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Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Although
browser fingerprints have primarily been studied as a web tracking tool, they can contribute to improve the
current state of web security by augmenting web authentication mechanisms. In this paper, we investigate the
adequacy of browser fingerprints for web authentication. We make the link between the digital fingerprints
that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser
fingerprints according to properties inspired by biometric authentication factors. These properties include
their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a simple
verification mechanism. We assess these properties on a large-scale dataset of 4, 145, 408 fingerprints composed
of 216 attributes and collected from 1, 989, 365 browsers. We show that, by time-partitioning our dataset, more
than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints are known to
evolve, an average of 91% of the attributes of our fingerprints stay identical between two observations, even
when separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of
kilobytes and take a few seconds to collect. Finally, by processing a simple verification mechanism, we show
that it achieves an equal error rate of 0.61%. We enrich our results with the analysis of the correlation between
the attributes and their contribution to the evaluated properties. We conclude that our browser fingerprints
carry the promise to strengthen web authentication mechanisms.

CCS Concepts: • Security and privacy → Multi-factor authentication; • Information systems →
Browsers.
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1 INTRODUCTION
Web authentication widely relies on the use of identifier-password pairs defined by the end user.
The password authentication factor is easy to use and to deploy, but has been shown to suffer
from severe security flaws when used without any additional factor. Real-life users indeed use
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common passwords [47], which paves the way to brute-force or guessing attacks [25]. Moreover,
they tend to use similar passwords across different websites [31], which increases the impact of
successful attacks. Phishing attacks are also a major threat to the use of passwords. Over the
course of a year, Thomas et al. [96] achieved to retrieve 12.4 million credentials stolen by phishing
kits. These flaws bring the need for supplementary security layers, primarily through multi-factor
authentication [26], such that each additional factor provides an additional security barrier. However,
this usually comes at the cost of usability (i.e., users have to remember, possess, or do something)
and deployability (i.e., implementers have to deploy dedicated hardware or software, teach users
how to use them, and maintain the deployed solution).

In the meantime, browser fingerprinting [58] gains more and more attention. The seminal Panop-
ticlick study [33] is the first work to highlight the possibility to build a browser fingerprint by
collecting attributes from a browser (e.g., the userAgent property of the navigator JavaScript
object). In addition to being widely used for web tracking purposes [9, 34, 49] (raising legal, ethical,
and technical issues), browser fingerprinting is already used as an additional web authentication
factor in real-life. The browser fingerprints constitute a supplementary factor that is verified at login
with the other factors, as depicted in Figure 1 (see Section 6.1 for an example of an authentication
mechanism that relies on browser fingerprints). Browser fingerprints are indeed a good candidate
as an additional web authentication factor thanks to their distinctive power, their frictionless
deployment (e.g., no additional software or hardware to install), and their usability (no secret to
remember, no additional object to possess, and no supplementary action to carry out). As a result,
companies like MicroFocus [37] or SecureAuth [85] include this technique in their authentication
mechanisms.

However, to the best of our knowledge, no large-scale study rigorously evaluates the adequacy of
browser fingerprints as an additional web authentication factor. On the one hand, most works about
the use of browser fingerprints for authentication concentrate on the design of the authentication
mechanism [41, 56, 62, 76, 80, 88, 99]. On the other hand, the large-scale empirical studies on
browser fingerprints focus on their effectiveness as a web tracking tool [33, 44, 60, 77]. Such a
mismatch between the understanding of browser fingerprints for authentication – currently poor –
and their ongoing adoption in real-life is a serious harm to the security of web users. The lack of
documentation from the existing authentication tools (e.g., about the used attributes, about the
distinctiveness and the stability of the resulting fingerprints) only adds up to the current state
of ignorance, all this whereas security-by-obscurity directly contradicts the most fundamental
security principles. Moreover, the distinctiveness of browser fingerprints that can be achieved when
considering a wide-surface of fingerprinting attributes on a large population is, to the best of our
knowledge, unknown. On the one hand, the studies that analyze browser fingerprints in a large-
scale (more than 100, 000 fingerprints) consider fewer than 35 attributes [33, 44, 60, 62, 101]. This
underestimates the distinctiveness of the fingerprints (e.g., [44] and [62] report a unique fingerprint
rate of about 35%), as it increases the chances for browsers to share the same fingerprint. All this
whereas more than a hundred attributes are accessible. On the other hand, the studies that consider
more than fifty attributes either work on less than two thousands users [54, 77], or do not analyze the
resulting fingerprints at all [11]. The current knowledge about the hundreds of accessible attributes
(e.g., their stability, their collection time, their correlation) is, to the best of our knowledge, also
incomplete. Indeed, previous studies either consider few attributes [28, 33, 35, 44, 60, 71, 78, 86] or
focus on a single aspect of them (e.g., their evolution [62, 101]).
Our contributions.We conduct the first large-scale data-centric empirical study of the funda-

mental properties of browser fingerprints when used as an additional web authentication factor. We
base our findings on an in-depth analysis of a real-life fingerprint dataset collected over a period of
6months, that contains 4, 145, 408 fingerprints composed of 216 attributes. In particular, our dataset
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A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 3

Fig. 1. A simplified web authentication mechanism that relies on browser fingerprinting.

includes nine dynamic attributes of three types, which values depend on instructions provided
by the fingerprinter: five HTML5 canvases [28], three audio fingerprinting methods [78], and a
WebGL canvas [71]. The dynamic attributes are used within state-of-the-art web authentication
mechanisms to mitigate replay attacks [56, 80]. Each dynamic attribute has been studied singularly,
but their fundamental properties have not yet been studied simultaneously on the same browser
population. To the best of our knowledge, no related work considers a dataset of this scale, in terms
of both fingerprints and attributes, together with various dynamic attributes. We formalize, and
assess on our dataset, the properties necessary for paving the way to elaborate browser fingerprint-
ing authentication mechanisms. We make the link between the digital fingerprints that distinguish
browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints
according to properties inspired by biometric authentication factors [39, 66, 107]. The properties
aim at characterizing the adequacy and the practicability of browser fingerprints, independently
of their use within future authentication mechanisms. In particular, we measure the size of the
browser anonymity sets through time, the proportion of identical attributes between two observa-
tions of the fingerprint of a browser, the collection time of the fingerprints, their size, the loss of
efficacy between device types, and the accuracy of a simple illustrative verification mechanism. To
comprehend the results obtained on the complete fingerprints, we include an in-depth study of
the contribution of the attributes to the properties of the fingerprints. Moreover, we discuss the
correlation between the attributes, make a focus on the contribution of the dynamic attributes,
and provide the exhaustive list of the attributes together with their properties. To the best of our
knowledge, no previous work analyzed browser fingerprinting attributes at this scale, in terms of
the number of attributes, the number of fingerprints, and the variety of properties (e.g., stability,
collection time).

In a nutshell, we make the following contributions:
(1) We formalize the fundamental properties that browser fingerprints should provide to be

usable and practical as a web authentication factor.
(2) About their adequacy, we show that (1) considering a wide surface of 216 fingerprinting

attributes on our large population provides a proportion of unique fingerprints – also called
unicity rate – of 81.8% on our complete dataset, (2) by time-partitioning our dataset, the
unicity rates are stable on the long term at around 81.3%, and 94.7% of our fingerprints are
shared by 8 browsers or fewer, (3) on average, a fingerprint has more than 91% of identical
attributes between two observations, even when separated by nearly 6months, (4) our mobile
browsers lack distinctiveness, as they show a unicity rate of 42%.

(3) About their practicability, we show that (1) the generated fingerprints weigh a dozen of
kilobytes, (2) they are collected within seconds, (3) the accuracy of a simple illustrative
verification mechanism is close to perfect, as it achieves an equal error rate of 0.61%.

(4) We enrich our results with (1) a precise analysis of the contribution of each attribute (a) to
the distinctiveness, and show that 10% of the attributes provide a normalized entropy higher
than 0.25, (b) to the stability, and show that 85% of the attributes stay identical for 99% of the
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consecutive fingerprints coming from the same browser, (c) to the collection time, and show
that only 33 attributes take more than 5ms to collect, (d) to the fingerprint size, and show
that only 20 attributes weigh more than 100 bytes, (2) a discussion about the correlation of
the attributes, and show that only 49 attributes can completely be inferred when knowing
another attribute, (3) a focus on the properties of the nine dynamic attributes.

(5) We provide an in-depth description of our methodology and our dataset, with the goal of
making our results reproducible. In particular, we include the exhaustive list of the collected
attributes together with their properties, and a detailed description of the preprocessing of
the fingerprints.

This paper is a major extension of work originally presented in [16], and brings more than 50% of
new material. Specifically, we clarify the obtained results by discussing them further, we evaluate
the accuracy of a simple illustrative verification mechanism, we highlight the contribution of the
attributes to the properties, and we provide a comprehensive list of the attributes, together with
their properties and their concrete implementation. In a summary, we make the following additions:
(1) Section 2 gains a description of the studied browser population. This includes the share of

the families of browser and operating system, and insights about the bias towards French
browsers. We also add a description of the data preprocessing step, and a comparison between
our dataset and the dataset of previous studies.

(2) Section 3 gains the accuracy of a simple illustrative verification mechanism as an additional
performance property.

(3) Section 4 gets the results further discussed, and gains the results of the accuracy of the simple
illustrative verification mechanism.

(4) Section 5 is entirely new. It discusses the contribution of the attributes to the fingerprint
properties, the correlation between the attributes, and the properties of the dynamic attributes.

(5) Section 6 is entirely new. It describes how browser fingerprints can be integrated in a web
authentication mechanism and discusses the attacks that are possible on such mechanism.

(6) Section 7 is entirely new. It provides related works about the use of browser fingerprinting
for authentication.

(7) The appendices are entirely new. Appendix A describes the concrete implementation of the
studied attributes for reproducibility. Appendix C provides the keywords used to classify
the fingerprints. Appendix B discusses a side effect encountered by our fingerprinting script
that results in anomalous high collection time of some fingerprints or attributes. Appendix D
discusses a more complex verification mechanism that relies on distance functions on the
attributes to compare fingerprints. Appendix E provides the complete list of the attributes
with their properties (e.g., number of distinct values, stability).

The rest of the paper is organized as follows. Section 2 describes the dataset analyzed in this
study. Section 3 presents and formalizes the properties evaluated in the analysis. Section 4 presents
the experimental results. Section 5 breaks down the analysis to the attributes to comprehend the
results on the complete fingerprints. Section 6 describes how browser fingerprinting can contribute
to an authentication mechanism and discusses the attacks that are possible on such mechanism.
Section 7 positions this study with the related works. Finally, Section 8 concludes.

2 DATASET
In this section, we describe the browser fingerprint dataset that is analyzed in this study. First, we
present the conditions of the collection and describe the precautions taken to protect the privacy
of the experimenters. Then, we detail the preprocessing steps to cleanse the raw dataset. Finally,
we describe the working dataset and compare it with the large-scale datasets of previous studies.
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2.1 Fingerprints collection
To study the properties of browser fingerprints on a real-world browser population, we launched
an experiment in collaboration with the authors of the Hiding in the Crowd study [44], together
with an industrial partner that controls one of the top 15 French websites according to the site
ranking service Alexa [14]. The authors of the Hiding in the Crowd study only consider the 17
attributes of their previous work [60] and focus on the issue of web tracking. On the contrary, we
consider in this work more than one order of magnitude more attributes – 216 attributes – and
focus on the use of browser fingerprinting as an additional web authentication factor. Our dataset
contains more fingerprints than [44] because two browsers that show different fingerprints for a
given set of attributes can come to the same fingerprint if a subset of these attributes is considered.
As a result, the authors of [44] remove more duplicated fingerprints due to the higher chances for a
browser to present the same fingerprint for 17 attributes than for 216 attributes.

2.1.1 Experiment. The experiment consisted in integrating a fingerprinting script on two general
audience web pages that are controlled by our industrial partner, which subjects are political
news and weather forecast. The script was active between December 7, 2016, and June 7, 2017. It
fingerprinted the visitors who consented to the use of cookies in compliance with the European
directives 2002/58/CE [1] and 2009/136/CE [2]. To differentiate two browsers in future analysis, we
assigned them a unique identifier (UID) as a 6-months cookie, which was sent alongside fingerprints.
Similarly to previous studies [33, 60], we coped with the issue of cookie deletion by storing a one-
way hash of the IP address computed by a secure cryptographic hash function. We refer the
interested reader to Section 2.3 for more details on the measures taken to protect the privacy of the
experimenters.

2.1.2 Browser fingerprinting attributes. The fingerprinting script used in the experiment includes
216 attributes divided in 200 JavaScript properties, together with their collection time, and 16
HTTP header fields. In particular, they include three types of dynamic attributes that comprise five
HTML5 canvases [28], three audio fingerprinting methods [78], and a WebGL canvas [71].

We sought to evaluate the properties of browser fingerprints when considering as many attributes
as possible, to estimate more precisely what can really be achieved. We compiled the attributes
from previous studies and open source projects. If the value of an attribute is not accessible, a flag
explaining the reason is stored instead, as it is still exploitable information. Indeed, two browsers
can be distinguished if they behave differently on the inaccessibility of an attribute (e.g., returning
the value undefined is different from throwing an exception). We also configure a timeout after
which the fingerprint is sent without waiting for every attribute to be collected. The attributes that
were not collected are set to a specific flag. The complete list of attributes and their properties is
available in Appendix E.
Client-side attributes only consist of JavaScript properties. No plugins (e.g., Flash, Silverlight)

are used due to their removal and replacement by HTML5 functionalities [94]. Moreover, the
fingerprinting script collects the HTTP headers from requests sent by JavaScript, hence the dataset
contains no fingerprint of browsers having JavaScript disabled.

2.2 Browser population bias
The previously presented datasets were collected through dedicated websites and are biased towards
privacy-aware and technically-skilled persons [33, 60, 77]. Our dataset is more general audience
oriented and is not biased towards this type of population. Nevertheless, the website audience
is mainly French-speaking users, resulting in biases that we discuss below. We emphasize that
the obtained browser fingerprints – and accordingly, their properties – depend on the browser
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population. A verifier that seeks to use browser fingerprints as an authentication factor should
analyze the fingerprints of a browser population that is as close as possible to the target population.
Some browser populations can show inadequate properties, like the standardized browsers of a
university which lack distinctiveness [17]. In the following analysis (see Section 4), we evaluate
our properties on the complete browser population and on the subpopulations of the browsers
running on desktop and mobile devices. A finer-grained analysis – down to a given browser family
in a given version – can be done by sampling the population on the wanted subset. Studying the
fingerprints at this level is out of the scope of this paper. We let such analysis as future works.

We match the userAgent JavaScript property with manually selected keywords (see Appendix C)
to infer the operating system and browser family of our browser population. Table 1 compares
the share of each operating system and browser family between the previous works that include
such statistics [33, 44, 60], the average share of each family between January 2017 and June 2017
measured by StatCounter for the worldwide [90, 91] and French browser populations [3, 4], and our
browser population. We stress that the browser population that visits a website varies through time
as the browser market evolves [32] and depends on the website (e.g., only a subset of the worldwide
browser population is expected to visit a local news website). Among our browser population,
82.1% run on a Windows operating system, resulting in a high proportion of Internet Explorer
(26%) and Edge (7.8%) browsers. This can be explained by the population visiting the website being
less technically savvy, hence using more common web environments (e.g., a Firefox on a Windows
operating system) than technical environments (e.g., Linux-based operating systems).

Among the desktop browsers, the most common browsers are Firefox (31.4%), Internet Explorer
(28.3%), and Chrome (26.2%). Our dataset contains more Firefox browsers and less Chrome browsers
than the French population observed by StatCounter [3]. According to previous studies, the finger-
prints of Firefox and Chrome browsers are among the most distinctive [10, 62]. Firefox and Chrome
both include automated updates, which results in higher instability of the fingerprints collected
from these browsers [62]. Internet Explorer and Edge supported badly WebRTC at the time of the
experiment [5, 10]. On these browsers, no information could have been collected using WebRTC,
which reduces the distinctiveness of this attribute on these browsers. However, Edge is considered
as one of the browsers that provide highly distinctive fingerprints [10, 62].
The vast majority of our mobile browsers runs on an Android platform (84.4%), followed by

Windows Phone (8.8%), and iOS (5.2%). The browsers running on Android devices tend to be more
distinguishable than the ones running on iOS [60], due to the plurality of device vendors and models
that embark the Android operating system. The browser fingerprints of iOS devices show more
updates than these of other mobile operating systems [62], which can result in increased instability
of the fingerprints of iOS devices. The most common mobile browser is Samsung Internet (45.1%),
followed by Chrome (38.5%), Internet Explorer mobile (8.4%), and Safari (6.7%). Smartphones embark
a default browser, which can explain this distribution that includes the four default browsers1 of the
major operating systems. Using another browser than the default browser results in an increased
distinctiveness as the combination of operating system and browser becomes less common [62].
Although Chrome is one of the default browser of Android devices, it provides highly distinctive
information in its UserAgent [60]. As a result, Firefox and Chrome are known as the two most
distinctive mobile browsers [62].

The contextual attributes related to the time zone or to the configured language are less distinctive
in our dataset than in previous studies (see Section 5.1.2). For example, the normalized entropy of
the Timezone JavaScript property is of only 0.008, against 0.161 for the Panopticlick study [33], and
0.198 for the AmIUnique study [60]. These attributes also tend towards the typical French values:

1Samsung Internet is the default browser on some Android devices manufactured by Samsung.
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98.48% of the browsers have a Timezone value of −1, 98.59% of the browsers have the daylight
saving time enabled, and fr is present in 98.15% of the values of the Accept-Language HTTP
header.

The browsers of our dataset mostly belong to general audience French users. Counter-intuitively,
considering an international population may not reduce the distinctiveness. Indeed, we can expect
foreign users to have a combination of contextual attributes (e.g., the time zone, the configured
languages) different from the French users, making them distinguishable even if the remaining
attributes have identical values. Forging new browser fingerprints from a dataset to realistically
simulate a different browser population is a difficult task. First, it requires to know the distribution
of the values that the target population would show for each attribute. The value of some attributes
can be inferred easily (e.g., the typical time zone of a given location), but the typical value that
other attributes would present is harder to infer (e.g., the textual value of the UserAgent of a new
browser family). Second, although we could sample the value of each individual attribute from
their hypothetical distribution, the value of the attributes should be picked with respect to the
correlations that occur between them.When forging a browser fingerprint, the lack of consideration
of the correlations between the attributes leads to unrealistic fingerprints [12, 27, 33, 98].

2.3 Privacy concerns
The browser fingerprints are sensitive due to their identification capacity. We complied with the
European directives 2002/58/CE [1] and 2009/136/CE [2] in effect at the time of the experiment,
and took additional measures to protect the participating users. First, the script was set on two web
pages of a single domain in a first-party manner, hence providing no extra information about the
browsing activity of the users. The content of the web pages are generic, hence they do not leak
any information about the interests of the users. Second, we restricted the collection to the users
having consented to cookies, as required by the European directives 2002/58/CE and 2009/136/CE.
Third, a unique identifier (UID) was set as a cookie with a 6-months lifetime, corresponding to
the duration of the experiment. Fourth, we deleted the fingerprints for which the cookieEnabled
property was not set to true. Finally, we hashed the IP addresses by passing them through the
HMAC-SHA256 algorithm using a key that we threw afterward. It was done using the secret and
the hmac libraries of Python3.6. These one-way hashed IP addresses are only used for the UIDs
resynchronization (see Section 2.4.2) and are not used as an attribute in the working dataset.

2.4 Data preprocessing
Given the experimental aspect of browser fingerprints, and the scale of our collection, the raw
dataset contains erroneous or irrelevant samples. That is why we perform several preprocessing
steps before any analysis. The dataset is composed of entries in the form of (𝑓 , 𝑏, 𝑡) tuples so that
the fingerprint 𝑓 was presented by the browser 𝑏 at the given time 𝑡 . We talk here about entries (i.e.,
(𝑓 , 𝑏, 𝑡) tuples) and not fingerprints (i.e., only 𝑓 ) to avoid confusion. The preprocessing is divided
in four steps: the cleaning, the UIDs resynchronization, the deduplication, and the derivation of the
extracted attributes. Initially, we have 8, 205, 416 entries in the raw dataset.

2.4.1 Dataset cleaning. The dataset cleaning step filters out 70, 460 irrelevant entries, following
the method described below. The fingerprinting script prepares, sends, and stores the entries in
string format consisting of the attribute values separated by semicolons. We remove 769 entries
that have a wrong number of fields, mainly due to truncated or unrelated data (e.g., the body of a
post request). We filter out 53, 251 entries that belong to robots, by checking whether blacklisted
keywords are present in the User-Agent HTTP header (see Appendix C for the list of keywords).
We reduce the entries that have multiple exact copies (down to the same moment of collection) to a
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single instance. Finally, we remove 18, 591 entries that have the cookies disabled, and 2, 412 entries
that have a time of collection that falls outside the time window of the experiment.

2.4.2 Unique IDs resynchronization. The resynchronization step replaces 181, 676 UIDs with a total
of 116, 708 other UIDs, following the method described here. Each entry includes a UID which was
stored and retrieved using the cookie mechanism of the browser. The cookies are considered an
unreliable browser identification solution [62], hence we undergo a cookie resynchronization step
similarly to the Panopticlick study [33]. We consider the entries that have the same (fingerprint,
IP address hash) pair to belong to the same browser, even if they show different UIDs. We group
the entries by their pair of (fingerprint, IP address hash) and assign the entries of each group a
single UID taken from those observed for this group. The resynchronization is processed on all the
groups at the exception of the groups that show interleaved UIDs for which we do not modify the
UID of their entries. These groups contain entries that have the same (fingerprint, IP address hash)
pair but which UID values are interleaved (e.g., 𝑏1, 𝑏2, then 𝑏1 again). The interleaved UIDs are a
good indicator that several genuine identical browsers operate on the same private network and
share the same public IP address [33].

2.4.3 Deduplication. The deduplication step constitutes the biggest cut in our dataset, and filters
out 2, 420, 217 entries. To avoid storing duplicates of the same fingerprint observed several times
for a browser, the usual method is to ignore a fingerprint if it was already seen for a browser during
the collection [33, 60]. Our script collects the fingerprint on each visit, no matter if it was already
seen for this browser or not. To stay consistent with common methodologies, we deduplicate the
fingerprints offline. For each browser, we hold the first entry that contains a given fingerprint, and
ignore the following entries if they also contain this fingerprint. This method takes the interleaved
fingerprints into account, which are the fingerprints so that we observe 𝑓1, 𝑓2, then 𝑓1 again. For
example, if a browser 𝑏 has the entries {(𝑓1, 𝑏, 𝑡1), (𝑓2, 𝑏, 𝑡2), (𝑓2, 𝑏, 𝑡3), (𝑓1, 𝑏, 𝑡4)}, we only hold the
entries {(𝑓1, 𝑏, 𝑡1), (𝑓2, 𝑏, 𝑡2), (𝑓1, 𝑏, 𝑡4)} after the deduplication step.
We hold the interleaved fingerprints to realistically simulate the state of the fingerprint of

each browser through time. We find that 10.59% of our browsers showed at least one case of
interleaved fingerprints. The interleaved fingerprints can come from attributes that switch between
two values. An example is the screen size that changes when an external screen is plugged or
unplugged. Previous studies discarded the fingerprints that were already encountered for a given
browser [33, 44, 60], hiding the interleaved fingerprints.

2.4.4 Extracted attributes. We derive 46 extracted attributes of two types from 9 original attributes.
First, we have the extracted attributes that are parts of an original attribute, like an original attribute
that is composed of 28 triplets of RGB (Red Green Blue) color values that we split in 28 single
attributes. Then, we have the extracted attributes that are derived from an original attribute, like
the number of plugins derived from the list of plugins. The extracted attributes do not increase the
distinctiveness as they come from an original attribute, and they are at most as distinctive as their
original attribute. However, the extracted attributes can offer a higher stability than their original
attribute, as the latter is impacted by any little change among the extracted attributes. For example,
if exactly one of the 28 RGB values changes between two fingerprint observations, the original
attribute is counted as having changed, but only one of the extracted attributes will be.

2.4.5 Working dataset. The working dataset obtained after preprocessing the raw dataset contains
5, 714, 738 entries (comprising the identical fingerprints that are interleaved for each browser), with
4, 145, 408 fingerprints (comprising no identical fingerprint for each browser), and 3, 578, 196 distinct
fingerprints. They are composed of 216 original attributes and 46 extracted attributes, for a total
of 262 attributes. The fingerprints come from 1, 989, 365 browsers, 27.53% of which have multiple
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fingerprints. Table 2 displays a comparison between the dataset of the studies Panopticlick [33],
AmIUnique [60], Hiding in the Crowd [44], Long-Term Observation [77], Who Touched My Browser
Fingerprint [62], and this study.

2.5 Comparison with previous studies
We compare our working dataset with the datasets of previous studies in Table 2, notably by the
unicity rate which is the proportion of the fingerprints that have been observed for a single browser.
We have a slightly lower unicity rate compared to the studies Panopticlick (PTC) [33] and

AmIUnique (AIU) [60]. Considering a larger browser population generally increases the chances for
two browsers to share the same fingerprint, which can reduce the unicity rate. However, considering
a wider surface of fingerprinting attributes usually reduces these chances, which can increase
the unicity rate. The importance of these two effects depends on the browser population and on
the attributes. The larger browser population and the larger surface of fingerprinting attributes
can explain the slight decrease of the unicity rate compared to PTC and AIU. We also observe a
lower unicity rate for the fingerprints of mobile browsers compared to the fingerprints of desktop
browsers, confirming the findings of previous studies [33, 44, 60, 87]. However, we emphasize that
our dataset and the datasets of these studies miss attributes that could improve the distinctiveness
of the fingerprints of mobile browsers like the sensor API [103] that is used in real-life [30, 49, 67].
The authors of the Hiding in the Crowd (HitC) study [44] worked on fingerprints collected

from the same experiment and browser population as us. However, to stay consistent with their
previous AIU study [60], they consider the same set of 17 attributes. This explains our higher
number of fingerprints, as two browsers that have different fingerprints for a given set of attributes
can come to the same fingerprint if a subset of these attributes is considered. As a result, they
remove more duplicated fingerprints than us due to the higher chances for a browser to present the
same fingerprint for 17 attributes than for 216 attributes. Our unicity rate is also higher, being at
81.8% for the complete dataset against 33.6% for HitC [44]. This is due to the larger set of considered
attributes that distinguish browsers more efficiently, as each additional attribute can provide a way
to distinguish browsers. Our little drops on the proportion of desktop and mobile browsers come
from a finer-grained classification, as we have 4.8% of the browsers that are classified as belonging
to tablets, smart TVs, or game consoles.
The recent study about the evolution of fingerprints by Song Li and Yinzhi Cao [62] analyzes

a large-scale dataset of 7, 246, 618 fingerprints collected from a European website. They focus on
the evolution of the fingerprints and their composing attributes. Their fingerprints show a low
unicity rate of approximately 0.350. The high number of collected fingerprints and the low number
of used attributes can explain this lower unicity rate2. We remark that this unicity rate is close
to the unicity rate of HitC [44] which includes fewer attributes (17 against 35 for [62]) and fewer
fingerprints (2, 067, 942). The unicity rate of the mobile browsers of [62] is close to the unicity
rate of their desktop browsers, contrary to previous studies [33, 44, 60, 87] and ours. This can
be explained by the inclusion of new attributes that provide more distinctiveness to the mobile
fingerprints. The attributes that they have in addition to the previous studies3 are the features that
they infer from the IP address. Song Li and Yinzhi Cao [62] focus on the evolution of fingerprints
and analyze what they call dynamics. They define a dynamic as a representation of the evolutions

2The authors of [62] emphasize that the unicity rate is “relatively low because many browsers visited their collection
website more than once”. This can indicate that they set the identical fingerprints collected from the same browser in an
anonymity set. As a result, this set is at least of size 2 (non-unique) whereas the fingerprints may have been seen for this
single browser only, which makes them actually unique.
3The Panopticlick study [33] leverages IP address hashes to resynchronize fingerprints (see Section 2.4.2) but do not include
any information related to the IP address in the fingerprints.
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between two different and consecutive fingerprints that belong to the same browser. They generate
960, 853 dynamics from their seven million fingerprints whereas we generate 3, 725, 373 dynamics
(see Section 4.2) from our four million fingerprints. This difference is explained by our fingerprints
being composed of more attributes, which increases the chances for two consecutive fingerprints
to differ. Indeed, the change of any attribute between the consecutive fingerprints generates a
dynamic, and the more attributes there is the more chances one of them changes between two
evolutions4.

3 AUTHENTICATION FACTOR PROPERTIES
Biometric authentication factors and browser fingerprints share strong similarities. They both work
by extracting features from a unique entity, which is a person for the former and a browser for
the latter, that can be used for identification or authentication. Although the entity is unique, the
extracted features are a digital representation of the entity which can show imperfections (e.g., the
fingerprints of two different persons can show similar representations). Previous studies [39, 66, 107]
identified the properties for a biometric characteristic to be usable5 as an authentication factor, and
the additional properties for a biometric authentication scheme to be practical. We evaluate browser
fingerprints according to these properties because of their similarity with biometric authentication
factors.

The four properties needed for a biometric characteristic to be usable as an authentication factor
are the following.

• Universality: the characteristic should be present in everyone.
• Distinctiveness: two distinct persons should have different characteristics.
• Permanence: the same person should have the same characteristic over time. We rather use
the term stability.

• Collectibility: the characteristic should be collectible and measurable.

The three properties that a biometric authentication scheme requires to be practical are the
following.

• Performance: the scheme should be accurate, consume few resources, and be robust against
environmental changes.

• Acceptability: the users should accept to use the scheme in their daily lives.
• Circumvention: it should be difficult for an attacker to deceive the scheme.

The properties that we study are the distinctiveness, the stability, and the performance. We consider
that the universality and the collectibility are satisfied, as the HTTP headers that are automatically
sent by browsers constitute a fingerprint. However, we stress that a loss of distinctiveness occurs
when no JavaScript attribute is available. About the circumvention, we discuss the design of an
authentication mechanism that leverages browser fingerprints and the possible attacks on such
mechanism in Section 6. As for the acceptability, we refer to [17] for a survey about the acceptability
of an authentication mechanism that relies on browser fingerprinting, and emphasize that such
mechanisms are already used in real-life [37, 85, 105].

4Would all the additional attributes never change, their addition would not induce more changes between the consecutive
fingerprints. However, our dataset only contains 5 attributes that never presented any change between the three million
consecutive fingerprints (see Section 5.1.3).
5Here, usable refers to the adequacy of the characteristic to be used for authentication, rather than the ease of use by the
users.
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3.1 Distinctiveness
To satisfy the distinctiveness property, the browser fingerprints should distinguish two different
browsers. The two extreme cases are every browser sharing the same fingerprint, which makes
them indistinguishable from each other, and no two browsers sharing the same fingerprint, making
every browser distinguishable. The distinctiveness falls between these extremes, depending on
the attributes and the browser population. We consider the use of browser fingerprinting as an
additional authentication factor. Hence, we do not require a perfect distinctiveness, as it is used in
combination with other authentication factors to improve the overall security.
The dataset entries are composed of a fingerprint, the source browser, and the moment of

collection in the form of a Unix timestamp in milliseconds. We denote 𝐵 the domain of the unique
identifiers, 𝐹 the domain of the fingerprints, and 𝑇 the domain of the timestamps. The fingerprint
dataset is denoted 𝐷 and is formalized as:

𝐷 = {(𝑓 , 𝑏, 𝑡) | 𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 } (1)
We use the size of the browser anonymity sets to quantify the distinctiveness, as the browsers

that belong to the same anonymity set are indistinguishable. We denote B(𝑓 ,D) the browsers that
provided the fingerprint 𝑓 in the dataset 𝐷 . It is formalized as:

B(𝑓 ,D) = {𝑏 ∈ 𝐵 | ∀(𝑔,𝑏, 𝑡) ∈ D, 𝑓 = 𝑔} (2)
We denote A(𝜖,D) the fingerprints that have an anonymity set of size 𝜖 (i.e., that are shared by

𝜖 browsers) in the dataset 𝐷 . It is formalized as:
A(𝜖,D) = {𝑓 ∈ 𝐹 | card(B(𝑓 ,D)) = 𝜖} (3)

A common measure of the fingerprint distinctiveness is the unicity rate [33, 44, 60], which is
the proportion of the fingerprints that were observed for a single browser. We denoteU(D) the
unicity rate of the dataset D, which is formalized as:

U(D) = card(A(1,D))
card({(𝑓 , 𝑏) | ∃𝑡 ∈ 𝑇, (𝑓 , 𝑏, 𝑡) ∈ D}) (4)

Previous studies measured the anonymity set sizes on the whole dataset [33, 44, 60]. We measure
the anonymity set sizes on the fingerprints currently in use by each browser, and not on their
whole history. Two different browsers, sharing the same fingerprint on different time windows, are
then distinguishable (e.g., a browser was updated before the other). Moreover, a browser that runs
in a fancy web environment (e.g., having a custom font) and that has several fingerprints in the
dataset (e.g., fifty), will bloat the proportion of unique fingerprints and bias the study (e.g., fifty
fingerprints are unique whereas they come from a single browser).
We evaluate the anonymity set sizes on the time-partitioned datasets composed of the last

fingerprint seen for each browser at a given time. Let S𝜏 (D) be the time-partitioned dataset
originating from D that represents the state of the fingerprint of each browser after 𝜏 days. With
𝑡𝜏 the last timestamp of this day, S𝜏 (D) is defined as:

S𝜏 (D) = {(𝑓𝑖 , 𝑏 𝑗 , 𝑡𝑘 ) ∈ D | ∀(𝑓𝑝 , 𝑏𝑞, 𝑡𝑟 ) ∈ D, 𝑏 𝑗 = 𝑏𝑞, 𝑡𝑟 ≤ 𝑡𝑘 ≤ 𝑡𝜏 } (5)

3.2 Stability
To satisfy the stability property, the fingerprint of a browser should stay sufficiently similar between
two observations to be recognizable. Browser fingerprints have the particularity of evolving through
time, due to changes in the web environment like a software update or a user configuration. We
measure the stability by the average similarity between the consecutive fingerprints of browsers,
given the elapsed time between their observation. The two extreme cases are every browser
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holding the same fingerprint through its life, and the fingerprint changing completely with each
observation. A lack of stability makes it harder to recognize the fingerprint of a browser between
two observations.
We denote C(Δ,D) the function that provides the pairs of consecutive fingerprints of D that

are separated by a time-lapse comprised in the Δ time range. It is formalized as:
C(Δ,D) = {(𝑓𝑖 , 𝑓𝑝 ) | ∀((𝑓𝑖 , 𝑏 𝑗 , 𝑡𝑘 ), (𝑓𝑝 , 𝑏𝑞, 𝑡𝑟 )) ∈ D2, 𝑏 𝑗 = 𝑏𝑞, 𝑡𝑘 < 𝑡𝑟 , (𝑡𝑟 − 𝑡𝑘 ) ∈ Δ,

�(𝑓𝑐 , 𝑏𝑑 , 𝑡𝑒 ) ∈ D, 𝑏𝑑 = 𝑏 𝑗 , 𝑓𝑐 ≠ 𝑓𝑖 , 𝑓𝑐 ≠ 𝑓𝑝 , 𝑡𝑘 < 𝑡𝑒 < 𝑡𝑟 }
(6)

We consider the Kronecker delta 𝛿 (𝑥,𝑦), being 1 if 𝑥 equals𝑦 and 0 otherwise. We consider the set
Ω of the 𝑛 used attributes. We denote 𝑓 [𝜔] the value taken by the attribute 𝜔 for the fingerprint 𝑓 .
Let sim(𝑓 , 𝑔) be the proportion of identical attributes between the fingerprints 𝑓 and 𝑔, which is
formalized as:

sim(𝑓 , 𝑔) = 1
𝑛

∑︁
𝜔 ∈Ω

𝛿 (𝑓 [𝜔], 𝑔[𝜔]) (7)

We define the function avsim(Δ,D) that provides the average similarity between the pairs of
the consecutive fingerprints, for a given time range Δ and a dataset 𝐷 . It is formalized as:

avsim(Δ,D) =
∑

(𝑓 ,𝑔) ∈C(Δ,D) sim(𝑓 , 𝑔)
card(C(Δ,D)) (8)

3.3 Performance
We consider four aspects of the performance of browser fingerprints for web authentication: their
collection time, their size in memory, the loss of efficacy between different device types, and the
accuracy of a simple illustrative verification mechanism. Browser fingerprinting can easily be
deployed by adding a script on the authentication page, and by preparing servers to handle the
reception, the storage, and the verification of the fingerprints. The users solely rely on their regular
web browser and do not have to run any dedicated application, nor possess specific hardware, nor
undergo a configuration step. The main additional load is on the supplementary consumption of
memory and time resources. Moreover, the web environment differs between device types (e.g.,
mobile browsers have more limited functionalities than desktop browsers) and through time (e.g.,
modern browsers differ from the browsers from ten years ago), impacting the efficacy of browser
fingerprinting. Finally, we evaluate the accuracy of a simple illustrative verification mechanism
under fingerprints evolution.

3.3.1 Collection time. The browser fingerprints can be solely composed of passive attributes (e.g.,
HTTP headers) that are transmitted along with the communications with the server. In this case, the
fingerprints are collected without the user perceiving any collection time, but major attributes are
set aside. The client-side properties collected through JavaScript provide more distinctive attributes,
at the cost of an additional collection time. We measure the collection time of the fingerprints
considering only the JavaScript attributes, and ignore the HTTP headers that are transmitted
passively.

3.3.2 Size. Browser fingerprinting consumes memory resources on the clients during the buffering
of the fingerprints, on the wires during their sending, and on the servers during their storage. The
memory consumption depends on the storage format of the fingerprints. For example, a canvas can
be stored as an image encoded in a base64 string, or as a hash which is shorter. A trade-off has
to be done between the quantity of information and the memory consumption. The less memory-
consuming choice is to store the complete fingerprint as a single hash. However, the fingerprints
evolve through time – even more when they are composed of many attributes – which results in
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the use of a hash of the complete fingerprint being impractical. Due to the unspecified size of the
attributes (e.g., the specification of the User-Agent HTTP header does not define a size limit [81]),
we measure their size given a fingerprint dataset.

3.3.3 Loss of efficacy. The loss of efficacy is the loss of stability, distinctiveness, or performance of
the fingerprints. It can occur either for a group of browsers (e.g., mobile browsers) or resulting from
changes brought to web technologies. First, previous works showed differences in the properties
of the fingerprints coming from mobile and desktop devices [44, 60, 87], notably a limited distinc-
tiveness for the mobile browsers. Following these findings, we compare the properties shown by
the mobile and the desktop browsers. We match keywords on the userAgent JavaScript property
(see Appendix C) to differentiate the browsers running on a desktop or a laptop (referred to as
desktops) from the browsers running on a mobile phone (referred to as mobiles). Second, browser
fingerprinting is closely dependent on the evolution of web technologies. As new technologies
are integrated into browsers, new attributes are accessible and conversely for removal. Similarly,
functionality updates can lead to a change in the fingerprint properties. For example, Kurtz et
al. [55] detected an iOS update by the sudden instability of an attribute that provides the iOS
version. Following their finding, we verify whether the evolution of web technologies provokes
major losses in the properties of the fingerprints.

3.3.4 Accuracy of a simple verification mechanism. We evaluate the accuracy of a simple illustrative
verification mechanism under the evolution of fingerprints. This mechanism counts the identical
attributes between the presented and the stored fingerprint, and considers the evolution legitimate
if this number is above a threshold Θ. The simplicity of this mechanism gives us an idea of the
accuracy that can be easily achieved without having to engineer more complex rules. More elaborate
mechanisms can obviously be designed (see Appendix D).

4 EVALUATION OF BROWSER FINGERPRINTS PROPERTIES
In this section, we evaluate the browser fingerprints of our dataset according to the properties of
distinctiveness, stability, and performance. We present here the results on the complete fingerprints
and let Section 5 provide insights on the contribution of the attributes to each property. We show
that, by time-partitioning our dataset, our fingerprints provide a unicity rate of more than 81.3%
which is stable through time. However, our fingerprints of mobile browsers are less distinctive than
our fingerprints of desktop browsers6, with a respective unicity rate of 42% against 84% considering
the time-partitioned datasets. We also show that, on average, a fingerprint has more than 91% of
identical attributes between two observations, even when they are separated by nearly 6 months.
About their performance, we show that our fingerprints weigh a dozen of kilobytes and are collected
within seconds. The accuracy of the simple illustrative verification mechanism is close to perfect,
as it achieves an equal error rate of 0.61%. This results from most of the consecutive fingerprints
coming from a browser having at least 234 identical attributes, whereas most of the fingerprints of
different browsers have fewer.

4.1 Distinctiveness
4.1.1 Overall distinctiveness. Figure 2 presents the size of the anonymity sets alongside the fre-
quency of browser arrival for the time-partitioned datasets. The time-partitioned datasets are
designed so that each browser has the last fingerprint observed at the end of the 𝜏-th day. The

6Our study is in line with previous studies [33, 44, 60, 87] about the fingerprints of mobile browsers showing less distinc-
tiveness. However, we emphasize that our dataset and the datasets of these studies miss attributes that could improve the
distinctiveness of the fingerprints of mobile browsers like the sensor API [103] that is used in real-life [30, 49, 67].
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Fig. 2. Anonymity set sizes and frequency of browser arrivals through the time-partitioned datasets obtained
after each day. The new browsers are displayed in hundreds of thousands.

overall fingerprints have a stable unicity rate of more than 81.3% for the partitioned-datasets, and
more than 94.7% of the fingerprints are shared by at most 8 browsers. The overall fingerprints
comprise those collected from desktop and mobile browsers, but also those of tablets, game consoles,
and smart TVs. The comparisons are done using fingerprint hashes, resulting in 4 hash collisions
which we deem negligible.

The anonymity sets tend to grow as more browsers are encountered due to the higher chances
of collision. However, the fingerprints tend to stay in small anonymity sets, as can be seen by the
growth of the anonymity sets of size 2 being more important than the growth of the anonymity sets
of size 8 or higher. The unicity rate of the time-partitioned datasets (81.3%) is lower than the unicity
rate of the complete dataset (81.8%). This is due to browsers having multiple unique fingerprints in
the complete dataset, which typically occurs when a browser having a unique web environment is
fingerprinted multiple times. Considering the time-partitioned datasets removes this over-counting
effect.
New browsers are encountered continually. However, starting from the 60th day, the arrival

frequency stabilizes around 5, 000 new browsers per day. Before this stabilization, the arrival
frequency is variable and has major spikes that seem to correspond to events that happened in
France. These events could lead to more visits and explain these spikes. For example, the spike on
the 38th day corresponds to a live political debate on TV, and the spike on the 43rd correlates with
the announcement of a cold snap.

4.1.2 Distinctiveness of desktop and mobile browsers. Figure 3 presents the unicity rate through the
time-partitioned datasets for the overall, the mobile, and the desktop browsers. The fingerprints
of mobile browsers are more uniform than those of desktop browsers, with a unicity rate of
approximately 42% against 84% considering the time-partitioned datasets. The unicity rate of the
desktop browsers slightly increases by 1.04 points from the 60th to the 183th day, from 84.99% to
86.03%. On the contrary, the unicity rate of the mobile browsers slightly decreases by 0.29 points on
the same period, from 42.42% to 42.13%. These results are in line with previous studies [33, 44, 60, 87]
that also observed a reduction of the distinctiveness among the fingerprints of mobile browsers
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Fig. 3. Unicity rate for the overall, the mobile, and the desktop browsers, through the time-partitioned
datasets obtained after each day.

compared to those of desktop browsers. However, we acknowledge that our dataset misses attributes
that could improve the distinctiveness of the fingerprints of mobile browsers. A good candidate
attribute is the sensor API [103] that is already used by real-life fingerprinters [30, 49, 67].

4.2 Stability
Figure 4 displays the average similarity between the pairs of consecutive fingerprints as a function
of the time difference, together with the number of compared pairs for each time difference. The
ranges Δ are expressed in days, so that the day 𝑑 on the x-axis represents the fingerprints that
are separated by Δ = [𝑑 ;𝑑 + 1[ days. We ignore the comparisons of the time ranges that have
less than 10 pairs to have samples of sufficient size without putting too many comparisons aside.
We also ignore the bogus comparisons that have a time difference higher than the limit of our
experiment (182 days). These two sets of ignored comparisons account for less than 0.03% of each
group. The results are obtained by comparing a total of 3, 725, 373 pairs of consecutive fingerprints,
which include 2, 912, 860 pairs for the desktop browsers and 594, 591 pairs for the mobile browsers.
Two consecutive fingerprints are necessarily different as we remove the duplicated consecutive
fingerprints (see Section 2.4.3). Considering (𝑓1, 𝑓2, 𝑓3) the fingerprints collected for a browser that
are ordered by the time of collection. The resulting set of consecutive fingerprints is {(𝑓1, 𝑓2), (𝑓2, 𝑓3)}.
Our stability results are a lower bound, as the consecutive fingerprints are necessarily different
(i.e., their similarity is strictly lower than 1).

Our fingerprints are stable, as on average more than 91% of the attributes are expected to not
change, considering up to 174 elapsed days (nearly 6 months) between two observations. In a web
authentication context, we assume that the users would connect more frequently or would accept
to undergo the account recovery process (see Section 6.1). The fingerprints of mobile browsers are
generally more stable than those of desktop browsers, as suggests their respective similarity curve.
Few attributes of our script are highly instable. They are discussed in Section 5.1.3. Getting rid
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Fig. 4. Average similarity between the pairs of consecutive fingerprints as a function of the time difference,
with the number of compared pairs, for the overall, the mobile, and the desktop browsers.

of these attributes could reduce the distinctiveness of the fingerprints, but would improve their
stability.

4.3 Performance
4.3.1 Time consumption. Figure 5 displays the cumulative distribution of the collection time of our
fingerprints in seconds with the outliers removed. We measure the collection time by the difference
between two timestamps, one recorded at the starting of the script and the other one just before
sending the fingerprint. Some fingerprints take a long time to collect that span from several hours
to days. We limit the results to the fingerprints that take 30 seconds or less to collect and consider
the higher values as outliers. The outliers account for less than 1% of each group and are discussed
in Appendix B.
Half of our fingerprints are collected in less than 2.92 seconds, and the majority (95%) in less

than 10.42 seconds. The time to collect the fingerprints is lower for the desktop browsers than for
the mobile browsers. Half of the fingerprints of the desktop browsers are collected in less than
2.64 seconds, and the majority (95%) in less than 10.45 seconds. These numbers are respectively
of 4.44 seconds and 10.16 seconds for the mobile browsers. The median collection time of our
fingerprints is less than the estimated median time taken by web pages to load completely [19],
which is 6.5 seconds for the desktop browsers and 17.9 seconds for the mobile browsers at the
date of May 1, 2021. Mobile devices generally have less computing power than desktop devices,
which can explain the longer collection time together with the throttling of inactive tabs. The
collection time of the fingerprints of mobile browsers has less variance than those of desktop
browsers. This can be explained by the former having more uniform computing power than the
latter. This is supported by the presence in our dataset of desktop browsers running on old systems
like Windows Vista or Windows XP.

Our script takes several seconds to collect the attributes that compose the fingerprints. However,
we stress that this script is purely experimental and was developed to collect many attributes to get
closer to what a fingerprinter may achieve in real-life. Although collecting the fingerprint induces
an additional collection time on the authentication page, such page is expected to be lightweight
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Fig. 5. Cumulative distribution of the collection time of the fingerprints in seconds. We consider the finger-
prints that take more than 30 seconds to collect as outliers, which account for less than 1% of each group.

and fast to load. Moreover, the time to collect the fingerprint can be reduced by ways that we
describe below. The attributes that are longer to collect and that are less distinctive can be removed
without a major loss of distinctiveness [15]. For example, our method to detect an ad-blocker waits
a few seconds for a simulated advertisement to be removed, but only provides a Boolean value.
We discuss the longest attributes to collect in Section 5.1.4. The attributes can also be collected
in parallel or in the background. In their recent work, Song Li and Yinzhi Cao [62] collect their
attributes in parallel and manage to collect the fingerprints of desktop and mobile browsers within
one second. Our script can also be updated to leverage the most advanced web technologies, like
the OffscreenCanvas API [40] that migrates the generation of the canvases off the main thread to
another thread. More generally, we can use the Service Workers API [72] to collect the attributes
concurrently in the background to reduce the perceived collection time.

4.3.2 Memory consumption. Figure 6 displays the cumulative distribution of the size of our fin-
gerprints in bytes with the outliers removed. Our fingerprints are encoded in UTF-8 using only
ASCII characters and the canvases are stored as sha256 hashes. One character then takes one byte
and the results can be expressed in both units. The fingerprint sizes comprise the value of the
262 attributes without the metadata fields (e.g., the UID, the timestamp). The average fingerprint
size is of 𝜇 = 7, 692 bytes, and the standard deviation is of 𝜎 = 2, 294. We remove 1 fingerprint from
a desktop browser considered an outlier due to its size being greater than 𝜇 + 15 · 𝜎 .

The memory consumption takes place on three components: on the client during the buffering
of the fingerprints, on the wire during their sending, and on the server during their storage. Half of
our fingerprints take less than 7, 550 bytes, 95% less than 12 kilobytes, and all of them less than
22 kilobytes. This is negligible given the current storage and bandwidth capacities. We observe a
difference between the fingerprints of mobile and desktop browsers, with 95% of the fingerprints
weighing respectively less than 8, 020 bytes and 12, 082 bytes. This is due to heavy attributes being
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Fig. 6. Cumulative distribution of the fingerprint size in bytes, for the overall, the mobile, and the desktop
browsers. We ignore one outlier collected from a desktop browser that shows an extremely higher size.

lighter on mobile browsers, like the list of plugins or mime types that are most of the time empty.
We discuss the heaviest attributes in Section 5.1.5.

4.3.3 Accuracy of the simple verification mechanism. The accuracy of the simple illustrative verifi-
cation mechanism is measured according to the following methodology. First, we split our dataset
in six samples, one for each month. We assume that a user would spend at most one month between
two connections, and otherwise would accept to undergo a heavier fingerprint update process. Two
sets are afterward extracted from each sample. They are composed of pairs of compared finger-
prints that we call comparisons. The same-browser comparisons are composed of the consecutive
fingerprints of each browser, and the different-browsers comparisons are composed of two randomly
picked fingerprints of different browsers. After constituting the same-browser comparisons for each
month, we sample the different-browsers comparisons to have the same size as the same-browser
comparisons. The month sampling also helps the different-browsers comparisons to be realistic by
pairing fingerprints that are separated by at most one month. Both the two sets of comparisons
contain a total of 3, 467, 289 comparisons.

Figure 7 displays the distribution of the identical attributes between the same-browser compar-
isons and the different-browsers comparisons, starting from 34 identical attributes as there are
no observed value below. Figure 8 presents a focus that starts from 227 identical attributes, below
which there are less than 0.005 of the same-browser comparisons. We can observe that the two sets
of comparisons are well separated, as 99.05% of the same-browser comparisons have at least 234
identical attributes, and 99.68% of the different-browsers comparisons have fewer. The different-
browsers comparisons have generally a fewer, and a more diverse, number of identical attributes
compared to the same-browser comparisons. The different-browsers comparisons have between 34
and 253 identical attributes, with an average of 127.41 attributes and a standard deviation of 44.06
attributes. The same-browser comparisons have between 72 and 252 identical attributes, with an
average of 248.64 attributes and a standard deviation of 3.91 attributes.
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Fig. 7. The number of identical attributes between
the same-browser comparisons and the different-
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Fig. 8. The number of identical attributes between
the same-browser comparisons and the different-
browsers comparisons, starting from 227 attributes.
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Fig. 9. False match rate (FMR) and false non-match rate (FNMR) given the required number of identical
attributes, averaged among the month six samples.

Figure 9 displays the false match rate (FMR) which is the proportion of the same-browser
comparisons that are classified as different-browsers comparisons, and the false non-match rate
(FNMR) which is the inverse. The displayed results are the average for each number of identical
attributes among the six month-samples. As there are few same-browser comparisons that have
less than 234 identical attributes, the FNMR is null until this value. However, after exceeding
this threshold, the FNMR increases as the same-browser comparisons begin to be classified as
different-browsers comparisons. The equal error rate, which is the rate where both the FMR and the
FNMR are equal, is of 0.61% and is achieved for 232 identical attributes. Although the verification
mechanism does not have a perfect accuracy of 100%, this is acceptable. Indeed, a user getting his
browser unrecognized can undergo the fallback authentication process (see Section 6.1). Moreover,
we consider the use of browser fingerprinting as an additional authentication factor, hence the
other factors can prevent a falsely recognized browser. Both these events are expected to rarely
occur as can be seen by the low equal error rate.
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These results are tied to the distinctiveness and the stability of the fingerprints. Indeed, as more
than 94.7% of the fingerprints are shared by less than 8 browsers, two random fingerprints have
little chances to match. Moreover, more than 244 attributes (96.64%) are identical between the
consecutive fingerprints of a browser7, on average and when separated by less than 31 days. This is
consistent with the 248.64 identical attributes on average among the same-browser comparisons8.

4.4 Conclusion
About the distinctiveness, and considering the time-partitioned datasets, our fingerprints provide a
unicity rate of more than 81.3% which is stable on the long-run. Moreover, more than 94.7% of our
fingerprints are shared by at most 8 browsers. About the stability, and on average, a fingerprint has
more than 91% of its attributes that stay identical between two observations, even when they are
separated by nearly 6 months. About the performance, the majority (95%) of our fingerprints weigh
less than 12 kilobytes and are collected in less than 10.42 seconds. We do not remark any significant
loss in the properties offered by our fingerprints through the 6months of our experiment. However,
we fall to the same conclusion as previous studies [33, 44, 60, 87] about the fingerprints of mobile
browsers lacking distinctiveness. Their unicity rate in the time-partitioned datasets falls down to
approximately 42%. We remark that, in our dataset, the consecutive fingerprints of a browser have
at least 234 identical attributes, whereas the majority of the fingerprints of different browsers have
fewer. This results in our simple verification mechanism achieving an equal error rate of 0.61%.

5 ATTRIBUTE-WISE ANALYSIS
In this section, we discuss the contribution of the attributes to the properties of the fingerprints.
Then, we show that most of the attributes are correlated with at least another one (i.e., they provide
less than 1 bit of entropy when the other one is known). Finally, we focus on the properties of
the dynamic attributes (e.g., their collection time). We refer the reader to Appendix A for more
information about the implementation of each attribute.

5.1 Contribution of particular attributes
In this section, we discuss the contribution of the attributes to the fingerprint properties of dis-
tinctiveness, stability, and performance. We express the stability of the attributes as the sameness
rate, which is the proportion of the consecutive fingerprints where the value of the attribute stays
identical. Appendix E provides the exhaustive list of the attributes and their properties.

5.1.1 Attributes distinct values. Figure 10 depicts the cumulative distribution of the number of
distinct values among the attributes. We have 42% of the attributes that have at most 10 distinct
values, 63% that have at most 100 distinct values, and 79% that have at most 1, 000 distinct values.
Only 5 attributes have more than 100, 000 distinct values. They are the WebRTC fingerprinting
method (671, 254 values), the list of plugins (314, 518 values), the custom canvas in the PNG format
(269, 874 values) and in the JPEG format (205, 005 values), together with the list of mime types
(174, 876 values).

The values of the attributes are of different nature, impacting the distinct values that can be
observed among different population or time ranges. Some attributes have a fixed number of values,
like the Boolean attributes or the categorical attributes that have a fixed set of possibilities. Other

7On average, more than 90% of the attributes stay identical between the consecutive fingerprints, but these attributes are
not always the same. We do not restrict the pairs of consecutive fingerprints to the subset of the identical attributes as these
attributes differ between these pairs.
8The difference is due to the fingerprints of the same-browser comparisons belonging to the same month, whereas the
consecutive fingerprints can overlap over two consecutive months.
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Fig. 10. Cumulative distribution of the number of distinct values of the attributes in logarithmic scale.

attributes are composed of elements having a fixed set of possibilities, but their combination provides
a high number of values. It is the case for the attributes that are related to languages that typically
are a combination of language identifiers (e.g., fr) that can be weighted (e.g., 𝑞 = 0.80). These
attributes also comprise the list of fonts that is composed of Boolean values that indicates the
presence of a font. Other attributes are integers or floating-point numbers, resulting in a large set
of possible values. This category comprises any size-related attribute (e.g., the screen width and
height) and our audio fingerprinting method which value is a floating-point number with a high
precision of more than 8 digits. Other attributes are textual information that can include version
numbers, which results in a high number of distinct values. Moreover, as new values appear through
time (e.g., new versions, new software components), the set of the observed values is expected to
grow over the observations. Examples are the UserAgent or the list of plugins which are composed
of the name and version of hardware and software components.

Table 3 compares the number of distinct attributes of our dataset with the numbers reported by the
studies AmIUnique [60], Hiding in the Crowd [44], and Who Touched My Browser Fingerprint [62].
We emphasize that the more fingerprints are observed, the more chances there is to observe new
attribute values. We find two attributes missing from previous studies that show a high number of
distinct values: the WebRTC fingerprinting method which includes numerous information about
an instance of a current WebRTC connection, and the list of mime types.
Three attributes have a higher number of distinct values in our study than in the comparison

studies [44, 60, 62]: the list of plugins, the canvas, and the list of HTTP headers. For the list of
plugins, this increase can be explained by the higher number of observed fingerprints compared
to [60] and by the higher proportion of desktop browsers9 compared to [62]. The increase of distinct
values of the canvas is due to the larger set of instructions that we use for the custom canvas
compared to the comparison studies (see Section 5.3). The increase of distinct values of the HTTP

9Due to a lack of personalization, the browsers that run on mobile devices tend to have fewer plugins than those that run
on desktops or laptops [44, 60].
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Table 3. Comparison of the distinct attribute values between the studies AmIUnique (AIU), Hiding in the
Crowd (HitC), Who Touched My Browser Fingerprint (WTMBF), and this study. The attributes are composed
of the five attributes showing the most distinct values for this study and the attributes reported by the
previous studies that are in this study. The attributes are ranked according to this study. The symbol - denotes
missing information and * denotes the attributes that are not collected exactly the same way (e.g., using
different set of instructions or methods) among the studies.

Attribute AIU [60] HitC [44] WTMBF [62] This study

WebRTC - - - 671,254
List of plugins* 47,057 288,740 16,633 314,518
Canvas (PNG)* 8,375 78,037 14,006 269,874
Canvas (JPEG) - - - 205,005
List of mime types - - - 174,876
User agent 11,237 19,775 41,060 20,961
List of fonts* 36,202 17,372 115,128 17,960
List of HTTP headers* 1,182 610 344 5,394
WebGL renderer (unmasked) 1,732 3,691 5,747 3,786
Content language 4,694 2,739 14,214 2,833
Pixel ratio - - 1,930 2,035
WebGL canvas* - - 4,152 1,158
CPU cores - - 29 60
Timezone 55 60 38 60
Platform 187 32 - 32
Content encoding 42 30 26 30
WebGL vendor (unmasked) 26 27 26 27
Accept 131 24 9 26
Do Not Track 7 3 - 11
AdBlock* 2 2 - 19
Color depth - - 6 14
CPU class - - 5 6
Use of local storage 2 2 2 4
Use of session storage 2 2 - 4
Cookies enabled 2 1 2 1

Fingerprints 118,934 2,067,942 7,246,618 4,145,408
Distinct fingerprints 142,023a - 1,586,719 3,578,196

aThis number is displayed in Figure 11 of [60] as the number of distinct fingerprints, but it also corresponds to the number
of raw fingerprints. Every fingerprint would be unique if the number of distinct and collected fingerprints are equal. Hence,

we are not confident in this number, but it is the number provided by the authors.

headers list is explained by the comparison studies storing the name of the headers, whereas we
store both the name and the value of the headers that we do not store in a dedicated attribute.
Other attributes have a higher number of distinct attributes because we store a flag that indicates
the type of error when one is encountered (e.g., the value was not collected in time, its collection
raised an exception). For example, the support of the local storage has 4 distinct values instead of 2
for the previous studies [44, 60]. Moreover, for the detection of an ad-blocker, we verify several
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Fig. 11. Cumulative distribution of the normalized entropy and entropy (in bits) among the attributes.

modifications that a potential ad-blocker would make on a dummy advertisement (e.g., set its
visibility to hidden) and store a list of whether each modification was done.

Four attributes have more distinct values in the study of Laperdrix et al. [60]: the list of fonts, the
platform, and three HTTP headers that are accept, content language, and content encoding. The
increase for the list of fonts is due to their usage of the Flash plugin that directly accesses the list of
installed fonts. Due to the deprecation of plugins, we infer the presence of 66 fonts through the size
of text boxes [35]. The increase for the four other attributes can be explained by the diversity of the
configurations of their browser population and by users modifying their browser fingerprint (e.g.,
they found users modifying the platform attribute and counted 5, 426 inconsistent fingerprints).
Four attributes have more distinct values in the study of Song Li and Yinzhi Cao [62]: the user

agent, the list of fonts, the content language, and the WebGL canvas. The increase of distinct values
of the user agent can be explained by their higher proportion of mobile browsers, which tend to
have more information in the user agent (e.g., the device model [60]). The increase for the list
of fonts can be explained by their higher number of fonts that are detected, which is of 96 fonts
compared to 66 in our study. As for the content language, they collect their fingerprints from a
European website and observe connections coming from 226 countries. Although they remark that
some connections are made through proxies, we can still suppose that the user population span
over several countries. As a result, their dataset contains more diverse language configurations
than our dataset which was collected from a French website. The increase of distinct values of the
WebGL canvas can be explained by their set of instructions being more complex than ours (see
Section 5.3). Unfortunately, they do not provide any example of generated images or description of
the instructions they used.

5.1.2 Attributes distinctiveness. We measure the distinctiveness of the attributes as the normal-
ized entropy for comparability with previous studies. The normalized entropy was proposed by
Laperdrix et al. [60] to cope with the problem of comparing the entropy of attributes between

ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.



26 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 4. Comparison of the normalized entropy between the studies Panopticlick (PTC), AmIUnique (AIU),
Hiding in the Crowd (HitC), and this study. The attributes are ranked from the most to the least distinctive
in this study. The symbol - denotes missing information and * denotes the attributes that are not collected
exactly the same way (e.g., using different set of instructions or methods) among the studies.

Attribute PTC [33] AIU [60] HitC [44] This study

Canvas (PNG)* - 0.491 0.407 0.420
Canvas (JPEG) - - 0.391 0.399
List of plugins* 0.817 0.656 0.452 0.394
User agent 0.531 0.580 0.341 0.350
List of fonts* 0.738 0.497 0.329 0.305
WebGL renderer (unmasked) - 0.202 0.264 0.268
Content language - 0.351 0.129 0.124
WebGL vendor (unmasked) - 0.127 0.109 0.115
List of HTTP headers* - 0.249 0.085 0.095
Do Not Track - 0.056 0.091 0.085
Platform - 0.137 0.057 0.068
Accept - 0.082 0.035 0.028
Content encoding - 0.091 0.018 0.019
Timezone 0.161 0.198 0.008 0.008
AdBlock* - 0.059 0.002 0.002
Use of local storage - 0.024 0.002 0.001
Use of session storage - 0.024 0.002 0.000
Cookies enabled 0.019 0.015 0.000 0.000

Maximum entropy 𝐻𝑀 18.843 16.859 20.980 21.983
Fingerprints 470,161 118,934 2,067,942 4,145,408

fingerprint datasets of dissimilar sizes. The normalized entropy 𝐻𝑛 (𝑋 ) is defined as the ratio of the
entropy 𝐻 (𝑋 ) of the attribute to the maximum entropy 𝐻𝑀 = log2 (𝑁 ), with 𝑁 being the number
of fingerprints. The entropy can be retrieved as 𝐻 (𝑋 ) = 𝐻𝑛 (𝑋 ) ∗ 𝐻𝑀 . In our case, 𝐻𝑀 = 21.983 bits
and an entropy of 1 bit is equivalent to a normalized entropy of 0.045.
Figure 11 displays the cumulative distribution of the normalized entropy and entropy (in bits)

among the attributes. We have 10% of the attributes that provide a low normalized entropy of less
than 0.003, and another 10% that provide a normalized entropy between 0.25 and 0.42. The majority
of the attributes (80%) provide a normalized entropy comprised between 0.003 and 0.25. The most
distinctive attributes of previous studies [33, 60] also belong to the most distinctive attributes of
our study. The three canvases are among the 10 most distinctive attributes. Our designed canvas in
PNG has a normalized entropy of 0.420, the canvas similar to the canvas presented in the Morellian
study [56] has a normalized entropy of 0.385, and the canvas inspired by the AmIUnique study [60]
has a normalized entropy of 0.353. The userAgent collected from the JavaScript property is more
distinctive than its HTTP header counterpart, as they respectively have a normalized entropy
of 0.394 and 0.350. Finally, the list attributes are also highly distinctive. The list of plugins has a
normalized entropy of 0.394, the list of supported mime types has a normalized entropy of 0.311,
and the list of fonts has a normalized entropy of 0.305.

Table 4 compares the normalized entropy between the studies Panopticlick [33], AmIUnique [60],
Hiding in the Crowd [44], and this study. The attributes are ranked from the most to the least
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distinctive in this study. The normalized entropy of our attributes are lower than what is reported
in these studies, which can be explained by the following factors. First, the maximum entropy 𝐻𝑀

increases with the number of fingerprints. However, an attribute that has 𝑛 possibilities (e.g., a
Boolean attribute has only two possible values) have a normalized entropy of at most log2 (𝑛). As
the number 𝑁 of fingerprints increases, the normalized entropy decreases due to the entropy of
the attribute being capped at log2 (𝑛) whereas the ratio is to log2 (𝑁 ). Second, contextual attributes
are biased towards the French population (see Section 2.2) and provide a lower normalized entropy.
For example, the time zone and the Accept-Language HTTP header (named content language in
Table 4) provide a respective normalized entropy of 0.008 and 0.124, against 0.198 and 0.351 for the
AmIUnique study. The third reason is the evolution of the web technologies since the Panopticlick
and the AmIUnique study. For example, the list of plugins is less distinctive due to the replacement
of plugins by HTML5 functionalities or extensions [94]. Another example is the list of fonts that
was collected through plugins [33, 60], but now has to be inferred from the size of text boxes [35].
Although the 17 attributes in common have a lower normalized entropy, we supplement them with
more than a hundred attributes, resulting in the fingerprints showing a unicity rate above 80%.

Interestingly, four attributes unreported by the previous large-scale studies [33, 44, 60] are found
to be highly distinctive. The innerHeight and outerHeight properties of the window JavaScript
object, mentioned by [84, 102] but without any distinctiveness measure, have a respective nor-
malized entropy of 0.388 and 0.327. The size of bounding boxes was used by [35] as a method of
font fingerprinting. From the entropy reported in [35], we obtain a normalized entropy of 0.761
against 0.369 in our dataset. To the best of our knowledge, no previous study use the width and
the position of a newly created div element as a fingerprinting attribute. However, it is highly
distinctive as it achieves a normalized entropy of 0.324 in our dataset. All the mentioned attributes
provide a sameness rate above 90%, except for the size of bounding boxes that goes down to 47%.
However, when looking at its extracted parts, we observe that they have a sameness rate higher
than 90% at the exception of the height of the first bounding box that has a sameness rate of 49%.
This illustrates the necessity to break down some attributes to parts, as removing this part from
the original attribute would drastically increase its sameness rate.

5.1.3 Attributes sameness rate. Figure 12 displays the cumulative distribution of the sameness
rate among the attributes. Only 6 attributes (2.29%) provide a sameness rate below 85%, 5.7%
of the attributes provide a sameness rate comprised in [85, 95]%, 10.7% provide a sameness rate
comprised in [95, 99]%, and more than 80% of the attributes have a sameness rate above 99%. Among
the 3, 725, 373 pairs of consecutive fingerprints, only 5 attributes never change (i.e., they show
a sameness rate of 100%). They comprise whether cookies are enabled, and four non-standard
HTTP headers [50] that are X-ATT-DeviceId, X-UIDH, X-WAP-Profile, and X-Network-Info.
These headers are typically added by mobile network operators to the communications of mobile
devices [100]. The cookie enabling state is stable because the working dataset only contains
fingerprints that have this functionality activated (see Section 2.4). As for the non-standard headers,
the two first headers are always missing from the headers. The X-Network-Info header has three
non-missing values that were seen on a single browser each. The X-WAP-Profile has three values
that were seen on 37 browsers and consist of URL links directing to an XML document that describes
the device. The most common link is shared by 35 browsers and concerns the Samsung B550H
mobile phone [83].

The attributes that have a sameness rate below 85% are the size of bounding boxes, three extracted
attributes derived from the bounding boxes, and two other attributes that we describe here. The
instability of the size of bounding boxes is already explained in Section 5.1.2. The Cache-Control
HTTP header allows the browser to specify the cache policy used during requests. It is the second
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Fig. 12. Cumulative distribution of the sameness rate of the attributes among the consecutive fingerprints.

most instable attribute with a sameness rate of 70.63%. This header is instable because it is not
always sent and some of its values contain the max-age parameter that can vary between requests.
The third most instable attribute is the WebRTC fingerprinting method that has a sameness rate of
76.46%. This is due to three factors. First, the experimental state of this attribute and the bad support
of the WebRTC API at the time of the experiment [5, 10] results in it being unsupported, undefined,
or erroneous for 75.23% of the observed fingerprints. Then, it contains local IP addresses10 which
can change between two observations. Finally, it is composed by numerous pieces of information
about an instance of a WebRTC connection, hence the change of any information modifies the
value of the whole attribute. We reduce this effect by collecting these pieces of information from
two connections and only keeping the identical values.

5.1.4 Attributes collection time. Most of the attributes are HTTP headers or JavaScript properties
that are collected sequentially and in a negligible amount of time. We call asynchronous attributes
the attributes that are collected asynchronously (i.e., in parallel). Only 33 attributes have a median
collection time (MCT) higher than 5ms. They are presented in Figure 13 and are thoroughly
described in Appendix A. All these attributes are asynchronous at the exception of the canvases,
hence the total collection time of the fingerprint is not their sum. These attributes can be separated
in three classes: extension detection, browser component, and media related. Their high collection
time can be explained by these attributes waiting for the web page to render, executing heavy
processes (e.g., graphical computation), or being asynchronous attributes that are affected by the
side effect described in Appendix B. We consider the fingerprints that take more than 30 seconds
to collect as outliers. We configured our fingerprinting script to collect the attributes in a given
amount of time, after which the fingerprint is sent without waiting for all the attributes. In such
case, the missing attribute do not have a collection time, and we ignore their collection time in
the presented results. For all the attributes except five asynchronous attributes, these two types of
10Our script hashes these local IP addresses in MD5 directly on the clients, see [92] for more information about how the
WebRTC API gives access to this information.
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Fig. 13. Median collection time in seconds of the 33 attributes that have a median collection time higher than
5ms. The attributes are ranked from the slowest to the fastest to collect for the overall browsers. We consider
the fingerprints that take more than 30 seconds to collect as outliers. The attributes that were not collected
in time are not counted in these results. These two types of outliers account for less than 1% of the overall,
desktop, and mobile entries, at the exception of the five asynchronous attributes discussed in Appendix B.

outliers account for less than 1% of the overall, desktop, and mobile entries. Appendix B discusses
these two types of outliers.
The first class of the attributes that take time to collect are the methods of extension detection.

All these attributes are asynchronous. The 9 slowest attributes detect an extension by the changes
it brings to the content of the web page [89]. They have a median collection time (MCT) of
approximately 2.2 seconds due to the waiting time before checking the changes on the web page.
There is a clear difference between desktop and mobile browsers that show a respective MCT of
approximately 2 seconds against 3.3 seconds. The 22nd to the 29th slowest attributes detect an
extension based on web-accessible resources [86], which consist in checking whether an image
embarked in an extension is accessible or not. They have a MCT of around 56ms, which is lower
than the method that relies on detecting changes brought to the web page.
The second class of the attributes that take time to collect infer the availability of browser

components. All these attributes are asynchronous. The list of speech synthesis voices is ranked
14th with a MCT of 546ms. This is due to this attribute being a list and the collection method that,
for some browsers, requires to be done during an onvoiceschanged event which takes time to be
triggered. The list of fonts and the inference of the default font are ranked 15th and 19th with a
respective MCT of 450ms and 99ms. This is due to the detection method that measures the size of
newly created text boxes [35]. The size of bounding boxes, the browser component colors, and the
width and position of a newly created div element are ranked 18th, 20th, and 21st, with a MCT
ranging from 84ms to 197ms. This is due to their waiting for and manipulation of the web page
that takes time. The WebRTC fingerprinting method is ranked 13th with a MCT of 771ms. This is
due to the creation of two WebRTC connections that are needed to gather information about the
WebRTC configuration.
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Fig. 14. Median size of the 20 heaviest attributes in bytes. The attributes are ranked from the heaviest to the
lightest for the overall browsers.

The third class of the attributes that take time to collect are those that generate a media file (e.g.,
a sound, an image) and are discussed in Section 5.3. The methods of advanced audio fingerprinting
are asynchronous and ranked 10th, 11th, and 12th. Our designed canvases are ranked 16th and
17th. The canvases inspired by the AmIUnique study [60] are ranked 31st and 33rd. The canvas
similar to the canvas of the Morellian study [56] is ranked 32nd.

5.1.5 Attributes size. Most of our attributes have a negligible median size (MS). We have 137 at-
tributes with a MS below 5 bytes, 105 attributes with a MS between 5 bytes and 100 bytes, and
20 attributes with a MS above 100 bytes. Figure 14 displays the median size of the 20 heaviest
attributes in bytes, ranked from the heaviest to the lightest attribute for the overall browsers. We
discuss below these 20 heaviest attributes.
The heaviest attributes are composed of list attributes and verbose textual attributes. The three

heaviest attributes are list attributes. The list of the properties of the navigator object is the
heaviest attribute with a MS of 502 bytes, the list of colors of layout components is second with
a MS of 492 bytes, and the list of WebGL extensions is third with a MS of 401 bytes. Examples
of verbose textual attributes are the appVersion that is 18th with a MS of 107 bytes, and the
userAgent JavaScript property that is 14th with a MS of 115 bytes, which is more verbose than its
HTTP header counterpart that is 19th with a MS of 108 bytes.
On mobile browsers, some list attributes are most of the time empty due to their lack of cus-

tomization (e.g., plugins are mostly unsupported). They are the list of speech synthesis voices
that is 4th, the list of the constraints supported by the mediaDevices object that is 8th, the list of
plugins that is 12th, and the list of supported mime types that is 17th. On the contrary, the verbose
attributes are slightly heavier on mobile browsers, which is explained by the presence of additional
information like the device model.
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Fig. 15. The normalized conditional entropy (NCE) of the attributes given the knowledge of another attribute.
Given the known attribute of index 𝑗 on the vertical axis, the remaining NCE of the inferred attribute of
index 𝑖 on the horizontal axis is read in the cell (𝑖 , 𝑗 ). The attributes are ordered by the average normalized
conditional entropy and the indices match with Figure 16.

5.2 Correlation between attributes
We can expect to have correlations occurring between the attributes when considering more than
200 attributes. We provide here an overview of the correlation between the attributes, that include
the nine dynamic attributes, and refer the reader to Appendix E for insight in the correlation of
each attribute.

For comparability with the results of attributes distinctiveness, we express the correlation by the
conditional entropy H(𝑎 𝑗 |𝑎𝑖 ) of an attribute 𝑎 𝑗 when another attribute 𝑎𝑖 is known, normalized to
the maximum entropy 𝐻𝑀 . We call this measure the normalized conditional entropy. It is comprised
between 0.0 if knowing 𝑎𝑖 allows to completely infer 𝑎 𝑗 , and the normalized entropy of 𝑎 𝑗 if
knowing 𝑎𝑖 provides no information on the value of 𝑎 𝑗 (i.e., they are independent). We denote 𝑉𝑖
the domain of the attribute 𝑎𝑖 and 𝑒𝑖𝑣 the event that the attribute 𝑎𝑖 takes the value 𝑣 . We consider
the relative frequency 𝑝 of the attribute values among the considered fingerprints. The measure of
the conditional entropy H(𝑎 𝑗 |𝑎𝑖 ) of 𝑎 𝑗 given 𝑎𝑖 is expressed as

H(𝑎 𝑗 |𝑎𝑖 ) = −
∑︁

𝑣∈𝑉𝑖 ,𝑤∈𝑉𝑗

𝑝 (𝑒𝑖𝑣, 𝑒
𝑗
𝑤) log

𝑝 (𝑒𝑖𝑣, 𝑒
𝑗
𝑤)

𝑝 (𝑒𝑖𝑣)
(9)

Figure 15 displays the normalized conditional entropy (NCE) of the attributes given the knowledge
of another attribute and Figure 16 displays the minimum, the average, and the maximum NCE of
an attribute when the value of another attribute is known. In these two figures, the attributes are
ordered identically by the average NCE. We recall that the maximum entropy is 𝐻𝑀 = 21.983 bits
and that a conditional entropy of 1 bit is equivalent to a NCE of 0.045.
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Fig. 16. Minimum, average, and maximum normalized conditional entropy of an attribute when the value of
another attribute is known. The attributes are ordered by the average normalized conditional entropy and the
indices match with Figure 15.

In Figure 16, we ignore the 9 source attributes from which the extracted attributes are derived
and the comparison of an attribute with itself. These cases are irrelevant as the extracted attributes
are completely correlated with their source attribute, and an attribute is completely correlated
with itself. We obtain a total of 253 attributes. We stress that the maximum NCE of an attribute is
always equal to the normalized entropy of this attribute. This is due to the cookie enabling state
that is always true. As a result, it provides a null entropy and knowing its value does not provide
any information on the value of the other attributes. We can see three parts in this figure. First,
19 attributes have a low normalized entropy of less than 10−3 and their NCE when knowing another
attribute is at most as much. Few different values have been observed for these attributes. Then,
194 attributes have an average NCE between 10−3 and 10−1. The minimum normalized conditional
entropy (MinNCE) of these attributes is near 0.0, hence there exists another attribute that can be
used to efficiently infer their value. Finally, 40 attributes have an average NCE higher than 10−1 and
generally have a strictly positive MinNCE. These attributes help to efficiently distinguish browsers
and are less correlated to other attributes.
The minimum normalized conditional entropy (MinNCE) is an interesting indicator of the

efficiency to infer the value of an attribute if the value of another attribute is known. We have
49 attributes that have a null MinNCE and can completely be inferred when another attribute is
known. Moreover, 192 attributes have a MinNCE comprised in the range ]0, 0.045], hence knowing
the value of another attribute helps to infer their value but not completely. Finally, 12 attributes
have a MinNCE higher than 0.045, which is equivalent to having a minimum conditional entropy
higher than 1 bit. They are displayed in Table 5. They consist of highly distinctive attributes that
concern the screen or window size (e.g., W.screenX, W.innerHeight), browser components (e.g., the
list of fonts or plugins), and verbose information about the browser (e.g., the UserAgent) or about
external components (e.g., WebRTC fingerprinting).
As the attributes tend to be correlated with each other, a subset of them can provide sufficient

distinctiveness or the same distinctiveness as when using all the attributes. Several attribute
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Table 5. The attributes that have a minimum normalized conditional entropy (MinNCE) higher than 0.045,
which is equivalent to a minimum conditional entropy higher than 1 bit. The minimum conditional entropy is
in bits. W refers to the window JavaScript object, WG refers to an initialized WebGL context, and [...] denotes
a truncated part.

Attribute MinNCE Minimum conditional entropy (in bits)

W.innerHeight 0.181 3.98
WebRTC fingerprinting 0.144 3.17
W.outerHeight 0.117 2.58
List of fonts 0.110 2.42
List of plugins 0.100 2.21
W.outerWidth 0.074 1.63
WebGL renderer (unmasked) 0.073 1.61
Height of first bounding box 0.070 1.53
S.availHeight 0.058 1.27
W.screenY 0.049 1.08
W.screenX 0.047 1.04
userAgent JavaScript property 0.046 1.00

selection methods were proposed by previous works. The most common methods weight the
attributes (e.g., by the entropy) and successively pick the attribute of the highest weight until
the obtained set reaches a threshold (e.g., on the number of attributes) [24, 46, 54, 70, 93]. Other
selection methods leverage the correlation that occur between the attributes and pick the next
attribute according to the attributes that are already selected [15, 35, 77]. In particular, the authors
of the FPSelect study [15] apply three attribute selection methods to a sample of our dataset and
compare the methods according to the distinctiveness and the usability of the resulting fingerprints.

5.3 Focus on dynamic attributes
Previous studies highlight the possibility to fingerprint browsers by rendering media files inside
the browser, given instructions that are provided by the fingerprinter (e.g., WebGL canvas [71],
HTML5 canvas [28], audio fingerprinting [78]). Later on, these attributes were integrated within
challenge-response mechanisms [56, 80] that mitigate replay attacks. We call these attributes the
dynamic attributes and include nine of them in our script: five HTML5 canvases, three audio
fingerprinting methods, and a WebGL canvas. To the best of our knowledge, no study evaluates
the properties of several dynamic attributes on a browser population, together with the evaluation
of various set of instructions. In this section, we seek to fill this gap and focus on the properties
offered by the nine dynamic attributes of our fingerprinting script.

5.3.1 HTML5 canvas. The HTML5 canvas consists in asking the browser to draw an image using
the canvas API within the two-dimensional context called 2d. This method is already studied
in several works, whether it is about its efficacy [28, 44, 60], its use on the web [34, 61], or the
distinctiveness provided by various sets of instructions [56]. However, to the best of our knowledge,
no study evaluates the different properties (e.g., distinctiveness, stability, collection time) offered
by various sets of complex instructions (i.e., mixes of texts, emojis, mathematical curves, drawn
using different colors). We seek to fill this gap and evaluate the properties of five HTML5 canvases
generated following three sets of instructions and in two image formats (PNG and JPEG). We name
the canvases given the set of instructions and the format. We call AmIUnique canvas the canvas
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Fig. 17. A sample of our designed HTML5 canvas in
PNG format. Fig. 18. A sample of our designed WebGL canvas in

PNG format.

generated by the set of instructions inspired by the AmIUnique11 study [60]. We extract it in PNG
format only. We call Morellian canvas the canvas generated by the set of instructions that is similar
to the Morellian study [56]. We extract it in PNG and JPEG format. We call custom canvas the
canvas generated by a set of instructions that we designed. We extract it in PNG and JPEG format.
We generate the canvas using the API, then we collect the base64 representation of the image in
PNG and JPEG format using the toDataURL function. The quality parameter of this function goes
from 0.0 to 1.0 and allow us to control the level of compression of the JPEG versions. As we seek to
compare the PNG canvases that are compressed without loss with their JPEG counterparts using
a high level of compression, we set the quality to 0.1 for the JPEG versions. An example of the
custom canvas in PNG format is displayed in Figure 17. Examples of the AmIUnique and Morellian
canvas are provided in Appendix A.

We observe that canvases are less distinctive and more stable in JPEG format than in PNG format.
For example, the custom canvas has a normalized entropy of 0.420 when exported in PNG against
0.399 for the JPEG version. However, the PNG version has a sameness rate of 92.16% against 93.59%
for the JPEG version. These differences are due to distinct images in PNG format ending up the same
after the lossy compression of the JPEG format. Acar et al. [9] consider that a canvas generated in a
lossy compression format as JPEG is not an indicator of a fingerprinting attempt. Although the JPEG
version provides a lower distinctiveness than the PNG version, it is still highly distinctive when
generated using a complex set of instructions. Indeed, it is the second most distinctive attribute
among ours (see Section 5.1.2). The time overhead induced by the additional extraction in JPEG
format is negligible. For example, the custom canvas has a median collection time (MCT) increased
by 5ms for the JPEG version compared to the PNG version that has a MCT of 257ms. We do not
account the size differences as both formats are hashed and the resulting hashes weigh 64 bytes.
The PNG and the JPEG versions are also highly correlated, as knowing the value in the PNG format
of the custom canvas leaves a normalized conditional entropy (NCE) of 5.28 × 10−4 on the value of
the JPEG format. On the opposite, knowing the value of the JPEG format provides a higher NCE of
0.021 on the value of the PNG format.

The properties of the three PNG canvases differ, with the custom canvas being themost distinctive.
First, the Morellian canvas is an enhanced version of the AmIUnique canvas with additional curves.
This enhancement provides an increase of the distinctiveness, with a normalized entropy of 0.385
for the Morellian canvas against 0.353 for the AmIUnique canvas. However, it comes with a loss of
stability with a respective sameness rate of 94.71% against 98.64%. Then, the custom canvas is more
complex than the Morellian canvas as it includes several emojis, two strings including Swedish
letters, many overlapping ellipses, a background with a color gradient, and a rotation of all these
11Contrarily to the AmIUnique study [60], we only have one sentence and one smiling face emoji instead of two. Also, we
do not draw a colored rectangle and the sentence is drawn using a color gradient.
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elements if the functionality is available. These improvements provide a higher normalized entropy
of 0.420, but a lower sameness rate of 92.16%. The main drawback of adding more complexity to
the custom canvas is the temporal cost. It has a MCT of 257ms against 37ms for the Morellian
canvas and 31ms for the AmIUnique canvas. However, it represents less than 10% of the total
median collection time of the fingerprints which is 2.92 seconds, and less than 5% of the median
loading time of a web page on a desktop browser which is 6.5 seconds [19]. Finally, knowing the
value of the custom canvas leaves less variability on the value of the two other canvases than the
opposite. When knowing the value of the Morellian or AmIUnique canvas, the custom canvas has a
respective NCE of 0.079 and 0.103. However, knowing the value of the custom canvas results in the
Morellian canvas showing a NCE of 0.044 and the AmIUnique canvas showing a NCE of 0.037. To
conclude, adding more instructions for the canvas drawing usually provides more distinctiveness,
as each instruction can induce a difference between browsers. However, it comes at the cost of
additional computation time and loss of stability as each additional instruction can constitute an
instability factor.

5.3.2 WebGL canvas. The WebGL canvas is an image that is drawn using the canvas API within
the webgl or webgl2 contexts. These contexts use the WebGL library [8] that leverages hardware
accelerations to render and manipulate two-dimensional graphics and three-dimensional scenes.
Canvas fingerprinting was first introduced by Mowery et al. [71] using the webgl context, but after-
ward most studies focused on the 2d context [10, 22, 28, 101]. This can result from the unreliability
of the WebGL context encountered by Laperdrix et al. [60] for which Cao et al. [29] proposed a
remedy by setting specific parameters.

Our WebGL canvas consists in sequential triangles with a color gradient and is simpler than our
designed HTML5 canvas. It provides a normalized entropy of 0.263 against 0.420 for the custom
HTML5 canvas. It is more stable that the other canvases with a sameness rate of 98.97%, and has a
median collection time of 41ms against 257ms for the custom HTML5 canvas. Figure 18 displays an
example of our WebGL canvas.

5.3.3 Web Audio. Web Audio fingerprinting was discovered by Englehardt et al. [34] when assess-
ing the use of web tracking methods on the web, and was studied thoroughly by Queiroz et al. [78].
It consists in processing audio signals in the browser and collecting the rendered result. Similarly
to canvases, this processing relies on software and hardware components, and variations occur
between different component stacks. It works by creating an Audio Context, which in our case
is the OfflineAudioContext12, in which we manipulate Audio Nodes. The Audio Nodes are of
three types. Source nodes generate an audio signal (e.g., from a microphone or an audio stream),
destination nodes render the signal (e.g., playing it through speakers), and manipulation nodes
manipulate the signal (e.g., increase its volume). These nodes are linked together to form a network
that goes from source nodes to destination nodes and passes through manipulation nodes. We refer
the reader to [78] for a broader description of the main audio nodes.
We have three audio fingerprinting attributes. The audio FP simple (AFS) attribute relies on a

simple process. The attributes audio FP advanced (AFA) and audio FP advanced frequency data (AFA-
FD) rely on a more advanced process. Their concrete implementation is described in Appendix A.
The most distinctive audio attribute is the AFA-FD that has a normalized entropy of 0.161, followed
by the AFS (0.153), and the AFA (0.147). They all have a sameness rate of approximately 95%. Their
values are the string representations of floating-point numbers, hence they have a median size of
17 bytes. The simple process has a median collection time (MCT) of 1.38 seconds and the advanced

12The advantage of using OfflineAudioContext is the manipulation of audio signal without playing any sound on a genuine
audio output peripheral.
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process has a MCT of 1.64 seconds. The AFA-FD is collected from the advanced version and has a
MCT increased by 3ms compared to the AFA.

6 DISCUSSION
This section describes how browser fingerprinting can be integrated in a web authentication
mechanism and discusses the attacks that are possible on such mechanism.

6.1 Browser fingerprinting-based authentication mechanism
Browser fingerprinting can enhance an authentication mechanism by providing an additional
barrier at a low usability and deployability cost. In this section, we provide an example of how
it can concretely be implemented. The verifier controls a web platform on which her users are
registered. Each registered account is associated to an identifier and to a set of authentication
factors. They include a simple password and the fingerprints of the browsers used by the account
owner. We emphasize that dynamic attributes can be integrated to the browser fingerprints to
enforce a challenge-response mechanism that mitigates replay attacks [56, 80].

6.1.1 Enrollment. The enrollment consists for a user to create his account and to register the
authentication factors. During this step, the user and the verifier agrees on the account identifier
(e.g., username, email address, phone number) and on the authentication factors (e.g., password,
email address, phone number) that are assigned to the user. The fingerprint of the browser in use
during the enrollment is collected and stored as the first browser fingerprint of the user. To register
an additional browser, the user is required to authenticate using other strong factors (e.g., a physical
token, a one time password) before getting the fingerprint of the new browser registered.

6.1.2 Authentication. During each authentication, the user claims an account by providing the
identifier and presenting the authentication factors. The verifier compares the presented authenti-
cation factors with the ones stored for this user. If they match, the user is deemed legitimate and is
given access to the account. Otherwise, the access is denied to the user and the verifier can take
preventive actions [42] according to her policy (e.g., blocking the account). The verifier notably
compares the collected browser fingerprint with the fingerprints of the browsers registered to the
account. If the other factors match and the fingerprint of one of the registered browser matches the
collected fingerprint, the fingerprint stored for this browser is updated to the newly collected one.
By using the User-Agent HTTP header, it would also be possible to reduce the set of the stored
fingerprints against which to compare the presented fingerprint (e.g., recognizing the family of the
browser in use and getting the stored fingerprints of this family).

6.1.3 Account Recovery. It happens that legitimate users are not able to provide the authentication
factors (e.g., a password is forgotten, a physical token is lost). When it occurs, users are given
access to an account recovery mechanism [68] that leverages other authentication factors than the
usual ones (e.g., face-to-face verification, email verification). Users cannot mistake their browser
fingerprint, but it can become hard to recognize if too many changes are brought to the web
environment of the browser. In this case, the user is asked to undergo the account recovery step
and select the registered browser for which to update its fingerprint.

6.2 Attacks on the authentication mechanism
We discuss in this section the attacks that are possible on the browser fingerprinting-based authen-
tication mechanism. We consider an attacker that can access the authentication page and seeks to
impersonate as many legitimate users as possible. To impersonate a legitimate user, the attacker has
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to find the right combination of identifier and authentication factors. Below, we make assumptions
about the attacker and describe the attacks that he can execute.

6.2.1 Assumptions about the attacker. We focus on the contribution of browser fingerprinting to the
authentication mechanism and make the following assumptions. The attacker knows the identifiers
of the targeted users and the authentication factors (e.g., their password) at the exception to the
browser fingerprint13. A concrete example is an attacker that obtained these pieces of information
from a data leak or theft. The attacker cannot tamper with the authentication server of the verifier
nor with the device or the browser of the user. The attacker cannot tamper nor eavesdrop the
communications between the server of the verifier and the browser of the user. The attacker knows
the attributes that are collected by the fingerprinting script. This knowledge can be obtained
from static or dynamic analysis of the script [20, 23, 79]. The attacker knows the domains of the
attributes and the domain of the fingerprints. The latter is the Cartesian product of the former.
This knowledge can stem from publicly accessible resources like statistics [95], documentation, or
fingerprint datasets [97, 101]. It can also come from malicious sources like stolen fingerprints [69],
phishing attacks [96], or a set of controlled browsers [75]. The attacker can control the values of
the attributes that compose the fingerprint by using open source tools like Disguised Chromium
Browser [22] or Blink [59], commercial solutions like Multilogin [63] or AntiDetect [18], or by
altering the network packets that contain the fingerprint with tools like BurpSuite [64]. The attacker
can submit a limited number of arbitrary fingerprints to try to impersonate a targeted user. We
emphasize that the reach of the attacker depends on the number of attempts similarly to guessing
attacks on passwords [25, 104]. In our online authentication context, the number of attempts
depends on the rate limiting policy of the verifier [42, 65]. After a given number of failed attempts,
the verifier can lock the account and ask the account owner to update his authentication factors
(e.g., change his password, update his fingerprint).

6.2.2 Brute force attack. The brute force attack consists in the attacker submitting randomly
sampled fingerprints from the fingerprint domain. In practice, the attacker randomly picks the
value of each attribute, forges a fingerprint by combining them, and submits this fingerprint. The
attacker repeats this process until the account is locked out or after a number of attempts decided
by herself. The reach of the brute force attack depends on the space of the possible fingerprints
that the attacker manages to cover in the limited number of attempts. Two factors greatly limit this
reach. First, the domain of the fingerprint grows exponentially with the domain of the composing
attributes. Second, the fingerprints are sampled randomly from the possibility space, which can
lead to highly improbable combination of attribute values due to contradicting or incompatible
values. Contradicting values occur when two attributes that always provide the same value, like
the logicalXDPI and logicalYDPI properties of the screen JavaScript object, are chosen with
diverging values. Incompatible values occur when two attributes that are correlated are chosen
with incompatible values, like one value that indicates a mobile device (e.g., a UserAgent typically
observed on mobile devices) and the other value indicating a desktop device (e.g., a large screen
size). On our experimental setup, these two factors are important and greatly reduce the reach
of brute force attacks. Indeed, our dataset is composed of 262 attributes (including the extracted
ones) among which 20% have more than a thousand distinct values (see Section 5). Moreover, our
attributes tend to be highly correlated with each other: 49 attributes have a null conditional entropy
when the value of another attribute is known (see Section 5.2). Although the fingerprint verification
mechanism can allow differences between the fingerprints, a randomly sampled fingerprint is

13We discuss in Section 6.2.4 the case where all the authentication factors are known to the attacker including the browser
fingerprint.

ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.



38 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

expected to have a lower number of identical attributes compared to the fingerprint of the targeted
user. For a given attribute, there is only one chance over the size of the attribute domain for the
attribute to be identical, and there may be more chances for it to be similar. However, for the
randomly sampled fingerprint to match the target fingerprint, there should be sufficient identical or
similar attributes, whereas the chances for this to happen decreases with the number and domain
size of the attributes.

6.2.3 Dictionary attack. The dictionary attack consists for an attacker to infer a distribution of the
fingerprints (e.g., from stolen fingerprints [69]) and to submit the most probable fingerprints. The
reach of the dictionary attack depends on the correspondence between the fingerprint distribution
among the protected users and the fingerprint distribution known by the attacker. We take the
example of an attacker having the knowledge of a fingerprint distribution obtained from mobile
browsers configured in English, but targeting users of desktop browsers configured in French. In
this example, the fingerprints submitted by the attacker would have few chances to match as some
attributes (e.g., the screen size, the browser language) would differ. The users that are impersonated
are those for which one of the registered fingerprints matches with one of the most probable
fingerprints given the knowledge of the attacker. The authors of the FPSelect study [15] measured
the reach of a dictionary attack on a sample of 30, 000 fingerprints of our dataset, considering an
attacker that knows the exact distribution of the target fingerprints and a verification mechanism
that allows differences between the compared fingerprints. They found out that 0.21% of the users
are impersonated when the attacker is able to submit the 4 most common fingerprints, which
goes up to 0.51% for the 16 most common fingerprints. These proportions are a higher bound on
the proportion of the fingerprints that are shared respectively by the 4 and the 16 most common
fingerprints due to the differences allowed by the verification mechanism. These proportions are
slightly lower than the share of the most common passwords measured in previous studies. Thomas
et al. [96] analyzed nearly two billion passwords and found out that the 4 most common passwords
are shared by 0.72% of the users, which goes up to 1.01% for the 10 most common passwords. Wang
et al. [104] worked on nine password datasets and found out that the ten most common passwords
are shared by 0.79% to 10.44% of the users, with an average of 3.06% among the datasets.

6.2.4 Replay attack. The replay attack consists for an attacker to collect the fingerprint of a user
(e.g., through a phishing attack) and to submit this fingerprint to impersonate the user. Recent
works [56, 80] proposed to use dynamic attributes – notably the HTML5 canvas – to design
challenge-response mechanisms to thwart replay attacks. These challenge-response mechanisms
leverage the value of the dynamic attributes which depends on the set of instructions that is used
(e.g., the drawing instructions of the canvas). The challenge is then the set of instructions and the
response is the value generated by the browser. By varying the challenge on each authentication,
a fingerprint that would have been collected by the attacker would be invalid as it would be the
response to a previous challenge. We refer to the work of Laperdrix et al. [56] for a thorough analysis
of the level of security provided by such challenge-response mechanism. Section 5.3 analyzes the
nine dynamic attributes of three different types that are included in our study.

6.2.5 Relay attack. The relay attack consists for an attacker to pose as a legitimate user to the
verifier, to pose as the verifier to a targeted user, and to relay the communications from one to
the other. A relay attack is divided in the three following steps. First, the attacker sets a phishing
website that embarks an authentication page similar to the verifier. Then, the attacker lures a victim
to visit this fake page. At the same time, the attacker connects to the authentication page of the
verifier and forwards the fingerprinting script to the victim. The victim enters her credentials and
gets her browser fingerprint collected. Finally, the attacker submits these pieces of information to
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the authentication page of the verifier. Amnesty International reports the usage of relay attacks in
real life and shows that relay attacks are able to break two-factor authentication [48]. Laperdrix
et al. [56] acknowledge that a challenge-response mechanism is theoretically vulnerable to relay
attacks. However, they discuss the practical implications of relay attacks and explain that relay
attacks are costly for the attackers to execute in practice. Outside the web context, distance bounding
protocols [21] were proposed to defend against relay attacks [38]. We let the design of a distance
bounding protocol that leverages the time taken by the browser and the server to communicate as
a future work.

7 RELATEDWORKS
In this section, we present related works about the use of browser fingerprinting for authentication.
In addition, Section 2.5 compares our dataset with the previously studied large-scale datasets [33,
44, 60, 62, 77] and Section 5 compares the distinctiveness of our attributes with the distinctiveness
reported in previous studies.
We stress that most studies about browser fingerprinting focus on their use for identification.

The use of browser fingerprinting for identification and for authentication differ in the objective
when given a presented fingerprint 𝑓 . In identification, we seek to find the identity (e.g., an account,
an advertisement profile) to which 𝑓 belongs among a pool of 𝑁 candidate identities. If 𝑓 is
unrecognized, it is associated to a new identity that is then added to the candidate identities. Hence,
in identification we operate a 1 to 𝑁 comparison. Depending on the matching method, the matching
time can be proportional to 𝑁 and become unrealistic in a large-scale setting [62]. On the contrary,
in authentication the identity is already given (e.g., the claimed account) and we seek to verify that 𝑓
legitimately belongs to this identity. Hence, in authentication we operate a 1 to 1 comparison14. The
studies about the use of browser fingerprinting for identification usually evaluate the threat posed
to privacy by browser accessible information [33, 35, 44, 60, 71, 78, 89], propose counter-measures
to avoid being tracked by this technique [22, 57], or measure its usage on the web [9, 23, 34, 49].
The first works about the use of browser fingerprinting for authentication focused on its use

for continuous authentication [76, 88, 99]. Their objective is to verify that the authenticated
session is not hijacked. These studies focus on the integration of browser fingerprinting in an
authentication mechanism and provide few insights about the properties of the fingerprints (e.g.,
only [88] analyzes fingerprints and focuses on their classification efficacy). On the contrary, we
identify several properties of authentication factors with which we evaluate real-life browser
fingerprints, and explain the results by highlighting the contribution of single attributes. Moreover,
these studies only consider a small fraction of the hundreds of available attributes and do not
include the dynamic attributes that can be used in a challenge-response mechanism to thwart
replay attacks. We include more than 200 attributes – including 9 dynamic attributes – for which
we provide the implementation and the properties (e.g., number of distinct values, normalized
entropy).

Alaca et al. [13] provided a classification of the fingerprinting attributes according to properties
that include the stability, the distinctiveness, and the resource usage. They qualitatively estimate
these properties given the nature of the attributes. For some attributes, they provide the entropy
measured in previous studies and acknowledge that further study is needed on this subject.We stress
that comparing the attributes entropy between datasets of different sizes leads to comparability
problems as explained by [60] (e.g., the attribute of a dataset of 𝑁 fingerprints provides at most
14If users register 𝑛 browsers to their account, as described in Section 6.1, 𝑓 is compared to the fingerprint of these 𝑛
browsers that are already identified. Users are expected to register fewer than ten devices [82], hence 𝑛 is expected to be
smaller than 𝑁 (e.g., a website having a thousand accounts registered). It would also be possible to find the right fingerprint
among the 𝑛 possibilities by leveraging the UserAgent to recognize which browser the user is using.
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an entropy of log2 (𝑁 ) bits). We provide the quantitative measure of these properties on our
attributes from the analysis of real-life fingerprints, and also evaluate the accuracy of a simple
verification mechanism. About the attributes considered by [13], they include attributes that require
interactions from the user (e.g., her location) or that are related to the network protocol (e.g., the
TCP/IP stack fingerprinting that analyzes the response to specially crafted messages). Moreover,
their classification leads to different attributes being grouped under a single designation, like the
“major software and hardware details” that includes the attribute family of the JavaScript properties
that we describe in Appendix A. The attributes of this family can show diverse properties, like the
UserAgent that provides a normalized entropy of 0.394 and a sameness rate of 0.98%, whereas the
screenX property of the window object provides a normalized entropy of 0.125 and a sameness rate
of 0.93%. We show that more than 200 attributes are easily accessible (i.e., they require few lines of
JavaScript) and do not require any interaction from the user, which would reduce the usability (e.g.,
the user being asked permissions several times). Moreover, we provide the exhaustive list of the
attributes with their concrete implementation and their properties. We also evaluate the properties
of distinctiveness, stability, and resource usage on the complete fingerprints that combine as many
attributes.

Markert et al. [68] recently presented a work in progress about the long-term analysis of fallback
authentication methods. They plan to measure the recovery rate of the evaluated methods after an
elapsed time of 6, 12, and 18 months. These methods include browser fingerprinting, for which
they acknowledge that “not much about browser fingerprinting-based security systems is known”.

Rochet et al. [80] and Laperdrix et al. [56] proposed challenge-response mechanisms that rely on
dynamic attributes, especially the HTML5 canvas. The instructions provided to the canvas API are
changed on each authentication, making the generated image vary on each fingerprinting. Trivial
replay attacks then fails as the awaited canvas image changes each time. In this study, we propose
the evaluation of nine dynamic attributes that include five HTML5 canvases, one WebGL canvas,
and three audio fingerprinting methods.

8 CONCLUSION
In this study, we conduct the first large-scale empirical study of the properties of browser fingerprints
when used for web authentication.Wemake the link between the digital fingerprints that distinguish
Humans, and the browser fingerprints that distinguish browsers, to evaluate the latter according to
properties inspired by biometric authentication factors. We formalize and evaluate the properties for
the browser fingerprints to be usable and practical in a web authentication context. They include the
distinctiveness of the fingerprints, their stability, their collection time, their size, the loss of efficacy
among browser types, and the accuracy of a simple illustrative verification mechanism. We evaluate
these properties on a real-life large-scale fingerprint dataset collected over a period of 6months that
contains 4, 145, 408 fingerprints composed of 216 attributes. The attributes include nine dynamic
attributes which are used in state-of-the-art authentication mechanisms to mitigate replay attacks.
We thoroughly describe the preprocessing steps to prepare the dataset and the browser population
that, contrary to most of the previous studies, is not biased towards technically-savvy users. We
show that, considering time-partitioned datasets, our browser fingerprints provide a unicity rate
above 81.3% which is stable over the 6 months, and more than 94.7% of the fingerprints are shared
by at most 8 browsers. We observe a loss of distinctiveness from mobile browsers that show a lower
unicity rate of 42%. About the stability and on average, more than 91% of the attributes are identical
between two observations of the fingerprint of a browser, even when they are separated by nearly
6 months. About the memory and the time consumption of our fingerprints, we show that they
weigh a dozen of kilobytes and take a few seconds to collect. Our simple verification mechanism
achieves an equal error rate of 0.61%. It comes frommost of the consecutive fingerprints of a browser
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having at least 234 identical attributes, whereas most of the fingerprints of different browsers have
fewer. To better comprehend the results on the complete fingerprints, we evaluate the contribution
of the attributes to each fingerprint property. We show that although the attributes show a lower
distinctiveness compared to previous studies, 10% of the attributes provide a normalized entropy
higher than 0.25. Moreover, four attributes missing from the previous large-scale studies are part
of the most distinctive of our attributes. They concern the size and position of elements of the
browser interface. About the stability, 85% of the attributes stay identical between 99% of the
pairs of consecutive fingerprints coming from the same browser. Few attributes consume a high
amount of resources. Only 33 attributes take more than 5ms to collect and only 20 attributes weigh
more than 100 bytes. When looking at the correlation between the attributes, we find that 49
attributes can completely be inferred when the value of another attribute is known. We remark that
the dynamic attributes are part of the most time-consuming attributes, but also among the most
distinctive attributes. We show the importance of the set of instructions which influences both the
distinctiveness and the stability of the generated values (e.g., the canvas image). We conclude that
the browser fingerprints obtained from the combination of the studied browser population, and
the large surface of fingerprinting attributes, carry the promise to strengthen web authentication
mechanisms.
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A BROWSER FINGERPRINTING ATTRIBUTES
In this section, we describe the 216 base attributes that are included in our script and the 46 extracted
attributes that are derived from the 9 source attributes. We group the attributes in families and
provide references to related studies. Their name is sufficient to retrieve the corresponding browser
property. When needed, we provide a brief description of the method for reproducibility. We focus
here on the description of the method and provide a complete list of the attributes and their property
in Appendix E. We denote A.[B, C] a property that is accessed either through A.B or A.C. If there
is only one element inside the brackets, this element is optional. We denote [...] a part that is
omitted but described in the corresponding attribute description.

A.1 JavaScript properties
Most attributes are properties that are accessed through common JavaScript objects. The navigator
object provides information on the browser (e.g., its version), its customization (e.g., the configured
language), the underlying system (e.g., the operating system), and the supported functionalities
(e.g., the list of available codecs). The screen object provides information on the screen size,
the orientation, the pixel density, and the available space for the web page. The window object
provides information on the window containing the web page, like its size or the support of
storage mechanisms. The document object gives access to the page content and a few properties.
The JavaScript properties are already included in previous studies [33, 44, 60] or open source
projects [36], but are usually limited to fewer than 20 properties.

A.2 HTTP headers
Our script collects 16 attributes from HTTP headers, most of which are already used in previous
studies [33, 44, 60]. Among these 16 attributes, 15 consist of the value of an explicitly specified
header and the last attribute stores any remaining fields as pairs of name and value.

A.3 Enumeration or presence of browser components
One attribute family that provides a high diversity is the browser components. The presence of some
components can directly be accessed (e.g., the list of plugins 15) whereas the presence of others
have to be inferred (e.g., the installed fonts). The list of components that are given in this section
have the components separated by a comma.

A.3.1 List attributes. Previous studies already identified the list of plugins and the list of fonts
as highly distinctive [33, 60]. We include these two attributes in our fingerprinting script. We
15Firefox browsers since version 29 require developers to probe the exact name of the wanted plugin and do not allow
them to enumerate the list of plugins [74]. This version was released in April 29, 2014, hence the Firefox browsers of our
population are impacted by this limitation. As a result, the list of plugins of our Firefox browsers mostly contains a single
entry that concerns the Flash plugin.

ACM Trans. Web, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1007/978-3-030-22312-0_10
https://doi.org/10.1109/ACCESS.2016.2626395
https://doi.org/10.1108/09685220410518883
https://doi.org/10.1108/09685220410518883


A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 47

enumerate the list of plugins and the list of mime types (i.e., the supported data format). The
list of fonts is an asynchronous attribute. To collect it, we check the size of text boxes [35] to
infer the presence of 66 fonts. Additionally, we collect the list of speech synthesis voices from the
speechSynthesis property of the window object or one of its variant (e.g., prefixed with webkit).
To do so, we use the getVoices function of this property. On some browsers, we have to wait for
the onvoiceschanged event to be triggered before getting access to the list. This attribute is then
asynchronous.

A.3.2 Support of video, audio, and streaming codecs. We infer the support of video codecs by creating
a video element and checking whether it can play a given type using the canPlayType() function.
The support of audio codecs is inferred by applying the same method on an audio element. We infer
the support of streaming codecs by calling the isTypeSupported() function of the window.[WebKit,
moz, ms, ∅]MediaSource object and checking the presence of both the audio and the video codecs.
We apply the same method to infer the support of recording codecs from the MediaRecorder object.

A.3.3 List of video codecs. The 15 video codecs for which we infer the presence are the following:
video/mp2t; codecs="avc1.42E01E,mp4a.40.2", video/mp4; codecs="avc1.42c00d", video/mp4; codecs-
="avc1.4D401E", video/mp4; codecs="mp4v.20.8", video/mp4; codecs="avc1.42E01E", video/mp4;
codecs="avc1.42E01E, mp4a.40.2", video/mp4; codecs="hvc1.1.L0.0", video/mp4; codecs="hev1.1.L0.-
0", video/ogg; codecs="theora", video/ogg; codecs="vorbis", video/webm; codecs="vp8", video/webm;
codecs="vp9", application/dash+xml, application/vnd.apple.mpegURL, audio/mpegurl.

A.3.4 List of audio codecs. The 9 audio codecs for which we infer the presence are the following:
audio/wav; codecs="1", audio/mpeg, audio/mp4; codecs="mp4a.40.2", audio/mp4; codecs="ac-3",
audio/mp4; codecs="ec-3", audio/ogg; codecs="vorbis", audio/ogg; codecs="opus", audio/webm;
codecs="vorbis", audio/webm; codecs="opus".

A.3.5 List of detected fonts. The 66 fonts for which we infer the presence are the following: Andale
Mono; AppleGothic; Arial; Arial Black; Arial Hebrew; Arial MT; Arial Narrow; Arial Rounded MT
Bold; Arial Unicode MS; Bitstream Vera Sans Mono; Book Antiqua; Bookman Old Style; Calibri;
Cambria; Cambria Math; Century; Century Gothic; Century Schoolbook; Comic Sans; Comic Sans
MS; Consolas; Courier; Courier New; Garamond; Geneva; Georgia; Helvetica; Helvetica Neue;
Impact; Lucida Bright; Lucida Calligraphy; Lucida Console; Lucida Fax; LUCIDA GRANDE; Lucida
Handwriting; Lucida Sans; Lucida Sans Typewriter; Lucida Sans Unicode; Microsoft Sans Serif;
Monaco; Monotype Corsiva; MS Gothic; MS Outlook; MS PGothic; MS Reference Sans Serif; MS
Sans Serif; MS Serif; MYRIAD; MYRIAD PRO; Palatino; Palatino Linotype; Segoe Print; Segoe Script;
Segoe UI; Segoe UI Light; Segoe UI Semibold; Segoe UI Symbol; Tahoma; Times; Times New Roman;
Times New Roman PS; Trebuchet MS; Verdana; Wingdings; Wingdings 2; Wingdings 3.

A.4 Extension detection
The list of the installed browser extensions cannot be directly accessed, but their presence can be
inferred. We check the changes that are brought to the web page [89] by the 8 extensions that are
listed in Table 6 and the availability of the web accessible resources [53, 86] of the 8 extensions
that are listed in Table 7. All these 16 attributes are asynchronous.

A.4.1 Detection of an ad-blocker. We infer the presence of an ad-blocker by creating an invisible
dummy advertisement and checking whether it is removed or not. This attribute is then asyn-
chronous. To detect the removal, we check whether the common methods used by ad-blockers
are applied. They consist into removing the DOM element, setting its size to zero (e.g., using
the offsetWidth or clientHeight property), setting its visibility to hidden, or setting its
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Table 6. Extensions detected by the changes they bring to the page content.

Extension Page content change

Privowny W.privownyAddedListener[EXT] is supported
UBlock D.head has display: none !important; and :root as style
Pinterest D.body.data-pinterest-extension-installed is supported
Grammarly D.body.data-gr-c-s-loaded is supported
Adguard W.AG_onLoad is supported
Evernote Element with style-1-cropbar-clipper as id exists
TOTL W.ytCinema is supported
IE Tab W.ietab.getVersion() is supported

Table 7. Extensions detected by the availability of their web accessible resource. C stands for chrome and
R stands for resource.

Extension Web accessible resource

Firebug C://firebug/skin/firebugBig.png
YahooToolbar R://635abd67-4fe9-1b23-4f01-e679fa7484c1/icon.png
EasyScreenshot C://easyscreenshot/skin/icon16.png
Ghostery R://firefox-at-ghostery-dot-com/data/images/ghosty-16px.png
Kaspersky R://urla-at-kaspersky-dot-com/data/icon-16.png
VideoDownloadHelper R://b9db16a4-6edc-47ec-a1f4-b86292ed211d/data/images/icon-18.png
GTranslate R://aff87fa2-a58e-4edd-b852-0a20203c1e17/icon.png
Privowny C://privowny/content/icons/privowny_extension_logo.png

display to none. The dummy advertisement is a created division which has the id property set to
“ad_ads_pub_track”, the class set to “ads .html?ad= /?view=ad text-ad textAd text_ad
text_ads text-ads”, and the style set to “width: 1px !important; height: 1px !imp-
ortant; position: absolute !important; left: -1000px !important; top: -1000px
!important;”.

A.5 Size and color of web page elements
A.5.1 Bounding boxes. The attributes related to the bounding boxes concern a div element to which
we append a span element. These attributes are asynchronous. The div element has his style
property set to the values displayed in Table 8. The span element contains a specifically crafted text
that is provided below. The size of bounding boxes (i.e., the width and the height of the rectangles of
the div and the span elements) are then collected using the getClientRects function. The text of
the span element is “\ua9c0 \u2603 \u20B9 \u2604 \u269b \u2624 \u23B7 \u262c \u2651
\u269d \u0601 \u0603 \uaac1 \u060e \u06dd \ud83c\udfe1 mmmmmmmmmmlil \u102a”. The
characters that start with “\u” are special Unicode characters (e.g., emojis, letters of a non-latin
alphabet).

A.5.2 Width and position of a created div. The attribute named width and position of a created
div is the properties of width and transform-origin of a newly created div element which are
obtained from the getComputedStyle function. This attribute is asynchronous. This created div
element is afterward used to infer the color of layout components as described below.
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Table 8. Properties of the div element that is measured to generate the value of the attributes related to the
bounding boxes.

Property Value

position absolute
left -9999px
textAlign center
objectFit scale-down
font 68px / 83px Helvetica, Arial, Sans-serif
zoom 66%
MozTransform scale(0.66)
visibility hidden

A.5.3 Colors of layout components. The attribute colors of layout components is obtained by apply-
ing the color of several layout components (e.g., the scroll bar) to the created div element denoted
new_div, and getting the color back from the property W.getComputedStyle(new_div).color.
Each of the tested component gets its color extracted this way and their colors are aggregated in
this attribute. The color of each element is afterward extracted as a single attribute (see Section 2.4).
They are displayed at the end of Table 16 that lists the attributes and their properties. These
attributes are asynchronous.

A.6 WebGL properties
Our script collects several properties from the WebGL API. To obtain them, we create a canvas
element and get its WebGL context by calling getContext() using any of the following parameters:
webgl, webgl2, moz-webgl, experimental-webgl, or experimental-webgl2.

The property MAX_TEXTURE_MAX_ANISOTROPY_EXT is obtained from one of [WEBKIT_EXT_, MOZ-
_EXT_, EXT_]texture_filter_anisotropic. To get the unmasked vendor and renderer, we first
get an identifier named id from the unmasked property of the getExtension(’WEBGL_debug_ren-
derer_info’) object, and then get the actual value by calling getParameter(id). The unmasked
property of the renderer is named UNMASKED_RENDERER_WEBGL and the one of the vendor is named
UNMASKED_VENDOR_WEBGL. Finally, to get the COMPRESSED_TEXTURE_FORMATS property, we have to
load the [WEBKIT_]WEBGL_compressed_texture_s3tc extension first.

A.7 WebRTC fingerprinting
We include a WebRTC fingerprinting method similar to the method proposed by Takasu et al. [92].
The method consists in getting information about the Session Description Protocol of a generated
WebRTC connection. Due to the variability of this information, we create two different connections
and hold only the values that are identical between them. As this method leaks local IP addresses,
we hash them directly on the client before sending this attribute. This attribute is asynchronous.

A.8 HTML5 canvases inspired by previous studies
Our script includes a canvas inspired by the AmIUnique study [60] in both PNG and JPEG formats,
and an enhanced version similar to the Morellian study [56]. Figure 19 and Figure 20 respectively
display an example of a canvas generated using these set of instructions. We refer to Section 5.3 for
a focus on the dynamic attributes.
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Fig. 19. A sample of the HTML5 canvas that is in-
spired by the AmIUnique [60] study.

Fig. 20. A sample of the HTML5 canvas that is similar
to the Morellian [56] study.

A.9 Audio fingerprinting
In this section, we provide the concrete implementation and the network of AudioNode objects used
within each audio fingerprinting methods. These methods are inspired by the work of Englehardt et
al. [34]. They are designed to form complex networks of AudioNode objects to have more chances
to induce fingerprintable behaviors. The three audio fingerprinting attributes are asynchronous.
We refer to Section 5.3 for a focus on the dynamic attributes.

A.9.1 Simple audio fingerprinting method. The simple process consists of three OscillatorNode
objects that generate a periodic wave, connected to a single DynamicsCompressorNode, and fin-
ishing to a AudioDestinationNode. The architecture of the network of AudioNode objects for the
simple process is depicted in Figure 21 with the parameters set for each node. The OscillatorNode
objects are started one after the other and overlap at some time. The sequence of events is the
following: (1) the triangle oscillator node is started at 𝑡 = 0 seconds, (2) the square oscillator is
started at 𝑡 = 0.10 seconds, (3) the triangle oscillator is stopped at 𝑡 = 0.20 seconds and the sine
oscillator node is started, and finally (4) the square oscillator is stopped at 𝑡 = 0.25 seconds. When
the rendering of the audio context is done, the complete event is triggered and gives access to
a renderedBuffer that contains the audio data encoded as 32 bits floating-point numbers. The
audio FP simple (AFS) attribute is an integer computed as the sum of these numbers cast to absolute
integers.

A.9.2 Advanced audio fingerprinting method. The advanced process consists of four Oscillator-
Node objects, two BiquadFilterNode objects, two PannerNode objects, one DynamicsCompressor-
Node, one AnalyserNode, and one AudioDestinationNode. The architecture of the network of
AudioNode objects for the advanced process is depicted in Figure 22 with the parameters set for each
node. The OscillatorNode objects are started one after the other and overlap at some time. The
sequence of events is the following: (1) the triangle oscillator node and the sine oscillator node with
a frequency of 280 are started at 𝑡 = 0 seconds, (2) the square oscillator is started at 𝑡 = 0.05 seconds,
(3) the triangle oscillator is stopped at 𝑡 = 0.10 seconds, (4) the sine oscillator with a frequency of
170 is stopped at 𝑡 = 0.15 seconds, (5) the square oscillator is stopped at 𝑡 = 0.20 seconds. When
the rendering of the audio context is done, the complete event is triggered and gives access to a
renderedBuffer that contains the audio data encoded as 32 bits floating-point numbers. The audio
FP advanced (AFA) attribute is an integer computed as the sum of these numbers cast to absolute
integers. The audio FP advanced frequency data (AFA-FD) attribute is the sum of the frequency data
obtained through the getFloatFrequencyData function of the AnalyserNode.

B ANOMALOUS COLLECTION TIMES
In this section, we describe a side effect encountered by our script that results in some fingerprints
and attributes showing a high collection time above 30 seconds. These high collection times concern
the sending of the fingerprint and the collection of the attributes that require the body to be set or
that are collected asynchronously. In total, 27 base attributes are impacted by these high collection
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Fig. 21. Architecture of the network of AudioNode objects for the simple audio fingerprinting method.
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Fig. 22. Architecture of the network of AudioNode objects for the advanced audio fingerprinting method.
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Table 9. The five attributes which collection time is missing in more than 1% of the overall, desktop, and
mobile entries. The attributes are all asynchronous, and are ordered from the highest to the lowest proportion
for the overall entries.

Attribute Overall Desktop Mobile

WebRTC fingerprinting 24.04% 26.10% 20.31%
Audio FP advanced 13.20% 7.16% 31.57%
Audio FP advanced frequency data 13.20% 7.16% 31.57%
Audio FP simple 12.48% 6.39% 31.07%
List of speech synthesis voices 4.28% 1.15% 19.83%
Total entries 5,714,738 4,610,640 808,318

times, from which we extract 45 attributes. The single extracted attribute that is not concerned is
the number of WebGL extensions. The remaining 189 base attributes and one extracted attribute
are not impacted.
We measure the collection time of the fingerprints by the difference between two timestamps,

one recorded at the starting of the script and the other one just before sending the fingerprint. Some
fingerprints take a long time to collect that span from several hours to days. The high collection
time of these fingerprints is explained below. Our fingerprinting script waits for the page body
to load before collecting the attributes that require the body to be available, like the extension
detection attributes. Due to a side effect, the script also waits for the body to be set before sending
the fingerprint. We manage the waiting times using the setTimeout JavaScript function. The
implementation of setTimeout in Chrome [43] and Firefox [73] throttles the time-out of the scripts
that are running in inactive tabs to at least one second, and Firefox for Android increases up this
threshold to 15 minutes. The waiting for the page body to load and the throttling applied by major
browser vendors to inactive tabs result in the high collection time of some fingerprints. Less than
1% of the entries of each device group (i.e., overall, mobiles, and desktops) are impacted by these
high collection time and considered as outliers.

We configured our fingerprinting script to collect the attributes in at most one second after the
page body have been loaded. After this delay, the fingerprint is sent without waiting for all the
attributes and the missing attributes do not have a collection time. All the attributes except five
have less than 1% of the entries of each device group either having a high collection time (i.e., we
deem the fingerprint an outlier) or missing the collection time. The five asynchronous attributes
that miss collection time in more than 1% of the entries of each device group are presented in
Table 9. The processing of these attributes take more time than the attributes which are a simple
property. Moreover, they consist of complex processes that rely on components external to the
browser (e.g., a real-time connection). As a result, the time limit can be reached before collecting the
value and setting the collection time of these attributes. Mobile browsers show a higher proportion
of missing collection time for the list of speech synthesis voices and the attributes related to the
Web Audio API. This is due to the lack of support of these two APIs on mobile browsers at the time
of the experiment [6, 7].

C KEYWORDS
In this section, we provide the keywords used to infer the browser family, the operating system, and
whether the browser is a robot. We match these keywords on the userAgent JavaScript property
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Table 10. The keywords and the exact UserAgent values that we use to detect robot browsers. The long values
are cut at a blank space and displayed with indentations.

Blacklisted keyword Blacklisted value

googlebot mozilla/4.0 (compatible; msie 7.0; windows nt 6.1; trident/7.0; slcc2;
evaliant .net clr 2.0.50727; .net clr 3.5.30729; .net clr 3.0.30729;
bot.html media center pc 6.0; .net4.0c; .net4.0e)
voilabot mozilla/5.0 (x11; linux x86_64) applewebkit/537.36 (khtml, like gecko)
google web preview chrome/52.0.2743.116 safari/537.36
spider mozilla/5.0 (windows nt 6.3; rv:36.0) gecko/20100101 firefox/36.0
bingpreview mozilla/5.0 (macintosh; intel mac os x 10.10; rv:38.0) gecko/20100101

firefox/38.0

which is first set to lower case. We manually compiled the keywords by searching for meaningful
keywords inside the collected UserAgents.

C.1 Robot keywords
We ignore the fingerprints that come from robots (i.e., an automated tool and not a genuine visitor).
To detect these fingerprints, we verify that the UserAgent does not contain the keywords, nor is set
to the exact values, that are listed in Table 10.

C.2 Device type
To infer the device type of a browser, we match keywords sequentially with the UserAgent of
the browser. Table 11 lists the keywords that we leverage to infer each device type. The set of
keywords can overlap between two device types (e.g., the UserAgent of tablet browsers often
contain keywords of mobile browsers like mobile). Due to this overlapping problem, we apply the
following methodology. The mobile devices are smartphones and do not include tablets. We check
that their UserAgent contains a mobile keyword and no tablet nor miscellaneous keywords.
To infer that a device is a tablet, we check that its UserAgent contains a tablet keyword and
no miscellaneous keywords. The miscellaneous devices are game consoles and smart TVs. We
check that their UserAgent contains a miscellaneous keyword. Finally, to infer that a device
is a desktop computer, we check that its UserAgent does not contain any of the mobile, tablet,
or miscellaneous keywords. In Table 11, we omit a miscellaneous keyword due to its size:
“opera/9.80 (linux i686; u; fr) presto/2.10.287 version/12.00 ; sc/ihd92 stb”.

C.3 Browser and operating system families
Table 12 lists the keywords that we use to infer the family of a browser, and Table 13 lists the
keywords that we use to infer the operating system family of a browser. As a keyword can be in
the UserAgent of two different families, we check the keywords sequentially in the order presented
in the tables, and classify a device in the first family for which a keyword matches.

D ADVANCED VERIFICATION MECHANISM
Section 3.3.4 describes a simple verification mechanism that checks that the number of identical
attributes between the presented and the stored fingerprint is below a threshold. In this section, we
present the results obtained using an advanced verification mechanism that incorporates matching
functions that authorize limited changes between the attribute values of the presented and the
stored fingerprint. The methodology to obtain the datasets is the same as described in Section 4.3.3.
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Table 11. The keywords that we use to infer the de-
vice type of browsers.

Mobile Tablet Miscellaneous

phone ipad wii
mobile tablet playstation
android terra pad smart-tv
iphone tab smarttv
blackberry googletv
wpdesktop opera tv

appletv
nintendo
xbox

Table 12. The keywords that we use to infer the de-
vice type of browsers.

Browser Family Keywords

Firefox Firefox
Edge Edge
Internet Explorer MSIE, Trident/7.0
Samsung Internet SamsungBrowser
Chrome Chrome
Safari Safari

Table 13. The keywords that we use to infer the operating system family of browsers.

Operating System Family Keywords

Windows 10 windows nt 10.0
Windows 7 windows nt 6.1
Other Windows windows nt, windows 7, windows 98, windows 95,

windows ce
Mac OS mac os x (but not ipad, nor iphone)
Linux-based linux, cros, netbsd, freebsd, openbsd, fedora, ubuntu,

mint
Android android
Windows Phone windows phone
iOS ipad, iphone (but not mac os x)

D.1 Attributes matching
The advanced verification mechanism leverages matching functions for the comparison of the
attributes. It counts the attributes that match between the two compared fingerprints, given the
matching functions, and deems the evolution legitimate if this number is above a threshold. More
formally, we seek to compare the stored fingerprint 𝑓 to the presented fingerprint 𝑔. To do so, we
compare the values 𝑓 [𝑎] and 𝑔[𝑎] of the attribute 𝑎 for the fingerprints 𝑓 and 𝑔, using the matching
function ≈𝑎 . The matching function ≈𝑎 of the attribute 𝑎 verifies that the distance between 𝑓 [𝑎]
and 𝑔[𝑎] is below a threshold 𝜃𝑎 . Finally, we deem 𝑔 a legitimate evolution of 𝑓 if the total number
of matching attributes between 𝑓 and 𝑔 is above a threshold Θ.
Similarly to previous studies [33, 52, 101], we consider a distance measure that depends on the

type of the attribute. We use the minimum edit distance [51] for the textual attributes, the Jaccard
distance [106] for the set attributes, the absolute difference for the numerical attributes, and the
identity function for the categorical attributes. The distance thresholds of each attribute is obtained
by training a Support Vector Machines [45] model on the two classes of each month sample and
extract the threshold from the resulting hyperplane. At the exception of the dynamic attributes
that are required to be identical (i.e., the distance threshold is null) as they would contribute to a
challenge-response mechanism [56, 80].
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Fig. 23. The number of matching attributes between
the same-browser comparisons and the different-
browsers comparisons.
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Fig. 24. The number of matching attributes between
the same-browser comparisons and the different-
browsers comparisons, starting from 214 matching
attributes.

D.2 Distribution of matching attributes
Figure 23 displays the distribution of the matching attributes between the same-browser compar-
isons and the different-browsers comparisons, starting from 51 matching attributes as there are no
observed value below. Figure 24 presents a focus that starts from 214 matching attributes, below
which there are less than 0.001 of the same-browser comparisons. We can observe that the two
sets of comparisons are well separated, as 99% of the same-browser comparisons have at least
235 matching attributes, and 99% of the different-browsers comparisons have fewer. The different-
browsers comparisons have generally a fewer, and a more diverse, number of matching attributes
compared to the same-browser comparisons. The different-browsers comparisons have between 51
and 253 matching attributes, with an average of 134.59 attributes and a standard deviation of 43.25
attributes. The same-browser comparisons have between 81 and 253 matching attributes, with an
average of 249.45 attributes and a standard deviation of 3.69 attributes.

D.3 Distribution of match rates
Figure 25 displays the false match rate (FMR) which is the proportion of the same-browser compar-
isons that are classified as different-browsers comparisons, and the false non-match rate (FNMR)
which is the inverse. The displayed results are the average for each number of matching attributes
among the six month-samples. As there are no same-browser comparisons that have less than 235
matching attributes, the FNMR is null until this value. However, after exceeding this threshold,
the FNMR increases as the same-browser comparisons begin to be classified as different-browsers
comparisons. The equal error rate, which is the rate where both the FMR and the FNMR are equal,
is of 0.66% and is achieved for 234 matching attributes.

D.4 Comparison with identical matching
The matching functions of the advanced verification mechanism leads to more matching attributes
than identical attributes between two fingerprints. The higher number of matching attributes
happens for the same-browser comparisons, but also for the different-browsers comparisons. This
reduces the False Non-Match Rate (FNMR), but increases the False-Match Rate (FMR). Due to the
FMR being higher, the equal error rate is slightly higher for the advanced verification mechanism
that leverages matching functions.
Table 14 compares the results of the simple verification mechanism that leverages the identi-

cal attributes, and the advanced verification mechanism that leverages the matching attributes.
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Fig. 25. False match rate (FMR) and false non-match rate (FNMR) given the required number of matching
attributes, averaged among the month six samples.

Table 14. Comparison between the simple verification mechanism that uses identical attributes and the
advanced verification mechanism that uses matching attributes.

Result Simple Advanced

Same-browser: range of identical or matching attributes [72; 252] [81; 253]
Same-browser: average identical or matching attributes 248.64 249.45
Same-browser: standard deviation 3.91 3.69
Different-browsers: range of identical or matching attributes [34; 253] [51; 253]
Different-browsers: average identical or matching attributes 127.41 134.59
Different-browsers: standard deviation 44.06 43.25
Equal error rate 0.62% 0.66%
Threshold of identical or matching attributes 232 234

Considering the matching functions only increases the average number of matching attributes for
the same-browser comparisons by 0.81, whereas the increase is greater for the different-browsers
comparisons at 7.18. The matching functions seem to contribute more to falsely linking different-
browsers comparisons than same-browser comparisons. Due to this, the equal error rate is slightly
higher for the advanced verification mechanism than for the simple one, respectively at 0.66%
against 0.61%. Finally, we remark that the range of the identical attributes for the same-browser
comparisons only goes up to 252 attributes. This is explained by our deduplication step during the
preprocessing of the dataset (see Section 2.4.3) that removes the consecutive fingerprints that are
identical. As a result, the same-browser comparisons have fewer than 253 identical attributes and
are forcibly different. As for the different-browsers comparisons, it always goes up to 253 attributes
as coincidence can make the fingerprints of different browsers match.
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Table 15. The minimum, the average, the maximum, and the standard deviation (Std. dev.) of the distinct
values, the normalized entropy, the minimum normalized conditional entropy, the median collection time in
seconds, the median size in bytes, and the sameness rate of the attributes.

Property Minimum Average Maximum Std. dev.

Distinct values 1 7,633 671,254 51,298
Normalized entropy 0.000 0.090 0.420 0.094
Minimum normalized conditional entropy 0.000 0.008 0.181 0.021
Sameness rate 0.470 0.982 1.000 0.069
Median collection time (seconds) 0.000 0.125 2.179 0.425
Median size (bytes) 1 23.51 502 60.84

E ATTRIBUTES LIST AND PROPERTY
In this section, we provide the complete list of our 262 fingerprinting attributes and their property.
Table 16 lists our attributes with their number of distinct values seen during the experiment (Values),
their normalized entropy (N. Ent.), their sameness rate (% Same), their median size (Size), and
their median collection time (Time). We refer to Section 5 for the distribution of the properties of
the attributes: the number of distinct values, the normalized entropy, the minimum normalized
conditional entropy, the sameness rate, the median collection time, and the median size. Table 15
provides the minimum, the average, the maximum, and the standard deviation of these properties
among the attributes.

E.1 Attributes list
To stay concise, we replace the name of common JavaScript objects or of API calls by abbreviations.
We denote D the JavaScript document object, M the Math object, N the navigator object, S the
screen object, and W the window object. Additionally, we denote A an initialized Audio Context,
AA an initialized AudioAnalyser, and AD the A.destination property. Finally, we denote WG
an initialized WebGL Context, WM the WG.MAX_ prefix, and WI the WG.IMPLEMENTATION_ prefix.

Due to the diversity of JavaScript engines, some properties are accessible through different names
(e.g., prefixed by moz for Firefox or ms for Internet Explorer). We denote A.[B, C] a property that
is accessed either through A.B or A.C. If there is only one element inside the brackets, this element
is optional. We denote [...] a part that is omitted but described in the corresponding attribute
description.
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Table 16. Browser fingerprinting attributes with their number of distinct values (Values), their normalized
entropy (N. Ent.), their minimum normalized conditional entropy (MinNCE), their stability (% Same), their
median size (Size), and their median collection time (Time). The comparisons of the attribute with itself and
with the source attributes from which we derive the extracted ones are ignored for the MinNCE result.

Attribute Values N. Ent. MinNCE % Same Size Time

N.userAgent 38,863 0.394 0.046 0.978 115 0.000
Listing of N 1,660 0.207 0.009 0.989 502 0.001
Listing of screen 82 0.129 0.000 0.999 209 0.000
N.language 228 0.066 0.006 0.999 2 0.000
N.languages 1,448 0.094 0.010 0.998 17 0.000
N.userLanguage 124 0.036 0.001 1.000 1 0.000
N.systemLanguage 115 0.037 0.001 1.000 1 0.000
N.browserLanguage 52 0.036 0.000 1.000 1 0.000
N.platform 32 0.068 0.000 1.000 5 0.000
N.appName 5 0.003 0.000 1.000 8 0.000
N.appVersion 37,310 0.342 0.000 0.984 107 0.000
N.appMinorVersion 10 0.035 0.000 1.000 1 0.000
N.product 2 0.003 0.000 1.000 5 0.000
N.productSub 10 0.067 0.000 1.000 8 0.000
N.vendor 21 0.064 0.000 1.000 1 0.000
N.vendorSub 2 0.035 0.000 1.000 1 0.000
N.cookieEnabled 1 0.000 0.000 1.000 4 0.000
N.cpuClass 6 0.039 0.000 1.000 1 0.000
N.oscpu 60 0.071 0.000 1.000 1 0.000
N.hardwareConcurrency 28 0.086 0.025 0.999 1 0.000
N.buildID 1,351 0.076 0.010 0.989 1 0.000
[N.security, D.security[Policy]] 30 0.038 0.001 1.000 7 0.000
N.permissions 3 0.045 0.000 1.000 1 0.000
W.Notification.permission 5 0.043 0.001 0.999 7 0.000
W.Notification.maxActions 3 0.041 0.000 1.000 1 0.000
N.[msM, m]axTouchPoints 42 0.098 0.004 0.999 3 0.000
D.createEvent("TouchEvent") support 3 0.032 0.000 1.000 1 0.000
W.ontouchstart support 3 0.032 0.000 1.000 1 0.000
N.javaEnabled() 4 0.045 0.008 0.997 1 0.000
N.taintEnabled() 3 0.045 0.000 1.000 1 0.000
[[N, W].doNotTrack, N.msDoNotTrack] 11 0.085 0.012 1.000 6 0.000
N.connection support 3 0.022 0.000 1.000 1 0.000
N.connection.type 12 0.028 0.003 0.992 1 0.000
N.connection.downlink 91 0.032 0.003 0.995 1 0.000
N.[mozC, c]onnection.bandwidth 6 0.023 0.000 1.000 3 0.000
N.mediaDevices support 3 0.044 0.000 0.999 1 0.000
N.mediaDevices.getSupportedConstraints() 12 0.090 0.000 0.997 144 0.000
W.Intl.Collator().resolvedOptions() 311 0.097 0.000 0.999 115 0.005
W.Intl.DateTimeFormat().resolvedOptions() 1,849 0.154 0.011 0.996 111 0.003
W.Intl.NumberFormat().resolvedOptions() 260 0.070 0.000 0.999 138 0.001
W.Intl.v8BreakIterator().resolvedOptions() 75 0.046 0.000 0.999 1 0.000
N.getGamepads() 18 0.090 0.000 0.998 1 0.001
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Attribute Values N. Ent. MinNCE % Same Size Time

W.InstallTrigger.enabled() 4 0.037 0.000 1.000 1 0.000
W.InstallTrigger.updateEnabled() 4 0.037 0.000 1.000 1 0.000
N.msManipulationViewsEnabled 5 0.052 0.000 1.000 3 0.000
N.[msP, p]ointerEnabled 9 0.051 0.000 1.000 3 0.000
D.msCapsLockWarningOff 3 0.039 0.000 1.000 1 0.000
D.msCSSOMElementFloatMetrics 4 0.039 0.000 1.000 1 0.000
N.[msW, w]ebdriver 6 0.048 0.001 1.000 3 0.000
W.Debug.debuggerEnabled 5 0.042 0.000 0.989 1 0.000
W.Debug.setNonUserCodeExceptions 4 0.042 0.000 0.989 1 0.000
new Date(2016, 1, 1).getTimezoneOffset() 60 0.008 0.001 0.999 2 0.000
Different Timezone at 01/01 and 06/01 3 0.005 0.002 0.999 1 0.000
S.width 1,280 0.192 0.005 0.987 4 0.000
S.height 1,016 0.188 0.015 0.987 3 0.000
W.screenX 3,071 0.125 0.047 0.925 1 0.000
W.screenY 1,181 0.126 0.049 0.925 1 0.000
S.availWidth 1,746 0.202 0.016 0.985 4 0.000
S.availHeight 1,353 0.268 0.058 0.984 3 0.000
S.availTop 460 0.060 0.003 1.000 1 0.000
S.availLeft 372 0.048 0.005 0.999 1 0.000
S.(pixelDepth, colorDepth) 14 0.031 0.001 1.000 5 0.000
S.deviceXDPI 249 0.073 0.000 0.993 1 0.000
S.deviceYDPI 249 0.073 0.000 0.993 1 0.000
S.systemXDPI 75 0.053 0.000 0.999 1 0.000
S.systemYDPI 75 0.053 0.000 0.999 1 0.000
S.logicalXDPI 6 0.039 0.000 1.000 1 0.000
S.logicalYDPI 6 0.039 0.000 1.000 1 0.000
W.innerWidth 2,572 0.263 0.023 0.957 4 0.000
W.innerHeight 2,297 0.388 0.181 0.906 3 0.000
W.outerWidth 2,481 0.293 0.074 0.909 4 0.000
W.outerHeight 4,046 0.327 0.117 0.872 3 0.000
W.devicePixelRatio 2,035 0.103 0.026 0.992 1 0.000
W.mozInnerScreenX 3,682 0.065 0.011 0.991 1 0.000
W.mozInnerScreenY 3,170 0.102 0.020 0.991 1 0.000
W.offscreenBuffering 4 0.067 0.000 1.000 4 0.000
S.orientation 3 0.044 0.000 1.000 1 0.000
S.[orientation.type, [moz, ms]Orientation] 26 0.107 0.003 0.994 21 0.000
S.orientation.angle 7 0.050 0.002 0.996 1 0.000
W.localStorage support 4 0.001 0.001 1.000 1 0.001
W.sessionStorage support 4 0.000 0.000 1.000 1 0.000
W.indexedDB support 3 0.002 0.000 1.000 1 0.000
W.openDatabase support 3 0.045 0.000 1.000 1 0.000
W.caches support 3 0.045 0.000 1.000 1 0.000
M.tan(-1e300) 15 0.087 0.002 1.000 19 0.000
M.tan(3.14159265359 * 0.3333 * 1e300) 12 0.085 0.000 0.999 18 0.000
M.acos(0.000000000000001) 4 0.058 0.000 1.000 18 0.000
M.acosh(1.000000000001) 7 0.071 0.000 1.000 24 0.000
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Attribute Values N. Ent. MinNCE % Same Size Time

M.asinh(0.00001) 6 0.071 0.000 1.000 23 0.000
M.asinh(1e300) 6 0.058 0.000 1.000 17 0.000
M.atan(2) 3 0.018 0.000 1.000 18 0.000
M.atan2(0.01, 1000) 3 0.045 0.000 1.000 23 0.000
M.atanh(0.0001) 5 0.070 0.000 1.000 22 0.000
M.cosh(15) 8 0.058 0.000 1.000 18 0.000
M.exp(-1e2) 8 0.028 0.000 1.000 21 0.000
M.exp(1e2) 9 0.028 0.000 1.000 22 0.000
M.LOG2E 3 0.039 0.000 1.000 18 0.000
M.LOG10E 3 0.000 0.000 1.000 18 0.000
M.E 2 0.000 0.000 1.000 17 0.000
M.LN10 3 0.000 0.000 1.000 17 0.000
D.defaultCharset 71 0.075 0.001 0.999 1 0.000
Width and height of fallback font text 2,347 0.199 nan 0.998 11 0.099
W.[performance, console].jsHeapSizeLimit 24 0.083 0.002 0.991 3 0.000
W.menubar.visible 5 0.035 0.000 1.000 4 0.000
W.isSecureContext 4 0.045 0.000 0.999 5 0.000
S.fontSmoothingEnabled 4 0.042 0.001 1.000 1 0.000
new Date(0) 1,846 0.118 0.004 0.998 82 0.004
new Date("0001-1-1") 2,107 0.150 0.010 0.999 60 0.002
new Date(0) then setFullYear(0) 2,376 0.136 0.013 0.998 61 0.001
Detection of an adblocker 19 0.002 0.001 0.999 1 2.124
Firebug resource detection 3 0.037 0.000 1.000 1 0.054
YahooToolbar resource detection 3 0.037 0.000 1.000 1 0.056
EasyScreenshot resource detection 3 0.037 0.000 1.000 1 0.056
Ghostery resource detection 3 0.037 0.000 1.000 1 0.056
Kaspersky resource detection 3 0.037 0.000 1.000 1 0.057
VideoDownloadHelper resource detection 3 0.038 0.001 0.998 1 0.056
GTranslate resource detection 3 0.037 0.000 1.000 1 0.058
Privowny resource detection 2 0.037 0.000 1.000 1 0.057
Privowny page content change 3 0.000 0.000 1.000 3 2.162
UBlock page content change 4 0.000 0.000 1.000 1 2.151
Pinterest page content change 10 0.001 0.001 0.999 1 2.151
Grammarly page content change 3 0.000 0.000 1.000 1 2.152
Adguard page content change 3 0.000 0.000 1.000 1 2.179
Evernote page content change 3 0.000 0.000 1.000 1 2.156
TOTL page content change 3 0.000 0.000 1.000 1 2.153
IE Tab page content change 11 0.000 0.000 1.000 1 2.170
WebRTC fingerprinting 671,254 0.294 0.144 0.765 1 0.771
WG.SHADING_LANGUAGE_VERSION 23 0.103 0.000 0.996 18 0.001
WG.VERSION 247 0.123 0.008 0.995 10 0.000
WG.VENDOR 11 0.080 0.000 0.997 7 0.000
WG.RENDERER 14 0.089 0.000 0.996 12 0.000
WG.ALIASED_POINT_SIZE_RANGE 42 0.129 0.006 0.996 5 0.000
WG.ALIASED_LINE_WIDTH_RANGE 30 0.077 0.003 0.996 3 0.000
WM.VIEWPORT_DIMS 13 0.107 0.009 0.995 11 0.000
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Attribute Values N. Ent. MinNCE % Same Size Time

WG.SUBPIXEL_BITS 9 0.039 0.001 0.997 1 0.000
WG.SAMPLE_BUFFERS 5 0.039 0.000 0.996 1 0.000
WG.SAMPLES 9 0.075 0.001 0.992 1 0.000
WG.COMPRESSED_TEXTURE_FORMATS 3 0.034 0.000 0.998 23 0.000
WM.VERTEX_UNIFORM_VECTORS 18 0.118 0.006 0.996 3 0.000
WM.COMBINED_TEXTURE_IMAGE_UNITS 19 0.079 0.003 0.996 2 0.000
WM.FRAGMENT_UNIFORM_VECTORS 18 0.109 0.004 0.996 3 0.000
WM.CUBE_MAP_TEXTURE_SIZE 11 0.084 0.008 0.995 5 0.000
WG.STENCIL_VALUE_MASK 8 0.050 0.000 0.996 10 0.000
WG.STENCIL_WRITEMASK 7 0.050 0.000 0.996 10 0.000
WG.STENCIL_BACK_VALUE_MASK 8 0.050 0.000 0.996 10 0.000
WG.STENCIL_BACK_WRITEMASK 7 0.050 0.000 0.996 10 0.000
WM.TEXTURE_SIZE 10 0.081 0.009 0.995 5 0.000
WG.DEPTH_BITS 7 0.047 0.000 0.996 2 0.000
WM.VARYING_VECTORS 19 0.121 0.009 0.996 2 0.000
WI.COLOR_READ_FORMAT 7 0.073 0.003 0.994 4 0.000
WM.RENDERBUFFER_SIZE 11 0.080 0.003 0.995 5 0.000
WG.STENCIL_BITS 5 0.016 0.000 0.997 1 0.000
WM.TEXTURE_IMAGE_UNITS 7 0.033 0.000 0.997 2 0.000
WM.VERTEX_ATTRIBS 8 0.017 0.000 0.997 2 0.000
WM.VERTEX_TEXTURE_IMAGE_UNITS 9 0.057 0.001 0.996 2 0.000
WI.COLOR_READ_TYPE 6 0.041 0.000 0.996 4 0.000
WM.TEXTURE_MAX_ANISOTROPY_EXT 9 0.029 0.000 0.997 2 0.001
WG.getContextAttributes() 54 0.114 0.009 0.995 138 0.000
WG.getSupportedExtensions() 535 0.209 0.027 0.990 401 0.008
WebGL vendor (unmasked) 27 0.115 0.000 0.995 9 0.000
WebGL renderer (unmasked) 3,786 0.268 0.073 0.991 20 0.000
WebGL precision format 25 0.071 0.001 0.996 114 0.001
Our designed WebGL canvas 1,158 0.263 0.023 0.990 64 0.041
Width and position of a created div 17,832 0.324 nan 0.940 18 0.084
Colors of layout components 7,707 0.153 nan 0.986 492 0.089
Size of bounding boxes of a created div 16,396 0.369 nan 0.470 31 0.197
Presence of fonts 17,960 0.305 0.110 0.996 198 0.450
Support of video codecs 84 0.114 0.001 0.999 78 0.002
Support of audio codecs 52 0.128 0.002 0.999 61 0.001
Support of streaming codecs 50 0.132 0.010 0.999 133 0.002
Support of recording codecs 7 0.069 0.000 0.999 140 0.001
List of speech synthesis voices 3,967 0.204 0.034 0.945 250 0.546
N.plugins 314,518 0.394 0.100 0.950 134 0.001
N.mimeTypes 174,876 0.311 0.017 0.982 112 0.000
A.state 5 0.082 0.000 0.999 7 0.000
A.sampleRate 16 0.070 0.019 0.997 5 0.000
AD.channelCount 5 0.036 0.000 1.000 1 0.000
AD.channelCountMode 4 0.036 0.000 1.000 8 0.000
AD.channelInterpretation 4 0.036 0.000 1.000 8 0.000
AD.maxChannelCount 20 0.058 0.003 1.000 1 0.000
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Attribute Values N. Ent. MinNCE % Same Size Time

AD.numberOfInputs 3 0.035 0.000 1.000 1 0.000
AD.numberOfOutputs 3 0.035 0.000 1.000 1 0.000
AA.channelCount 5 0.067 0.000 1.000 1 0.001
AA.channelCountMode 5 0.037 0.000 1.000 3 0.000
AA.channelInterpretation 4 0.036 0.000 1.000 8 0.000
AA.numberOfInputs 4 0.036 0.000 1.000 1 0.000
AA.numberOfOutputs 4 0.036 0.000 1.000 1 0.000
AA.fftSize 3 0.035 0.000 1.000 4 0.000
AA.frequencyBinCount 3 0.035 0.000 1.000 4 0.000
AA.maxDecibels 3 0.035 0.000 1.000 3 0.000
AA.minDecibels 3 0.035 0.000 1.000 4 0.000
AA.smoothingTimeConstant 4 0.046 0.000 0.998 3 0.000
Audio FP simple 337 0.153 0.004 0.958 18 1.380
Audio FP advanced 561 0.147 0.001 0.953 17 1.644
Audio FP advanced frequency data 546 0.161 0.011 0.950 17 1.647
Our designed HTML5 canvas (PNG) 269,874 0.420 0.021 0.922 64 0.257
Our designed HTML5 canvas (JPEG) 205,005 0.399 0.001 0.936 64 0.262
HTML5 canvas inspired by AmIUnique (PNG) 8,948 0.353 0.002 0.986 64 0.031
HTML5 canvas inspired by AmIUnique (JPEG) 6,514 0.312 0.001 0.989 64 0.039
HTML5 canvas similar to Morellian (PNG) 41,845 0.385 0.034 0.947 64 0.037
Accept HTTP header 26 0.028 0.000 0.997 3 0.000
Accept-Encoding HTTP header 30 0.019 0.002 1.000 13 0.000
Accept-Language HTTP header 2,833 0.124 0.022 0.999 35 0.000
User-Agent HTTP header 20,961 0.350 0.002 0.978 108 0.000
Accept-Charset HTTP header 18 0.002 0.000 1.000 1 0.000
Cache-Control HTTP header 47 0.055 0.023 0.706 1 0.000
Connection HTTP header 2 0.000 0.000 1.000 5 0.000
TE HTTP header 2 0.000 0.000 1.000 1 0.000
Upgrade-Insecure-Requests HTTP header 2 0.000 0.000 1.000 1 0.000
X-WAP-Profile HTTP header 4 0.000 0.000 1.000 1 0.000
X-Requested-With HTTP header 151 0.004 0.000 1.000 1 0.000
X-ATT-DeviceId HTTP header 1 0.000 0.000 1.000 1 0.000
X-UIDH HTTP header 1 0.000 0.000 1.000 1 0.000
X-Network-Info HTTP header 4 0.000 0.000 1.000 1 0.000
Via HTTP header 4,272 0.007 0.003 0.999 1 0.000
Any remaining HTTP headers 5,394 0.095 0.042 0.899 192 0.000
Number of bounding boxes 15 0.062 0.008 0.998 1 0.197
Number of plugins 54 0.147 0.000 0.984 1 0.001
Number of WebGL extensions 28 0.176 0.000 0.991 2 0.008
Width and height of first bounding box 12,937 0.350 nan 0.486 30 0.197
Width and height of second bounding box 1,332 0.103 nan 0.941 1 0.197
Width and height of third bounding box 772 0.076 nan 0.965 1 0.197
List of widths of bounding boxes 6,690 0.299 nan 0.986 16 0.197
List of heights of bounding boxes 2,222 0.264 nan 0.474 14 0.197
Width of first bounding box 4,418 0.281 0.038 0.987 14 0.197
Height of first bounding box 1,848 0.246 0.070 0.490 14 0.197
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Attribute Values N. Ent. MinNCE % Same Size Time

Width of second bounding box 471 0.085 0.002 0.998 1 0.197
Height of second bounding box 398 0.088 0.007 0.941 1 0.197
Width of third bounding box 224 0.060 0.004 0.999 1 0.197
Height of third bounding box 343 0.064 0.000 0.966 1 0.197
Width of a created div 15,473 0.316 0.007 0.940 6 0.084
Position of a created div 16,375 0.316 0.008 0.942 11 0.084
Width of fallback font text 1,029 0.184 0.024 0.998 5 0.099
Height of fallback font text 1,159 0.164 0.010 0.998 5 0.099
Color of ActiveBorder element 702 0.078 0.005 1.000 18 0.089
Color of ActiveCaption element 475 0.073 0.002 1.000 18 0.089
Color of AppWorkspace element 321 0.067 0.001 1.000 18 0.089
Color of Background element 2,917 0.074 0.017 1.000 16 0.089
Color of ButtonFace element 297 0.079 0.004 1.000 18 0.089
Color of ButtonHighlight element 264 0.058 0.000 1.000 18 0.089
Color of ButtonShadow element 343 0.076 0.001 1.000 18 0.089
Color of ButtonText element 104 0.004 0.000 1.000 12 0.089
Color of CaptionText element 123 0.014 0.000 1.000 12 0.089
Color of GrayText element 333 0.071 0.004 1.000 18 0.089
Color of Highlight element 1,088 0.097 0.016 0.987 17 0.089
Color of HighlightText element 89 0.049 0.001 1.000 18 0.089
Color of InactiveBorder element 334 0.060 0.000 1.000 18 0.089
Color of InactiveCaption element 441 0.062 0.001 1.000 18 0.089
Color of InactiveCaptionText element 265 0.088 0.006 0.999 15 0.089
Color of InfoBackground element 239 0.057 0.000 1.000 18 0.089
Color of InfoText element 96 0.003 0.000 1.000 12 0.089
Color of Menu element 376 0.087 0.004 1.000 18 0.089
Color of MenuText element 124 0.020 0.001 1.000 12 0.089
Color of Scrollbar element 275 0.072 0.000 1.000 18 0.089
Color of ThreeDDarkShadow element 75 0.071 0.001 1.000 18 0.089
Color of ThreeDFace element 297 0.062 0.000 1.000 18 0.089
Color of ThreeDHighlight element 261 0.048 0.000 1.000 18 0.089
Color of ThreeDLightShadow element 280 0.074 0.001 1.000 18 0.089
Color of ThreeDShadow element 339 0.075 0.000 1.000 18 0.089
Color of Window element 329 0.019 0.001 1.000 18 0.089
Color of WindowFrame element 140 0.069 0.000 1.000 18 0.089
Color of WindowText element 107 0.004 0.000 1.000 12 0.089
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