and the sentence is drawn using a color gradient. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

The advantage of using OfflineAudioContext is the manipulation of audio signal without playing any sound on a genuine audio output peripheral. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

We discuss in Section 6.2.4 the case where all the authentication factors are known to the attacker including the browser fingerprint. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

If users register 𝑛 browsers to their account, as described in Section 6.1, 𝑓 is compared to the fingerprint of these 𝑛 browsers that are already identified. Users are expected to register fewer than ten devices[START_REF] Safaei | Reliability Side-Effects in Internet of Things Application Layer Protocols[END_REF], hence 𝑛 is expected to be smaller than 𝑁 (e.g., a website having a thousand accounts registered). It would also be possible to find the right fingerprint among the 𝑛 possibilities by leveraging the UserAgent to recognize which browser the user is using. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

Firefox browsers since version 29 require developers to probe the exact name of the wanted plugin and do not allow them to enumerate the list of plugins[START_REF]NavigatorPlugins.plugins -Web APIs | MDN[END_REF]. This version was released in April 29, 2014, hence the Firefox browsers of our population are impacted by this limitation. As a result, the list of plugins of our Firefox browsers mostly contains a single entry that concerns the Flash plugin. ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.
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A BROWSER FINGERPRINTING ATTRIBUTES

In this section, we describe the 216 base attributes that are included in our script and the 46 extracted attributes that are derived from the 9 source attributes. We group the attributes in families and provide references to related studies. Their name is sufficient to retrieve the corresponding browser property. When needed, we provide a brief description of the method for reproducibility. We focus here on the description of the method and provide a complete list of the attributes and their property in Appendix E. We denote A.[B, C] a property that is accessed either through A.B or A.C. If there is only one element inside the brackets, this element is optional. We denote [...] a part that is omitted but described in the corresponding attribute description.

A.1 JavaScript properties Most attributes are properties that are accessed through common JavaScript objects. The navigator object provides information on the browser (e.g., its version), its customization (e.g., the configured language), the underlying system (e.g., the operating system), and the supported functionalities (e.g., the list of available codecs). The screen object provides information on the screen size, the orientation, the pixel density, and the available space for the web page. The window object provides information on the window containing the web page, like its size or the support of storage mechanisms. The document object gives access to the page content and a few properties. The JavaScript properties are already included in previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF] or open source projects [START_REF]fingerprintjs/fingerprintjs: Browser fingerprinting library with the highest accuracy and stability[END_REF], but are usually limited to fewer than 20 properties.

A.2 HTTP headers

Our script collects 16 attributes from HTTP headers, most of which are already used in previous studies [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Gómez-Boix | Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. Among these 16 attributes, 15 consist of the value of an explicitly specified header and the last attribute stores any remaining fields as pairs of name and value.

A.3 Enumeration or presence of browser components

One attribute family that provides a high diversity is the browser components. The presence of some components can directly be accessed (e.g., the list of plugins 15 ) whereas the presence of others have to be inferred (e.g., the installed fonts). The list of components that are given in this section have the components separated by a comma.

A.3.1 List attributes. Previous studies already identified the list of plugins and the list of fonts as highly distinctive [START_REF] Eckersley | How Unique is Your Web Browser?[END_REF][START_REF] Laperdrix | Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints[END_REF]. We include these two attributes in our fingerprinting script. We 

E ATTRIBUTES LIST AND PROPERTY

In this section, we provide the complete list of our 262 fingerprinting attributes and their property. Table 16 lists our attributes with their number of distinct values seen during the experiment (Values), their normalized entropy (N. Ent.), their sameness rate (% Same), their median size (Size), and their median collection time (Time). We refer to Section 5 for the distribution of the properties of the attributes: the number of distinct values, the normalized entropy, the minimum normalized conditional entropy, the sameness rate, the median collection time, and the median size. Table 15 provides the minimum, the average, the maximum, and the standard deviation of these properties among the attributes.

E.1 Attributes list

To stay concise, we replace the name of common JavaScript objects or of API calls by abbreviations. We denote D the JavaScript document object, M the Math object, N the navigator object, S the screen object, and W the window object. Additionally, we denote A an initialized Audio Context, AA an initialized AudioAnalyser, and AD the A.destination property. Finally, we denote WG an initialized WebGL Context, WM the WG.MAX_ prefix, and WI the WG.IMPLEMENTATION_ prefix. Due to the diversity of JavaScript engines, some properties are accessible through different names (e.g., prefixed by moz for Firefox or ms for Internet Explorer). We denote A.[B, C] a property that is accessed either through A.B or A.C. If there is only one element inside the brackets, this element is optional. We denote [...] a part that is omitted but described in the corresponding attribute description.

Attribute

Values