
HAL Id: hal-02870826
https://hal.science/hal-02870826v1

Preprint submitted on 16 Jun 2020 (v1), last revised 3 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Large-scale Empirical Analysis of Browser
Fingerprints Properties for Web Authentication

Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, Alexandre
Garel

To cite this version:
Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, Alexandre Garel. A Large-scale Em-
pirical Analysis of Browser Fingerprints Properties for Web Authentication. 2020. �hal-02870826v1�

https://hal.science/hal-02870826v1
https://hal.archives-ouvertes.fr

A Large-scale Empirical Analysis of Browser Fingerprints
Properties for Web Authentication

NAMPOINA ANDRIAMILANTO, Institute of Research and Technology b<>com, France and Univ
Rennes, CNRS, IRISA, France
TRISTAN ALLARD, Univ Rennes, CNRS, IRISA, France
GAËTAN LE GUELVOUIT, Institute of Research and Technology b<>com, France
ALEXANDRE GAREL∗, Institute of Research and Technology b<>com, France

Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Al-
though browser fingerprints have primarily been studied as a web tracking tool, they can contribute to im-
prove the current state of web security by augmenting web authentication mechanisms. In this paper, we
investigate the adequacy of browser fingerprints for web authentication. We make the link between the digi-
tal fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate
browser fingerprints according to properties inspired by biometric authentication factors. These properties
include their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a
simple verification mechanism. We assess these properties on a large-scale dataset of 4, 145, 408 fingerprints
composed of 216 attributes, and collected from 1, 989, 365 browsers. We show that, by time-partitioning our
dataset, more than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints
are known to evolve, an average of 91% of the attributes of our fingerprints stay identical between two obser-
vations, even when separated by nearly 6 months. About their performance, we show that our fingerprints
weigh a dozen of kilobytes, and take a few seconds to collect. Finally, by processing a simple verification
mechanism, we show that it achieves an equal error rate of 0.61%. We enrich our results with the analysis
of the correlation between the attributes, and of their contribution to the evaluated properties. We conclude
that our browser fingerprints carry the promise to strengthen web authentication mechanisms.

Additional Key Words and Phrases: browser fingerprinting, web authentication

ACM Reference Format:
Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel. 2020. A Large-scale
Empirical Analysis of Browser Fingerprints Properties for Web Authentication. 1, 1 (June 2020), 51 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Web authentication widely relies on the use of identifier-password pairs defined by the end user.
The password authentication factor is easy to use and to deploy, but has been shown to suffer from
severe security flaws when used without any additional factor. Real-life users indeed use common
passwords1, which paves the way to brute-force or guessing attacks [8]. Moreover, they tend to use

This paper is a major extension (more than 50% of new material) of work originally presented in [5].
∗The author participated to the fingerprint collection and analysis when working at the institution, but is not anymore
affiliated to it.
1https://www.troyhunt.com/86-of-passwords-are-terrible-and-other-statistics

Authors’ addresses: Nampoina Andriamilanto, nampoina.andriamilanto@b-com.com, Institute of Research and Technol-
ogy b<>com, 1219 avenue Champs Blancs, Cesson-Sévigné, France, 35510, Univ Rennes, CNRS, IRISA, 263 avenue du
général Leclerc, Rennes, France, 35000; Tristan Allard, tristan.allard@irisa.fr, Univ Rennes, CNRS, IRISA, 263 avenue du
général Leclerc, Rennes, France, 35000; Gaëtan Le Guelvouit, gaetan.leguelvouit@b-com.com, Institute of Research and
Technology b<>com, 1219 avenue Champs Blancs, Cesson-Sévigné, France, 35510; Alexandre Garel, Institute of Research
and Technology b<>com, 1219 avenue Champs Blancs, Cesson-Sévigné, France, 35510.

2020. XXXX-XXXX/2020/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.troyhunt.com/86-of-passwords-are-terrible-and-other-statistics
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

similar passwords across different websites [12], which increases the impact of successful attacks.
Phishing attacks are also a major threat to the use of passwords. Over the course of a year, Thomas
et al. [46] achieved to retrieve 12.4 million credentials stolen by phishing kits.

These flaws bring the need for supplementary security layers, primarily through multi-factor
authentication [9], such that each additional factor provides an additional security barrier. However,
this usually comes at the cost of usability (i.e., users have to remember, possess, or do something),
and of deployability (i.e., implementers have to deploy dedicated hardware or software, teach users
how to use them, and maintain the deployed solution).

In the meantime, browser fingerprinting [28] gains more and more attention.The seminal Panop-
ticlick study [13] is the first work to highlight the possibility to build a browser fingerprint by
collecting attributes from a browser (e.g., the userAgent property of the navigator JavaScript
object). In addition to being widely used for web tracking purposes [14] (raising legal, ethical, and
technical issues), browser fingerprinting is already used as an additional web authentication fac-
tor in real-life. The browser fingerprints constitute a supplementary factor that is verified at login
with the other factors, as depicted in Figure 1 (see Appendix C for an example of an authentication
mechanism that relies on browser fingerprints). Browser fingerprints are indeed a good candidate
as an additional web authentication factor thanks to their distinctive power, their frictionless de-
ployment (e.g., no additional software or hardware to install), and their usability (no secret to
remember, no additional object to possess, and no supplementary action to carry out). As a re-
sult, companies like MicroFocus2 or SecureAuth3 include this technique into their authentication
mechanisms.

However, to the best of our knowledge, no large-scale study rigorously evaluates the adequacy
of browser fingerprints as an additional web authentication factor. On the one hand, most works
about the use of browser fingerprints for authentication concentrate on the design of the authen-
tication mechanism [17, 26, 34, 38, 43, 47]. On the other hand, the large-scale empirical studies
on browser fingerprints focus on their effectiveness as a web tracking tool [13, 19, 29, 35]. Such a
mismatch between the understanding of browser fingerprints for authentication – currently poor
– and their ongoing adoption in real-life is a serious harm to the security of web users. The lack
of documentation from the existing authentication tools (e.g., about the used attributes, about the
distinctiveness and the stability of the resulting fingerprints) only adds up to the current state of
ignorance, all this whereas security-by-obscurity directly contradicts the most fundamental secu-
rity principles. Moreover, the distinctiveness of browser fingerprints that can be achieved when
considering a wide-surface of fingerprinting attributes on a large population is, to the best of our
knowledge, unknown. On the one hand, the studies that analyze browser fingerprints in a large-
scale (more than 100, 000 fingerprints) consider fewer than thirty attributes [13, 19, 29, 48].This un-
derestimates the distinctiveness of the fingerprints (e.g., [19] reports a rate of 33.6% of unique fin-
gerprints), as it increases the chances for browsers to share the same fingerprint. All this whereas
more than a hundred attributes are accessible. On the other hand, the studies that consider more
than fifty attributes either work on less than two thousands browsers [24, 35], or do not analyze the
resulting fingerprints at all [3]. The current knowledge about the hundreds of accessible attributes
(e.g., their stability, their collection time, their correlation) is, to the best of our knowledge, also
incomplete. Indeed, previous studies consider few attributes [10, 13, 15, 19, 29, 33, 36, 41], or focus
on a single aspect of them (e.g., their stability [48]).
Our contributions. We conduct the first large-scale data-centric empirical study of the funda-

mental properties of browser fingerprints when used as an additional web authentication factor. We

2https://www.microfocus.com/media/white-paper/device-fingerprinting-for-low-friction-authentication-wp.pdf
3https://docs.secureauth.com/pages/viewpage.action?pageId=33063454

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://www.microfocus.com/media/white-paper/device-fingerprinting-for-low-friction-authentication-wp.pdf
https://docs.secureauth.com/pages/viewpage.action?pageId=33063454

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 3

Fig. 1. A simplified web authentication mechanism that relies on browser fingerprinting.

base our findings on an in-depth analysis of a real-life fingerprint dataset collected over a period
of 6 months, that contains 4, 145, 408 fingerprints composed of 216 attributes. In particular, our
dataset includes nine dynamic attributes of three types, which values depend on instructions pro-
vided by the fingerprinter: five HTML5 canvases [10], three audio fingerprinting methods [36],
and a WebGL canvas [33]. The dynamic attributes are used within state-of-the-art web authenti-
cation mechanisms to mitigate replay attacks [26, 38]. Each dynamic attribute has been studied
singularly, but their fundamental properties have not yet been studied simultaneously on the same
browser population. To the best of our knowledge, no related work considers a dataset of this scale,
in terms of both fingerprints and attributes, together with various dynamic attributes. We formal-
ize, and assess on our dataset, the properties necessary for paving the way to elaborate browser
fingerprinting authentication mechanisms. We make the link between the digital fingerprints that
distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser
fingerprints according to properties inspired by biometric authentication factors [16, 31, 52]. We
stress that we do not make any assumption on the inner working of the authentication mechanism,
and consequently on the adversarial strategy. The properties aim at characterizing the adequacy
and the practicability of browser fingerprints, independently of their use within future authentica-
tion mechanisms. In particular, we measure the size of the browser anonymity sets through time,
the proportion of identical attributes between two observations of the fingerprint of a browser,
the collection time of the fingerprints, their size, the loss of efficacy between device types, and
the accuracy of a simple illustrative verification mechanism. To comprehend the obtained results
on the complete fingerprints, we include an in-depth study of the contribution of the attributes
to the fingerprint properties. Moreover, we discuss the correlation between the attributes, make
a focus on the contribution of the dynamic attributes, and provide the exhaustive list of the at-
tributes, together with their properties. To the best of our knowledge, no previous work analyzed
browser fingerprinting attributes at this scale, in terms of the number of attributes, of the number
of fingerprints, and of the variety of properties (e.g., stability, collection time).

In a nutshell, we make the following contributions:
(1) We formalize the fundamental properties that browser fingerprints should provide to be

usable and practical as a web authentication factor.
(2) About their adequacy, we show that (1) considering a wide surface of 216 fingerprinting

attributes on our large population provides a proportion of unique fingerprints – also called
unicity rate – of 81.8% on our complete dataset, (2) by time-partitioning our dataset, the
unicity rates are stable on the long term at around 81.3%, and 94.7% of our fingerprints are
shared by 8 browsers or fewer, (3) on average, a fingerprint has more than 91% of identi-
cal attributes between two observations, even when separated by nearly 6 months, (4) our
mobile browsers lack distinctiveness, as they show a unicity rate of 42%.

(3) About their practicability, we show that (1) the generated fingerprints weigh a dozen of
kilobytes, (2) they are collected within seconds, (3) the accuracy of a simple illustrative ver-
ification mechanism is close to perfect, as it achieves an equal error rate of 0.61%.

, Vol. 1, No. 1, Article . Publication date: June 2020.

4 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

(4) We enrich our results with (1) a precise analysis of the contribution of each attribute (a) to
the distinctiveness, and show that 10% of the attributes provide a normalized entropy higher
than 0.25, (b) to the stability, and show that 85% of the attributes stay identical for 99% of the
consecutive fingerprints coming from the same browser, (c) to the collection time, and show
that only 33 attributes take more than 5ms to collect, (d) to the fingerprint size, and show
that only 20 attributes weigh more than 100 bytes, (2) a discussion about the correlation of
the attributes, and show that only 49 attributes can completely be inferred when knowing
another attribute, (3) a focus on the properties of the nine dynamic attributes.

(5) We provide an in-depth description of our methodology and our dataset with the goal of
making our results reproducible. In particular, we include an exhaustive list of the collected
attributes together with their properties, and a detailed description of the preprocessing of
the fingerprints.

This paper is a major extension of work originally presented in [5], and brings more than 50%
of new material. Specifically, we clarify the obtained results by discussing them further, we eval-
uate the accuracy of a simple illustrative verification mechanism, we highlight the contribution
of the attributes to the properties, and we provide a comprehensive list of the attributes, together
with their properties and their concrete implementation. In a summary, we make the following
additions:

(1) Section 2 gains a description of the studied browser population. This includes the share
of the families of browser and of operating system, and insights about the bias towards
French browsers. We also add a description of the data preprocessing step, and a comparison
between our dataset and the dataset of previous studies.

(2) Section 3 gains the accuracy of a simple illustrative verification mechanism as an additional
performance property.

(3) Section 4 gets the results further discussed, and gains the results of the accuracy of the simple
illustrative verification mechanism.

(4) Section 5 is entirely new. It discusses the contribution of the attributes to the fingerprint
properties, the correlation between the attributes, and the properties of the dynamic at-
tributes.

(5) Section 6 is also new, and provides related works about the use of browser fingerprinting
for authentication.

(6) The appendices are also new. Appendix A describes the concrete implementation of the
studied attributes for reproducibility. Appendix B provides the keywords used to classify
the fingerprints. Appendix C describes how browser fingerprints can be integrated into a
web authentication mechanism. Appendix D discusses a more complex verification mecha-
nism that rely on distance functions on the attributes to compare fingerprints. Appendix E
provides the complete list of the attributes with their properties (e.g., number of distinct
values, stability).

The rest of the paper is organized as follows. Section 2 describes the dataset analyzed in this
study. Section 3 presents and formalizes the properties evaluated in the analysis. Section 4 presents
the experimental results. Section 5 breaks down the analysis to the attributes to comprehend the
results on the complete fingerprints. Section 6 positions this study with the related works. Finally,
Section 7 concludes.

2 DATASET
In this section, we describe the browser fingerprint dataset that is analyzed in this study. First, we
present the conditions of the collection, and describe the precautions taken to protect the privacy

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 5

of the experimenters. Then, we detail the preprocessing steps to cleanse the raw dataset. Finally,
we describe the working dataset, and compare it with the large-scale datasets of previous studies.

2.1 Fingerprints collection
To study the properties of browser fingerprints on a real-world browser population, we launched
an experiment in collaboration with the authors of the Hiding in the Crowd study [19], together
with an industrial partner that controls one of the top 15 French websites according to the site
ranking service Alexa4. The authors of the Hiding in the Crowd study only consider the 17 at-
tributes of their previous work [29], and focus on the issue of web tracking. On the contrary, we
consider in this work more than one order of magnitude more attributes – 216 attributes – and
focus on the use of browser fingerprinting as an additional web authentication factor.

2.1.1 Experiment. The experiment consisted into integrating a fingerprinting script on two gen-
eral audience web pages that are controlled by our industrial partner, which subjects are political
news and weather forecast.The script was active between December 7, 2016, and June 7, 2017, and
fingerprinted the visitors who consented to the use of cookies in compliance with the European
directives 2002/58/CE and 2009/136/CE. To differentiate two browsers in future analysis, we as-
signed them a unique identifier (UID) as a 6-months cookie, which was sent alongside fingerprints.
Similarly to previous studies [13, 29], we coped with the issue of cookie deletion by storing a one-
way hash of the IP address as well, computed by a secure cryptographic hash function. We refer
the interested reader to Section 2.3 for more details on the measures taken to protect the privacy
of the experimenters.

2.1.2 Browser fingerprinting attributes. The fingerprinting script used in the experiment includes
216 attributes divided into 200 JavaScript properties, together with their collection time, and 16
HTTP header fields. In particular, they include three types of dynamic attributes that comprise
five HTML5 canvases [10], three audio fingerprinting methods [36], and a WebGL canvas [33].

We sought to evaluate the properties of browser fingerprints when considering as many at-
tributes as possible, to estimate more precisely what can really be achieved. Hence, we compiled
the attributes from previous studies and open source projects. If the value of an attribute is not
accessible, a flag explaining the reason is stored instead, as it is still exploitable information. In-
deed, two browsers can be distinguished if they behave differently on the inaccessibility of an
attribute (e.g., returning a null value is different from throwing an exception). We also configure
a timeout after which the fingerprint is sent without waiting for every attribute to be collected.
The attributes that were not collected are set to a specific flag. The complete list of attributes and
their properties is available in Appendix E.

Client-side attributes only consist of JavaScript properties. No plugins (e.g., Flash, Silverlight)
are used due to their removal and replacement by HTML5 functionalities5. Moreover, the finger-
printing script collects the HTTP headers from requests sent by JavaScript, hence the dataset con-
tains no fingerprint of browsers having JavaScript disabled.

2.2 Browser population bias
The previously presented datasets were collected through dedicated websites, and are biased to-
wards privacy-aware and technically-skilled persons [13, 29, 35]. Our dataset is more general audi-
ence oriented, and is not biased towards this type of population. Nevertheless, thewebsite audience
is mainly French-speaking users. This leads to biases of which we provide examples here.

4https://www.alexa.com/topsites/countries/FR
5https://theblog.adobe.com/adobe-flash-update

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://www.alexa.com/topsites/countries/FR
https://theblog.adobe.com/adobe-flash-update

6 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

By matching the userAgent JavaScript property with manually selected keywords (see Appen-
dix B), we obtain the share of each browser family. Firefox browsers are the most common, and
constitute 31.37% of our desktop browsers, followed by Internet Explorer browsers (28.26%), and
Chrome browsers (26.22%). Although French users use more Firefox as their desktop browser than
the world average6, the share of browsers is different from what is reported by Statcounter7 with
Chrome being themost commonwith 68.11% of the French browsers.The operating systems of our
desktop browsers are mostly Microsoft ones, with 39.13% of Windows 10, 35.58% of Windows 7,
and 10.21% of other Windows versions. Mac OS only represents 5.98% of our desktop browsers,
and Linux-based browsers less than 1%. This can be explained by the population visiting the web-
site being less technically savvy, hence using more common web environments (e.g., a Firefox on
a Windows operating system) than technical environments (e.g., Linux-based operating systems).

For the mobile browsers, the vast majority of them run on an Android platform (84.42%), fol-
lowed by Windows Phone (8.76%), and iOS (5.18%). The most common browser is Samsung Brow-
ser (45.10%), followed by Chrome (38.54%), Internet Explorer mobile (8.44%), and Safari (6.70%).
The browsers running on Android devices tend to be more distinguishable than the ones running
on iOS [29], due to the plurality of device vendors and models that embark the Android operating
system.

The contextual attributes related to the time zone or the configured language are less distinctive
than in previous studies (see Section 5.1.1). For example, the normalized entropy of the Timezone
JavaScript property is of only 0.008, against 0.161 for the Panopticlick study [13], and 0.198 for
the AmIUnique study [29]. These attributes also tend towards the typical French values: 98.48% of
the browsers have a Timezone value of −1, 98.59% of them have the daylight saving time enabled,
and fr is present in 98.15% of the value of the Accept-Language HTTP header.

The browsers of our dataset mostly belong to general audience French users. Counter-intuitively,
considering an international population may not reduce the distinctiveness. Indeed, we can expect
foreign users to have a combination of contextual attributes (e.g., timezone, languages) different
from the French users, making them distinguishable even if the remaining attributes have identical
values. Al-Fannah and Li [2] found out that browser families are not equally fingerprintable (e.g.,
Safari browsers are less distinguishable than Chrome browsers). Although the fingerprintability
of the browser families of the studied population impacts the obtained distinctiveness, studying
this aspect is out of the scope of this paper.

2.3 Privacy concerns
The browser fingerprints are sensible due to their identification capacity. We complied with the
European directives 2002/58/CE8 and 2009/136/CE9 in effect at the time, and took additional mea-
sures to protect the participating users.

First, the script was set on two web pages of a single domain in a first-party manner, hence
providing no extra information about the browsing of the users. The content of the web pages
are generic, hence they do not leak any information about the interests of the users. Second, we
restricted the collection to the users having consented to cookies, as required by the European
directives 2002/58/CE and 2009/136/CE.Third, a UID was set as a cookie with a 6-months lifetime,
corresponding to the duration of the experiment. Fourth, we deleted the fingerprints for which the
cookieEnabled property was not set to true. Finally, we hashed the IP addresses by passing them
through a HMAC-SHA256 using a key that we threw afterwards. It was done using the secret

6https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020
7https://gs.statcounter.com/browser-market-share/desktop/france/2020
8https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02002L0058-20091219
9https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009L0136-20091219

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020
https://gs.statcounter.com/browser-market-share/desktop/france/2020
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02002L0058-20091219
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009L0136-20091219

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 7

and the hmac libraries of Python3.6. These one-way hashed IP addresses are only used for the UIDs
resynchronization (see Section 2.4.2), and are not used as an attribute in the working dataset.

2.4 Data preprocessing
Given the experimental aspect of browser fingerprints, and the scale of our collection, the raw
dataset contains erroneous or irrelevant samples. That is why we perform several preprocessing
steps before any analysis. The dataset is composed of entries in the form of (𝑓 , 𝑏, 𝑡) tuples so that
the fingerprint 𝑓 was presented by the browser𝑏 at the given time 𝑡 . We talk here about entries (i.e.,
(𝑓 , 𝑏, 𝑡) tuples) and not fingerprints (i.e., only 𝑓) to avoid confusion. The preprocessing is divided
into four steps: the cleaning, the UIDs resynchronization, the deduplication, and the derivation of
the extracted attribute. Initially, we have 8, 205, 416 entries in the raw dataset.

2.4.1 Dataset cleaning. The dataset cleaning step filters out 70, 460 irrelevant entries, following
the method described here. The fingerprinting script prepares, sends, and stores the entries in
string format consisting of the attribute values separated by semicolons. We remove 769 entries
that have a wrong number of fields, mainly due to truncated or unrelated data (e.g., the body of
a post request). We filter out 53, 251 entries that belong to robots, by checking that blacklisted
keywords are present in the UserAgent HTTP header (see Appendix B for the keywords list). We
reduce the entries that have multiple exact copies (down to the same moment of collection) to a
single instance. Finally, we remove 18, 591 entries that have the cookies disabled, and 2, 412 entries
that have a time of collection that falls outside the time window of the experiment.

2.4.2 Unique IDs resynchronization. The resynchronization step replaces 181, 676 UIDs with a
total of 116, 708 other UIDs, following the method described here. The cookies are considered
an unreliable browser identification solution, hence we undergo a cookie resynchronization step,
similarly to the Panopticlick study [13]. We consider the entries that have the same (fingerprint, IP
address hash) pair to belong to the same browser, and assign them the same UID. Similarly to the
Panopticlick study, we do not synchronize the interleaved UIDs, that are the UIDs related to the
entries having the same (fingerprint, IP address hash) pairs, but showing UID values 𝑏1, 𝑏2, then
𝑏1 again.

2.4.3 Deduplication. The deduplication step constitutes the biggest cut in our dataset, and filters
out 2, 420, 217 entries. To avoid storing duplicates of the same fingerprint observed several times
for a browser, the usual way is to ignore a fingerprint if it was already seen for a browser during
the collection [13, 29]. Our script collects the fingerprint on each visit, no matter if it was already
seen for this browser or not. To stay consistent with common methodologies, we deduplicate the
fingerprints offline. For each browser, we hold the first entry that contains a given fingerprint, and
ignore the following entries if they also contain this fingerprint. This method takes the interleaved
fingerprints into account, that are the fingerprints so that we observe 𝑓1, 𝑓2, then 𝑓1 again. For
example, if a browser 𝑏 has the entries {(𝑓1, 𝑏, 𝑡1), (𝑓2, 𝑏, 𝑡2), (𝑓2, 𝑏, 𝑡3), (𝑓1, 𝑏, 𝑡4)}, we only hold the
entries {(𝑓1, 𝑏, 𝑡1), (𝑓2, 𝑏, 𝑡2), (𝑓1, 𝑏, 𝑡4)} after the deduplication step.

We hold the interleaved fingerprints to realistically simulate the state of the fingerprint of each
browser through time. We find that 10.59% of our browsers showed at least one case of interleaved
fingerprints.The interleaved fingerprints can come from attributes that switch between two values.
An example is the screen size that changes when an external screen is plugged or unplugged.
Previous studies discarded the fingerprints that were already encountered for a given browser [13,
19, 29], hiding the interleaved fingerprints.

, Vol. 1, No. 1, Article . Publication date: June 2020.

8 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 1. Comparison between the datasets of the studies Panopticlick (PTC), AmIUnique (AIU), Hiding in
the Crowd (HitC), Long-Term Observation (LTO), and this study. As the LTO study tests various attribute
sets, we present the ranges of the results obtained by their attribute selection method. - denotes missing
information. * denotes deduced information. Fps is the short for fingerprints. The attributes comprise the
derived attributes, and the fingerprints are counted after data preprocessing.

PTC [13] AIU [29] HitC [19] LTO [35] This study

Collection period 3 weeks 3-4 months* 6 months 3 years 6 months
Attributes 8 17 17 305 262
Browsers - - - - 1,989,365
Fingerprints 470,161 118,934 2,067,942 88,088 4,145,408
Distinct fingerprints 409,296 142,02310 - 9,822–16,541 3,578,196
Ratio of desktop fps - 0.890* 0.879 0.697*–0.707* 0.805
Ratio of mobile fps - 0.110* 0.121 0.293–0.303 0.134
Unicity of overall fps 0.836 0.894 0.336 0.954–0.958 0.818
Unicity of mobile fps - 0.810 0.185 0.916–0.941 0.399
Unicity of desktop fps - 0.900 0.357 0.974–0.978 0.884

2.4.4 Extracted attributes. Wederive 46 extracted attributes of two types from 9 original attributes.
First, we have the extracted attributes that are parts of an original attribute, like an original at-
tribute that is composed of 28 triplets of RGB (Red Green Blue) color values that we split into 28
single attributes. Then, we have the extracted attributes that are derived from an original attribute,
like the number of plugins derived from the list of plugins.The extracted attributes do not increase
the distinctiveness as they come from an original attribute, and they are, at most, as distinctive
as their original attribute. However, the extracted attributes can offer a higher stability than their
original attribute, as the latter is impacted by any little change among the extracted attributes. For
example, if exactly one of the 28 RGB values changes between two fingerprint observations, the
original attribute is counted as having changed, but only one of the extracted attributes will be.

2.4.5 Working dataset. Theworking dataset obtained after the preprocessing steps contains 5, 714, 738
entries (comprising the identical fingerprints that are interleaved for each browser), with 4, 145, 408fin-
gerprints (comprising no identical fingerprint for each browser), and 3, 578, 196 distinct finger-
prints. They are composed of 216 original attributes and of 46 extracted attributes, for a total of
262 attributes. The fingerprints come from 1, 989, 365 browsers, 27.53% of which have multiple
fingerprints. Table 1 displays a comparison between the dataset of the studies Panopticlick [13],
AmIUnique [29], Hiding in the Crowd [19], Long-Term Observation [35], and this study.

2.5 Comparison with previous studies
We compare our working dataset with the datasets of previous studies in Table 1, notably by
the unicity rate, which is the proportion of the fingerprints that have been observed for a single
browser only.

We have a lower unicity rate compared to previous studies [13, 29] due to our larger population.
Even if our unicity rate is lower than that of AmIUnique, the gap is not extremely wide. This is
due to the fact that considering a larger browser population leads to higher chances of collision,
10This number is displayed in Figure 11 of [29] as the number of distinct fingerprints, but it also corresponds to the number
of raw fingerprints collected. Every fingerprint would be unique if the number of distinct and of collected fingerprints are
equal. Hence, we are not confident in this number, but it is the number provided by the authors.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 9

reducing the unicity rate. However, by considering a wider surface of fingerprinting attributes, we
reduce these chances. These two effects produce this slight decrease of the unicity rate. We also
observe a lower unicity rate for the fingerprints of mobile browsers compared to the fingerprints
of desktop browsers, confirming the findings of previous studies [13, 19, 29, 42].

The authors of the Hiding in the Crowd study [19] worked on fingerprints collected from the
same experiment and browser population than ours. However, to stay consistent with their pre-
vious study [29], they consider the same set of 17 attributes. This explains the higher number of
fingerprints, as two browsers that have different fingerprints for a given set of attributes can come
to the same fingerprint if a subset of these attributes is considered. Hence, they remove more dupli-
cated fingerprints than us due to the higher chances for a browser to present the same fingerprint
for 17 attributes than for 216 attributes. Our unicity rate is also higher, being at 81.8% for the
complete dataset against 33.6% for [19]. This is due to the larger set of considered attributes that
distinguish browsers more efficiently, as each additional attribute can provide a way to distinguish
browsers. Our little drops on the proportion of desktop and mobile browsers come from a finer-
grained classification, as we have 4.8% of the browsers that are classified as belonging to tablets,
smart TVs, and game consoles.

3 AUTHENTICATION FACTOR PROPERTIES
Biometric authentication factors and browser fingerprints share strong similarities. They both
work by extracting features from a unique entity, which is a person for the former and a browser
for the latter, that can be used for identification or authentication. Although the entity is unique,
the extracted features are a digital representation of the entity, that can lead to imperfections
(e.g., the fingerprints of two different persons can show similar representations). Previous stud-
ies [16, 31, 52] identified the properties for a biometric characteristic to be usable11 as an authen-
tication factor, and the additional properties for a biometric authentication scheme to be practical.
We evaluate browser fingerprints according to these properties, because of their similarity with
biometric authentication factors.

The four properties needed for a biometric characteristic to be usable as an authentication factor
are the following.

• Universality: the characteristic should be present in everyone.
• Distinctiveness: two distinct persons should have different characteristics.
• Permanence: the same person should have the same characteristic over time. We rather use

the term stability.
• Collectibility: the characteristic should be collectible and measurable.

The three properties that a biometric authentication scheme requires to be practical are the
following.

• Performance: the scheme should be accurate, consume few resources, and be robust against
environmental changes.

• Acceptability: the users should accept to use the scheme in their daily lives.
• Circumvention: it should be difficult for an attacker to deceive the scheme.

The properties that we study are the distinctiveness, the stability, and the performance. We con-
sider that the universality and the collectibility are satisfied, as the HTTP headers that are automat-
ically sent by browsers constitute a fingerprint. However, we stress that a loss of distinctiveness
occurs when no JavaScript attribute is available. About the circumvention, we refer the reader to
Laperdrix et al. [26] that analyzed the security of an authentication mechanism based on browser
11Here, usable refers to the adequacy of the characteristic to be used for authentication, rather than the ease of use by the
users.

, Vol. 1, No. 1, Article . Publication date: June 2020.

10 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

fingerprints. We let the evaluation of the acceptability as future works, but we stress that such
mechanisms are already used in real-life [50].

3.1 Distinctiveness
To satisfy the distinctiveness property, the browser fingerprints should distinguish two different
browsers. The two extreme cases are every browser sharing the same fingerprint, which makes
them indistinguishable from each other, and no two browsers sharing the same fingerprint, making
every browser distinguishable. The distinctiveness falls between these extremes, depending on
the attributes and the browser population. We consider the use of browser fingerprinting as an
additional authentication factor. Hence, we do not require a perfect distinctiveness, as it is used in
combination with other authentication factors to improve the overall security.

The dataset entries are composed of a fingerprint, the source browser, and the moment of col-
lection in the form of a Unix timestamp in milliseconds. We denote 𝐵 the domain of the unique
identifiers, 𝐹 the domain of the fingerprints, and 𝑇 the domain of the timestamps. The fingerprint
dataset is denoted 𝐷 , and is formalized as:

𝐷 = {(𝑓 , 𝑏, 𝑡) | 𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 } (1)

We use the size of the browser anonymity sets to quantify the distinctiveness, as the browsers
that belong to the same anonymity set are indistinguishable. We denote B(𝑓 ,D) the function that
returns the browsers that provided the fingerprint 𝑓 in the dataset 𝐷 . It is formalized as:

B(𝑓 ,D) = {𝑏 ∈ 𝐵 | ∀(𝑔,𝑏, 𝑡) ∈ D, 𝑓 = 𝑔} (2)

We denote A(𝜖,D) the function that provides the fingerprints that have an anonymity set of
size 𝜖 (i.e., that are shared by 𝜖 browsers) in the dataset 𝐷 . It is formalized as:

A(𝜖,D) = {𝑓 ∈ 𝐹 | card(B(𝑓 ,D)) = 𝜖} (3)

A common measure of the fingerprint distinctiveness is the unicity rate [13, 19, 29], which is
the proportion of the fingerprints that were observed for a browser only. We denote U(D) the
unicity rate of the dataset D, which is formalized as:

card(A(1,D))
card(𝐹) (4)

Previous studies measured the anonymity set sizes on the whole dataset [13, 19, 29].Wemeasure
the anonymity set sizes on the fingerprints currently in use by each browser, and not on their whole
history. Two different browsers, sharing the same fingerprint on different time windows, are then
distinguishable (e.g., a browser was updated before the other). Moreover, a browser that runs in a
fancy web environment (e.g., having a custom font), and that has several fingerprints in the dataset
(e.g., fifty), will bloat the proportion of unique fingerprints, biasing the study (e.g., fifty fingerprints
are unique whereas they come from a single browser).

We evaluate the anonymity set sizes on the time-partitioned datasets composed of the last finger-
print seen for each browser at a given time. Let S𝜏 (D) be the time-partitioned dataset originating
from D that represents the state of the fingerprint of each browser after 𝜏 days. With 𝑡𝜏 the last
timestamp of this day, we have:

S𝜏 (D) = {(𝑓𝑖 , 𝑏 𝑗 , 𝑡𝑘) ∈ D | ∀(𝑓𝑝 , 𝑏𝑞, 𝑡𝑟) ∈ D, 𝑏 𝑗 = 𝑏𝑞, 𝑡𝑟 ≤ 𝑡𝑘 ≤ 𝑡𝜏 } (5)

3.2 Stability
To satisfy the stability property, the fingerprint of a browser should stay sufficiently similar be-
tween two observations to be recognizable. Browser fingerprints have the particularity of evolving

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 11

through time, due to changes in the web environment, like a software update or a user configu-
ration. We measure the stability by the average similarity between the consecutive fingerprints
of browsers, given the elapsed time between their observation. The two extreme cases are every
browser holding the same fingerprint through its life, and the fingerprint changing completely
on each observation. A lack of stability makes it harder to recognize the fingerprint of a browser
between two observations.

We denote C(Δ,D) the function that provides the pairs of consecutive fingerprints of D that
are separated by a time-lapse comprised in the Δ time range. It is formalized as:

C(Δ,D) = {(𝑓𝑖 , 𝑓𝑝) | ∀((𝑓𝑖 , 𝑏 𝑗 , 𝑡𝑘), (𝑓𝑝 , 𝑏𝑞, 𝑡𝑟)) ∈ D2, 𝑏 𝑗 = 𝑏𝑞, 𝑡𝑘 < 𝑡𝑟 , (𝑡𝑟 − 𝑡𝑘) ∈ Δ,

�(𝑓𝑐 , 𝑏𝑑 , 𝑡𝑒) ∈ D, 𝑏𝑑 = 𝑏 𝑗 , 𝑓𝑐 ≠ 𝑓𝑖 , 𝑓𝑐 ≠ 𝑓𝑝 , 𝑡𝑘 < 𝑡𝑒 < 𝑡𝑟 }
(6)

We consider the Kronecker delta 𝛿 (𝑥,𝑦), being 1 if 𝑥 equals 𝑦, and 0 otherwise. We consider
the set Ω of the 𝑛 used attributes. We denote 𝑓 [𝜔] the value taken by the attribute 𝜔 for the
fingerprint 𝑓 . Let sim(𝑓 , 𝑔) be a simple similarity function between the fingerprints 𝑓 and 𝑔, which
is formalized as:

sim(𝑓 , 𝑔) = 1

𝑛

∑
𝜔 ∈Ω

𝛿 (𝑓 [𝜔], 𝑔[𝜔]) (7)

We define the function avsim(Δ,D) that provides the average similarity between the pairs of
the consecutive fingerprints, for a given time range Δ and a dataset 𝐷 . It is formalized as:

avsim(Δ,D) =
∑

(𝑓 ,𝑔) ∈C(Δ,D) sim(𝑓 , 𝑔)
card(C(Δ,D)) (8)

3.3 Performance
We consider four aspects of the performance of browser fingerprints for web authentication: their
collection time, their size in memory, the loss of efficacy between different device types, and the
accuracy of a simple illustrative verification mechanism.

Browser fingerprinting can easily be deployed by adding a script on the authentication page,
and by preparing the servers to handle the reception, the storage, and the verification of the fin-
gerprints. The users solely rely on their regular web browser, and do not have to run any dedicated
application, nor possess a specific hardware, nor undergo a configuration step.Themain additional
load is on the supplementary consumption of memory and time resources. Moreover, the web en-
vironment differ between device types (e.g., mobile browsers have more limited functionalities
than desktop browsers) and through time (e.g., modern browsers differ from the browsers from
ten years ago), impacting the efficacy of browser fingerprinting. Finally, we evaluate the accu-
racy of the verification under fingerprints evolution, considering a simple illustrative verification
mechanism.

3.3.1 Collection time. The browser fingerprints can be solely composed of passive attributes (e.g.,
HTTP headers) that are transmitted along with the communications with the server. In this case,
the fingerprints are collected without the user perceiving any collection time, but major attributes
are put aside. The client-side properties collected through JavaScript provide more distinctive at-
tributes, at the cost of an additional collection time. We measure the collection time of the finger-
prints considering only the JavaScript attributes, and ignore theHTTP headers that are transmitted
passively.

3.3.2 Size. Browser fingerprinting consumes memory resources on the clients during the buffer-
ing of the fingerprints, on the wires during their sending, and on the servers during their storage.
Thememory consumption depends on the storage format of the fingerprints. For example, a canvas

, Vol. 1, No. 1, Article . Publication date: June 2020.

12 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

can be stored as an image encoded in a base64 string, or as a hash, which is shorter. A trade-off has
to be done between the quantity of information and the memory consumption. The less memory-
consuming choice is to store the complete fingerprint as a single hash. However, the fingerprints
evolve through time – even more when they are composed of many attributes – which results in
the use of a hash of the complete fingerprint being impractical. Due to the unspecified size of the
attributes (e.g., the UserAgent specification does not define a size limit12), we measure their size
given a fingerprint dataset.

3.3.3 Loss of efficacy. The loss of efficacy is the loss of stability, of distinctiveness, or of perfor-
mance of the fingerprints. It can occur either for a group of browsers (e.g., mobile browsers), or
resulting from changes brought to web technologies.

First, previous works showed differences in the properties of the fingerprints coming from mo-
bile and desktop devices [19, 29, 42], notably a limited distinctiveness for the mobile browsers. Fol-
lowing these findings, we compare the properties shown by the mobile and the desktop browsers.
We match keywords on the userAgent JavaScript property (see Appendix B) to differentiate the
browsers running on a desktop or a laptop (referred to as desktops), from the browsers running on
a mobile phone (referred to as mobiles).

Second, browser fingerprinting is closely dependent on the evolution of web technologies. As
new technologies are integrated into browsers, new attributes are accessible, and conversely for
removal. Similarly, functionality updates can lead to a change in the fingerprint properties. For
example, Kurtz et al. [25] detected an iOS update by the sudden instability of an attribute that pro-
vides the iOS version. Following their finding, we verify whether the evolution of web technologies
provokes major losses in the properties of the fingerprints.

3.3.4 Accuracy of a simple verification mechanism. We evaluate the accuracy of the verification
under fingerprints evolution, considering a simple illustrative verification mechanism. This mech-
anism counts the identical attributes between the presented fingerprint and the stored fingerprint,
and considers the evolution legitimate if this number is above a threshold Θ. The simplicity of this
mechanism gives us an idea of the accuracy that can be easily achieved, without having to engineer
more complex rules. More elaborate mechanisms can obviously be designed (see Appendix D).

4 EVALUATION OF BROWSER FINGERPRINTS PROPERTIES
In this section, we evaluate the browser fingerprints of our dataset according to the distinctiveness,
the stability, and the performance properties. We present here the results on the complete finger-
prints, and let Section 5 provide insights on the contribution of the attributes to each property.
We show that, by time-partitioning our dataset, our fingerprints provide a unicity rate of more
than 81.3%, which is stable through time. However, our fingerprints of mobile browsers are less
distinctive than our fingerprints of desktop browsers, with a respective unicity rate of 42% against
84%, considering the time-partitioned datasets. We also show that, on average, a fingerprint has
more than 91% of identical attributes between two observations, even when separated by nearly
6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes,
and are collected within seconds. The accuracy of the simple illustrative verification mechanism
is close to perfect, as it achieves an equal error rate of 0.61%. This results from most of the consec-
utive fingerprints coming from a browser having at least 234 identical attributes, whereas most of
the fingerprints of different browsers have fewer.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 13

0 25 50 75 100 125 150 175
Days since collection beginning

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
ti

on
 o

f f
in

ge
rp

ri
nt

s

Anonymity set size 8
Anonymity set size 2
Anonymity set size = 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
ew

 b
ro

w
se

rs

1e5

Fig. 2. Anonymity set sizes, and frequency of browser arrivals, through the time-partitioned datasets ob-
tained after each day. The new browsers are displayed in hundreds of thousands.

4.1 Distinctiveness
4.1.1 Overall distinctiveness. Figure 2 presents the size of the anonymity sets alongside the fre-
quency of browser arrival for the time-partitioned datasets. The time-partitioned datasets are de-
signed so that each browser has the last fingerprint observed at the end of the 𝜏-th day.The overall
fingerprints have a stable unicity rate of more than 81.3% for the partitioned-datasets, and more
than 94.7% of the fingerprints are shared by 8 browsers or fewer.The overall fingerprints comprise
those collected from desktop and mobile browsers, but also those of tablets, consoles, and smart
TVs. The comparisons are done using fingerprint hashes, resulting in 4 collisions, which we deem
negligible.

The anonymity sets tend to grow as more browsers are encountered, due to the higher chances
of collision. However, the fingerprints tend to stay in small anonymity sets, as can be seen by the
growth of the anonymity sets of size 2 being more important than the growth of the anonymity
sets of size 8 or higher. The unicity rate of the time-partitioned datasets (81.3%) is lower than
the unicity rate of the complete dataset (81.8%). This is due to browsers having multiple unique
fingerprints in the complete dataset, which typically occurs when a browser having a unique web
environment is fingerprinted multiple times. Considering the time-partitioned datasets removes
this over-counting effect.

New browsers are encountered continually. However, starting from the 60th day, the arrival
frequency stabilizes around 5, 000 new browsers per day. Before this stabilization, the arrival fre-
quency is variable, and hasmajor spikes that seem to correspond to events that happened in France.
These events could lead to more visits, hence explaining these spikes. For example, the spike on
the 38th day corresponds to a live political debate on TV, and the spike on the 43rd correlates with
the announcement of a cold snap.

4.1.2 Distinctiveness of desktop andmobile browsers. Figure 3 presents the unicity rate through the
time-partitioned datasets for the overall, the mobile, and the desktop browsers. The fingerprints
12https://tools.ietf.org/html/rfc7231#section-5.5.3

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://tools.ietf.org/html/rfc7231#section-5.5.3

14 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

0 25 50 75 100 125 150 175
Days since collection beginning

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
ti

on
 o

f u
ni

qu
e

fin
ge

rp
ri

nt
s

Desktops
Overall
Mobiles

Fig. 3. Unicity rate for the overall, the mobile, and the desktop browsers, through the time-partitioned
datasets obtained after each day.

of the mobile browsers are more uniform than the fingerprints of the desktop browsers, with a
unicity rate of approximately 42% against 84%, for the time-partitioned datasets. The unicity rate
of the desktop browsers slightly increases by 1.04 points from the 60th to the 183th day, from
84.99% to 86.03%. On the contrary, the unicity rate of the mobile browsers slightly decreases by
0.29 points on the same period, from 42.42% to 42.13%.

4.2 Stability
Figure 4 displays the average similarity between the pairs of consecutive fingerprints as a function
of the time difference, together with the number of compared pairs for each time difference. The
ranges Δ are expressed in days, so that day 𝑑 on the x-axis represents the fingerprints that are sep-
arated by Δ = [𝑑;𝑑 + 1[days. We ignore the comparisons of the time ranges that have less than
10 pairs, to have samples of sufficient size without putting too many comparisons aside. We also
ignore the bogus comparisons that have a time difference higher than the limit of our experiment
(182 days). These two sets of ignored comparisons account for less than 0.03% of each group. The
results are obtained by comparing a total of 3, 725, 373 pairs of consecutive fingerprints, that in-
clude 2, 912, 860 pairs for the desktop browsers, and 594, 591 pairs for the mobile browsers. Two
consecutive fingerprints are necessarily different as we remove the duplicated consecutive finger-
prints (see Section 2.4.3). Considering (𝑓1, 𝑓2, 𝑓3) the fingerprints collected for a browser, ordered by
the time of collection, the set of consecutive fingerprints is {(𝑓1, 𝑓2), (𝑓2, 𝑓3)}. Our stability results
are a lower bound, as the consecutive fingerprints are necessarily different (i.e., their similarity is
strictly lower than 1).

Our fingerprints are stable, as on average more than 91% of the attributes are expected to not
change, considering up to 174 elapsed days (nearly 6 months) between two observations. We as-
sume that the users return more frequently, and otherwise would accept to undergo the account
recovery process (see Appendix C). Moreover, the fingerprints of themobile browsers are generally
more stable than the fingerprints of the desktop browsers, as suggests their respective similarity

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 15

0 25 50 75 100 125 150 175
Days between two consecutive fingerprints

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Av
er

ag
e

fin
ge

rp
ri

nt
 s

im
ila

ri
ty

Mobiles
Overall
Desktops 101

102

103

104

105

106

107

N
um

be
r

of
 c

om
pa

re
d

pa
ir

s

Fig. 4. Average similarity between the pairs of consecutive fingerprints as a function of the time difference,
with the number of compared pairs, for the overall, the mobile, and the desktop browsers.

curve. Few attributes of our script are highly unstable. They are discussed in Section 5.1.2. Getting
rid of these attributes could reduce the distinctiveness of the fingerprints, but would improve their
stability.

4.3 Performance
4.3.1 Time consumption. Figure 5 displays the cumulative distribution of the collection time of
our fingerprints in seconds, with the outliers removed. We measure the collection time by the
difference between two timestamps, one recorded at the starting of the script, and the other just
before sending the fingerprint. Some values are extremely high, taking from several hours to days.
They can come from a web page put in background, or accessed after a long time. We limit the
results to the fingerprints that take less than 30 seconds to collect, and consider the higher values
as outliers. They account for less than 1% of each group.

Half of our fingerprints are collected in less than 2.92 seconds, and the majority (95%) in less
than 10.42 seconds. The time to collect the fingerprints is lower for the desktop browsers than for
the mobile browsers. Half of the fingerprints of the desktop browsers are collected in less than
2.64 seconds, and the majority (95%) in less than 10.45 seconds. These numbers are respectively
of 4.44 seconds and 10.16 seconds for the mobile browsers. The median collection time of our
fingerprints is less than the estimated median time taken by web pages to load completely [6],
being at 6.5 seconds for the desktop browsers, and 19.7 seconds for the mobile browsers, at the
date of May 1, 2020. The mobile devices have generally less computing power than the desktop
devices, which can explain the longer collection time.The collection time of the fingerprints of the
mobile browsers has less variance than for the desktop browsers, which can be explained by the
former having more uniform computing power than the latter. This is supported by the presence
in our dataset of desktop browsers running on old systems like Windows Vista or Windows XP.

Our script takes several seconds to collect the attributes composing the fingerprints. However,
we stress that this script is purely experimental, and was developed to collect many attributes to
get closer to what a fingerprinter can achieve in real-life. The attributes that are longer to collect
and that are less distinctive can be removed. For example, our method to detect an advertisement

, Vol. 1, No. 1, Article . Publication date: June 2020.

16 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

0 5 10 15 20 25 30
Fingerprint collection time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
ti

on
 o

f f
in

ge
rp

ri
nt

s
Overall
Mobiles
Desktops

Fig. 5. Cumulative distribution of the collection time of the fingerprints in seconds.

blocker waits a few seconds for a simulated advertisement to be removed, but only provides a
Boolean value. We discuss these cases in Section 5.1.3. Our script can also be updated to leverage
the most advanced web technologies, like the OffscreenCanvas API13 that migrates the genera-
tion of the canvases off the main thread to another thread. More generally, we can use the Service
WorkersAPI14 to collect the attributes concurrently in the background, reducing the perceived col-
lection time. These APIs are available on the modern browsers, the collection time should still be
monitored for the older browsers.

4.3.2 Memory consumption. Figure 6 displays the cumulative distribution of the size of our fin-
gerprints in bytes, with the outliers removed. Our fingerprints are encoded in UTF-8 (with only
ASCII characters), hence one character takes one byte, and the results can be expressed in both
units. The canvases are stored as sha256 hashes. The fingerprint sizes comprise the value of the
262 attributes without the metadata fields (e.g., the UID, the timestamp). The average fingerprint
size is of 𝜇 = 7, 692 bytes, and the standard deviation is of 𝜎 = 2, 294. We remove 1 fingerprint
from a desktop browser considered an outlier due to its size being greater than 𝜇 + 15 · 𝜎 .

The memory consumption takes place on three components: on the client during the buffering
of the fingerprints, on the wire during their sending, and on the server during their storage. Half
of our fingerprints take less than 7, 550 bytes, 95% less than 12 kilobytes, and all of them less than
22 kilobytes. This is negligible given the current storage and bandwidth capacities. We observe
a difference between the fingerprints of mobile and desktop browsers, with 95% of fingerprints
weighing respectively less than 8, 020 bytes and 12, 082 bytes.This is due to heavy attributes being
lighter on mobiles, like the list of plugins or of mime types that are most of the time empty. We
discuss these cases furtherly in Section 5.1.4.

4.3.3 Accuracy of the simple verification mechanism. The accuracy of the simple illustrative verifi-
cation mechanism is measured according to the following methodology. First, we split our dataset
13https://developers.google.com/web/updates/2018/08/offscreen-canvas
14https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://developers.google.com/web/updates/2018/08/offscreen-canvas
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 17

2500 5000 7500 10000 12500 15000 17500 20000 22500
Fingerprint size in bytes

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
ti

on
 o

f f
in

ge
rp

ri
nt

s
Overall
Mobiles
Desktops

Fig. 6. Cumulative distribution of the fingerprint size in bytes, for the overall, the mobile, and the desktop
browsers.

into six samples, one for each month. We assume that a user would spend at most one month
between two connections, and otherwise would accept to undergo a heavier fingerprint update
process. Two sets are afterward extracted from each sample, and are composed of pairs of com-
pared fingerprints, also called comparisons. The same-browser comparisons are composed of the
consecutive fingerprints of each browser, and the different-browsers comparisons are composed
of two randomly picked fingerprints of different browsers. After constituting the same-browser
comparisons for each month, we sample the different-browsers comparisons to have the same size
as the same-browser comparisons. The month sampling also helps the different-browsers compar-
isons to be realistic by pairing fingerprints that are separated by at most one month. Both the two
sets of comparisons contain a total of 3, 467, 289 comparisons.

Figure 7 displays the distribution of the identical attributes between the same-browser compar-
isons and the different-browsers comparisons, starting from 34 identical attributes as there are
no observed value below. Figure 8 presents a focus that starts from 227 identical attributes, below
which there are less than 0.005 of the same-browser comparisons.We can observe that the two sets
of comparisons are well separated, as 99.05% of the same-browser comparisons have at least 234
identical attributes, and 99.68% of the different-browsers comparisons have fewer. The different-
browsers comparisons have generally a fewer, and a more diverse, number of identical attributes
compared to the same-browser comparisons. The different-browsers comparisons have between
34 and 253 identical attributes, with an average of 127.41 attributes, and a standard deviation
of 44.06 attributes. The same-browser comparisons have between 72 and 252 identical attributes,
with an average of 248.64 attributes, and a standard deviation of 3.91 attributes.

Figure 9 displays the false match rate (FMR), which is the proportion of the same-browser
comparisons that are classified as different-browsers comparisons, and the false non-match rate
(FNMR), which is the inverse. The displayed results are the average for each number of identical
attributes among the six samples. As there are few same-browser comparisons that have less than
234 identical attributes, the FNMR is null until this value. However, after exceeding this threshold,

, Vol. 1, No. 1, Article . Publication date: June 2020.

18 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

50 100 150 200 250
Number of identical attributes

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
ti

on
 o

f c
om

pa
ri

so
ns

Same-browser
Different-browsers

Fig. 7. The number of identical attributes between
the same-browser comparisons and the different-
browsers comparisons.

230 235 240 245 250
Number of identical attributes

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
ti

on
 o

f c
om

pa
ri

so
ns

Same-browser
Different-browsers

Fig. 8. The number of identical attributes between
the same-browser comparisons and the different-
browsers comparisons, starting from 227 attributes.

50 100 150 200 250
Number of identical attributes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ra
te

FNMR
FMR

Fig. 9. False match rate (FMR) and false non-match rate (FNMR) given the required number of identical
attributes, averaged among the six samples.

the FNMR increases as the same-browser comparisons begin to be classified as different-browsers
comparisons. The equal error rate, which is the rate where both the FMR and the FNMR are equal,
is of 0.61% and is achieved for 232 identical attributes. Although the verification mechanism does
not have a perfect accuracy of 100%, this is acceptable. Indeed, a user getting his browser unrecog-
nized can undergo the fallback authentication process [32, 37]. Moreover, we consider the use of
browser fingerprinting as an additional authentication factor, hence the other factors can prevent
a falsely recognized browser. Both these cases are expected to rarely occur as can be seen by the
low equal error rate.

These results are tied to the distinctiveness and the stability of the fingerprints. Indeed, as more
than 94.7% of the fingerprints are shared by less than 8 browsers, two random fingerprints have
little chances to match. Moreover, more than 96.64% of the attributes are identical between the
consecutive fingerprints of a browser, on average and when separated by less than 31 days.This re-
sults in more than 244 identical attributes on average, which is consistent with the 248.64 identical
attributes on average among the same-browser comparisons.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 19

4.4 Conclusion
About the distinctiveness, and considering the time-partitioned datasets, our fingerprints provide
a unicity rate of more than 81.3%, which is stable on the long-run. Moreover, more than 94.7% of
our fingerprints are shared by at most 8 browsers. About the stability, and on average, a fingerprint
has more than 91% of its attributes that stay identical between two observations, even when sep-
arated by nearly 6 months. About the performance, the majority (95%) of our fingerprints weigh
less than 12 kilobytes, and are collected in less than 10.42 seconds. We do not remark any signif-
icant loss in the properties offered by our fingerprints through the 6 months of our experiment.
However, we fall to the same conclusion as previous studies [42] about the fingerprints of mobile
browsers lacking distinctiveness. Their unicity rate in the time-partitioned datasets falls down to
approximately 42%. We remark that, in our dataset, the consecutive fingerprints of a browser have
at least 234 identical attributes, whereas the majority of the fingerprints of different browsers have
fewer. This results in our simple verification mechanism achieving an equal error rate of 0.61%.

5 ATTRIBUTE-WISE ANALYSIS
In this section, we discuss the contribution of the attributes to the properties of the fingerprints,
show that most of the attributes are correlated with at least another one (i.e., they provide less
than 1 bit of entropy when the other one is known), and focus on the properties of the dynamic
attributes (e.g., their collection time). We refer the reader to Appendix A for more information
about the implementation of each attribute.

5.1 Contribution of particular attributes
In this section, we discuss the contribution of the attributes to the fingerprint properties of distinc-
tiveness, stability, and performance. We express the stability of the attributes as the proportion of
the consecutive fingerprints where the value of the attribute stays identical, that we call the same-
ness rate. Appendix E provides the exhaustive list of the attributes, together with their properties.

5.1.1 Attributes distinctiveness. We measure the distinctiveness of the attributes as the normal-
ized entropy for comparability with previous studies. The normalized entropy was proposed by
Laperdrix et al. [29] to cope with the problem of comparing the entropy of attributes between fin-
gerprint datasets of dissimilar sizes. The normalized entropy 𝐻𝑛 (𝑋) is defined as the ratio of the
entropy𝐻 (𝑋) of the attribute to themaximum entropy𝐻𝑀 = log2 (𝑁), with𝑁 being the number of
fingerprints. Hence, the entropy can be calculated by𝐻 (𝑋) = 𝐻𝑛 (𝑋) ∗ 𝐻𝑀 , with𝐻𝑀 = 21.983 bits
in our case. For reference, an entropy of 1 bit is equivalent to a normalized entropy of 0.045.

Figure 10 displays the cumulative distribution of the normalized entropy, and of the entropy in
bits, among the attributes. We have 10% of the attributes that provide a low normalized entropy
of less than 0.003, and another 10% that provide a normalized entropy between 0.25 and 0.42.
The majority of the attributes (80%) provide a normalized entropy comprised between 0.003 and
0.25. The most distinctive attributes of previous studies [13, 29] also belong to the most distinctive
attributes of our study. The three canvases are in the 10 most distinctive attributes. Our designed
canvas in PNG has a normalized entropy of 0.420, the canvas similar to the canvas presented in the
Morellian study [26] has a normalized entropy of 0.385, and the canvas inspired by the AmIUnique
study [29] has a normalized entropy of 0.353. The userAgent collected from the JavaScript property
is more distinctive than its HTTP header counterpart, as they respectively have a normalized
entropy of 0.394 and 0.350. Finally, the list attributes are also highly distinctive. The list of plugins
has a normalized entropy of 0.394, the list of supported mime types has a normalized entropy of
0.311, and the list of fonts has a normalized entropy of 0.305.

, Vol. 1, No. 1, Article . Publication date: June 2020.

20 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

0 2 4 6 8
Entropy in bits

0.0 0.1 0.2 0.3 0.4
Normalized entropy

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
pr

op
or

ti
on

 o
f t

he
 a

tt
ri

bu
te

s

Fig. 10. Cumulative distribution of the normalized entropy, and of the entropy in bits, among the attributes.

Table 2 compares the normalized entropy between the studies Panopticlick, AmIUnique, Hiding
in the Crowd, and this study, ranked by the most distinctive attributes of this study. The normal-
ized entropy of our attributes are lower than what is reported in previous studies [13, 29]. This
loss of normalized entropy can be explained by the following factors. First, the maximum entropy
𝐻𝑀 increases with the number of fingerprints. However, an attribute that has 𝑛 possibilities (e.g., a
Boolean attribute has only two possible values) will have a normalized entropy of at most log2 (𝑛).
As the number 𝑁 of fingerprints increases, the normalized entropy decreases due to the entropy
of the attribute being capped at log2 (𝑛) whereas the ratio is to log2 (𝑁). Second, contextual at-
tributes are biased towards the French-population, as described in Section 2.2, hence they provide
a lower normalized entropy. For example, the time zone and the Accept-Language HTTP header
(named Content language in Table 2) provide a respective normalized entropy of 0.008 and 0.124,
against 0.198 and 0.351 for the AmIUnique study [29]. The third reason is the evolution of web
technologies since the Panopticlick and the AmIUnique study. For example, the list of plugins is
less distinctive due to the replacement of plugins15 by HTML5 functionalities or extensions. An-
other example is the list of fonts that could be collected through plugins [13], but now it has to be
inferred from the size of text elements [15]. These three reasons partly explain the lower normal-
ized entropy that our attributes provide compared to previous studies.We emphasize that although
the 17 attributes in common have a lower normalized entropy, we supplement them with more
than a hundred attributes, resulting in the fingerprints showing a unicity rate above 80%.

Interestingly, four attributes unreported by the previous large-scale studies [13, 19, 29] are found
to be highly distinctive. The innerHeight and outerHeight properties of the windows JavaScript
object, mentioned by [40, 49] but without any distinctiveness measure, have a respective normal-
ized entropy of 0.388 and 0.327. The size of bounding boxes was used by [15] as a method of font
fingerprinting. From the entropy reported by the authors, we obtain a normalized entropy of 0.761.
15https://theblog.adobe.com/adobe-flash-update

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://theblog.adobe.com/adobe-flash-update

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 21

Table 2. Comparison of the normalized entropy between the studies Panopticlick (PTC), AmIUnique (AIU),
Hiding in the Crowd (HitC), and this study, ranked by the most distinctive attributes of this study.

Attribute PTC [13] AIU [29] HitC [19] This study

Canvas (PNG) - 0.491 0.407 0.420
Canvas (JPG) - - 0.391 0.399
List of plugins 0.817 0.656 0.452 0.394
User agent 0.531 0.580 0.341 0.350
List of fonts 0.738 0.497 0.329 0.305
Content language - 0.351 0.129 0.124
List of HTTP headers - 0.249 0.085 0.095
Renderer WebGL - 0.202 0.264 0.089
Do Not Track - 0.056 0.091 0.085
Vendor WebGL - 0.127 0.109 0.080
Platform - 0.137 0.057 0.068
Accept - 0.082 0.035 0.028
Content encoding - 0.091 0.018 0.019
Timezone 0.161 0.198 0.008 0.008
AdBlock - 0.059 0.002 0.002
Use of local storage - 0.024 0.002 0.001
Use of session storage - 0.024 0.002 0.000
Cookies enabled 0.019 0.015 0.000 0.000

Maximum entropy 𝐻𝑀 18.843 16.859 20.980 21.983
Fingerprints 470,161 118,934 2,067,942 4,145,408

This attribute has a normalized entropy of 0.369 in our dataset. To the best of our knowledge, no
previous study use the width and the position of a newly created div element as a fingerprinting at-
tribute. However, it is highly distinctive as it achieves a normalized entropy of 0.324 in our dataset.
All the mentioned attributes provide a sameness rate higher than 90%, except for the size of bound-
ing boxes that goes down to 47%. However, when looking at its extracted parts, we observe that
they have a sameness rate higher than 90%, at the exception to the height of the first bounding box
that has a sameness rate of 49.04%.This illustrates the necessity of breaking down some attributes
to parts, as removing this part from the original attribute would drastically increase its sameness
rate.

5.1.2 Attributes sameness rate. Figure 11 displays the cumulative distribution of the sameness rate
among the attributes. Only 6 attributes (2.29% of the attributes) provide a lower sameness rate than
85%, 5.7% of the attributes provide a sameness rate comprised in [85; 95]%, 10.7% provide a same-
ness rate comprised in [95, 99]%, and more than 80% of the attributes have a sameness rate higher
than 99%. The attributes that have a sameness rate lower than 85% are the size of bounding boxes
that was previously explained, three extracted attributes derived from the bounding boxes, and
two other attributes that we describe here. The Cache-Control HTTP header allows the browser
to specify the cache policy used during requests, and is the second most unstable attribute with
a sameness rate of 70.63%. This is due to the fact that this header is not always sent, and some
values contain the max-age parameter that can vary between requests. The third most unstable
attribute is the WebRTC fingerprinting method that has a sameness rate of 76.46%. This is due to
three factors. First, the experimental state of this attribute leads it to be unsupported, undefined,

, Vol. 1, No. 1, Article . Publication date: June 2020.

22 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

0.5 0.6 0.7 0.8 0.9 1.0
Sameness rate among the consecutive fingerprints

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

Fig. 11. Cumulative distribution of the sameness rate of the attributes among the consecutive fingerprints.

or erroneous for 75.23% of the observed fingerprints. Then, it contains local IP addresses16 which
can change between two observations. Finally, it is composed by numerous information about an
instance of a current WebRTC connection, hence the change of any information changes the value
of the whole attribute.

5.1.3 Attributes collection time. Most of the attributes are HTTP headers or JavaScript properties
that are collected in a negligible amount of time. Only 33 attributes have a median collection
time (MCT) higher than 5ms. Their median collection time is presented in Figure 12, ranked from
the slowest to the fastest to collect for the overall browsers. These attributes can be separated into
three classes: extension detection, browser component, andmedia related.These attributes wait for
the web page to render, or execute heavy processes (e.g., graphical computation), which explains
their high collection time. Note that most of these attributes are collected asynchronously, hence
the total collection time of the fingerprint is not their sum.

The first class of attributes that take time to be collected are the methods of extension detection.
The 9 slowest attributes detect an extension by the changes it brings to the content of the web
page [44]. They have a MCT of approximately 2.2 seconds, because of the waiting time before
checking the changes on the web page. There is a clear difference between the desktop and the
mobile browsers, with a respective MCT of approximately 2 seconds and 3.4 seconds. The 22nd
to the 29th slowest attributes detect an extension based on web-accessible resources [41], which
consist into checking if an image embarked in an extension is accessible or not. They have a MCT
of around 60ms, which is lower than the method that relies on detecting changes brought to the
web page.

The second class of attributes that take time to be collected infer the availability of browser
components. The list of speech synthesis voices is ranked 14th, and has aMCT of 568ms.This is due
to the collection method that, for some browsers, requires to be done during an onvoiceschanged

16Our script hashes these local IP addresses in MD5 directly on the client, see [45] for more information about how the
WebRTC API gives access to this information.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 23

0 5 10 15 20 25 30 35
The slowest to the fastest attribute to collect for the overall browsers.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M

ed
ia

n
co

lle
ct

io
n

ti
m

e
in

 s
ec

on
ds

Overall
Mobiles
Desktops

Fig. 12. Median collection time of the 33 attributes that have a median collection time higher than 5ms,
ranked from the slowest to the fastest to collect for the overall browsers, in seconds.

event, which takes time to be triggered. The list of fonts, and the inference of the default font, are
ranked 15th and 19th with a respective MCT of 471ms and 103ms. This is due to the detection
method that measures the size of newly created text boxes [15]. The size of bounding boxes, the
browser component colors, and the width and position of a newly created div element are ranked
18th, 20th, and 21st, with a MCT ranging from 60ms to 200ms. This is due to their manipulation
of the web page that takes time. The WebRTC fingerprinting method is ranked 13th with a MCT
of 783ms. This is due to the creation of a dummy connection that is needed to gather information
about the WebRTC configuration.

The third class of attributes that take time to be collected generate a media file (e.g., a sound,
an image), and are discussed in more detail in Section 5.3. The methods of advanced audio finger-
printing are ranked 10th, 11th, and 12th. Our designed canvases are ranked 16th and 17th, the
canvases inspired by the AmIUnique study [29] are ranked 31st and 33rd, and the canvas similar
to the canvas of the Morellian study [26] is ranked 32nd.

5.1.4 Attributes size. Most of our attributes have a negligiblemedian size (MS): 137 attributes have
aMS of less than 5 bytes, 105 attributes have aMS between 5 bytes and 100 bytes, and 20 attributes
have aMS ofmore than 100 bytes. Figure 13 displays themedian size of the 20 heaviest attributes in
bytes, ranked from the heaviest to the lightest for the overall browsers. In this section, we discuss
these 20 heaviest attributes.

The heaviest attributes are composed of list attributes and verbose textual attributes, the three
heaviest attributes being list attributes. The list of the properties of the navigator object is ranked
1st with a MS of 502 bytes, the list of the colors of layout components is ranked 2nd with a MS
of 492 bytes, and the list of WebGL extensions is ranked 3rd with a MS of 401 bytes. Examples of
verbose textual attributes are the appVersion that is ranked 18th with a MS of 107 bytes, and the
userAgent JavaScript property that is ranked 14th with a MS of 115 bytes, which is more verbose
than its HTTP header counterpart that is ranked 19th with a MS of 108 bytes.

On mobile browsers, some list attributes are most of the time empty due to their lack of cus-
tomization (e.g., plugins are mostly unsupported). They are the list of available synthesis voices

, Vol. 1, No. 1, Article . Publication date: June 2020.

24 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

0 2 4 6 8 10 12 14 16 18 20
The heaviest to the lightest attribute for the overall browsers.

0

100

200

300

400

500
M

ed
ia

n
at

tr
ib

ut
e

si
ze

 in
 b

yt
es

Overall
Mobiles
Desktops

Fig. 13. Median size of the 20 heaviest attributes in bytes, ranked from the heaviest to the lightest for the
overall browsers.

that is ranked 4th, the list of the constraints supported by the mediaDevices object that is ranked
8th, the list of plugins that is ranked 12th, and the list of supported mime types that is ranked
17th. On the contrary, the verbose attributes are slightly heavier on the mobile browsers, which
is explained by the presence of additional information like the device model.

5.2 Correlation between attributes
We can expect to have correlations occurring between the attributes when considering more than
250 attributes. We provide here an overview of the correlation between the attributes, that include
the nine dynamic attributes, and refer the reader to Appendix E for insight into the correlation of
each attribute.

For comparability with the results of the distinctiveness of the attributes, we express the correla-
tion by the conditional entropy of an attribute 𝑎𝑖 when another attribute 𝑎 𝑗 is known, normalized
to the maximum entropy 𝐻𝑀 . We call this measure the normalized conditional entropy (NCE). It is
comprised between 0.0 if knowing 𝑎𝑖 allows to completely infer 𝑎 𝑗 , and the normalized entropy
of 𝑎 𝑗 if knowing 𝑎𝑖 provides no information on the value of 𝑎 𝑗 (i.e., they are independent). We
denote𝑉𝑖 the domain of the attribute 𝑎𝑖 , and 𝑒𝑖𝑣 the event that the attribute 𝑎𝑖 takes the value 𝑣 . We
consider the relative frequency 𝑝 of the attribute values among the considered fingerprints. The
measure of the conditional entropy H(𝑎 𝑗 |𝑎𝑖) of 𝑎 𝑗 given 𝑎𝑖 is expressed as

H(𝑎 𝑗 |𝑎𝑖) = −
∑

𝑣∈𝑉𝑖 ,𝑤∈𝑉𝑗

𝑝 (𝑒𝑖𝑣, 𝑒
𝑗
𝑤) log

𝑝 (𝑒𝑖𝑣, 𝑒
𝑗
𝑤)

𝑝 (𝑒𝑖𝑣)
(9)

Finally, we normalize the conditional entropy H(𝑎 𝑗 |𝑎𝑖) by the maximum entropy 𝐻𝑀 .
Figure 14 displays the minimum, the average, and the maximum NCE of an attribute when the

value of another one of the attributes is known, ordered by the average NCE. We ignore 9 source
attributes from which the extracted attributes are derived, and the comparison of an attribute with
itself. These cases are irrelevant, as the extracted attributes are completely correlated with their

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 25

0

2

4

6

8

Co
nd

it
io

na
l e

nt
ro

py
 in

 b
it

s

1 25 50 75 100 125 150 175 200 225 250
Attributes ordered by the average conditional entropy

0.0

0.1

0.2

0.3

0.4
N

or
m

al
iz

ed
 c

on
di

ti
on

al
 e

nt
ro

py
Maximum conditional entropy
Average conditional entropy
Minimum conditional entropy

Fig. 14. Minimum, average, and maximum normalized conditional entropy of an attribute when the value
of another attribute is known, ordered by the average normalized conditional entropy.

source attribute, and an attribute is completely correlated with itself. We obtain a total of 253 at-
tributes. We observe that the maximum NCE of an attribute is always equal to the normalized
entropy of this attribute, due to the cookieEnabled property that is always true. Hence, it pro-
vides a null entropy, and knowing its value does not provide any information on the value of the
other attributes. We recall that the maximum entropy is 𝐻𝑀 = 21.983 bits, and that a conditional
entropy of 1 bit is equivalent to a NCE of 0.045.

We can see three parts in this figure. First, 19 attributes have a low normalized entropy of less
than 10−3, and the NCE when knowing another attribute is at most as much. Few different values
have been observed for these attributes. Then, 194 attributes have an average NCE between 10−3

and 10−1. The minimum NCE of these attributes is near 0.0, hence there exists another attribute
that can be used to efficiently infer their value. Finally, 40 attributes have an average NCE higher
than 10−1, and generally have a strictly positive minimumNCE.These attributes help to efficiently
distinguish browsers, and are less correlated to other attributes.

The minimum normalized conditional entropy (MNCE) is an interesting indicator of the ef-
ficiency to infer the value of an attribute if the value of another attribute is known. We have
49 attributes that have a null MNCE, which can completely be inferred when another attribute is
known. Moreover, 192 attributes have a MNCE comprised in the range]0; 0.045], hence know-
ing the value of another attribute helps to infer their value, but not completely. Finally, 12 at-
tributes have a MNCE higher than 0.045, which is equivalent to having a minimum conditional
entropy higher than 1 bit. They are displayed in Table 3. They consist of highly distinctive at-
tributes (see Section 5.1.1) that concern the size of the screen (e.g., W.screenX) or the window
(e.g., W.innerHeight), browser components (e.g., fonts, plugins), and verbose information about
the browser (e.g., N.userAgent) or about external components (e.g., WebRTC fingerprinting).

5.3 Focus on dynamic attributes
Previous studies highlight the possibility to fingerprint browsers by rendering media files inside
the browser, given instructions that are provided by the fingerprinter (e.g., WebGL canvas [33],

, Vol. 1, No. 1, Article . Publication date: June 2020.

26 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 3. The attributes that have a minimum normalized conditional entropy (MNCE) higher than 0.045, or
a minimum conditional entropy higher than 1 bit, together with their MNCE and their minimum conditional
entropy in bits. W refers to the window JavaScript object, N refers to the navigator object, WG refers to an
initialized WebGL context, and […] is a truncated part.

Attribute MNCE Minimum conditional entropy

W.innerHeight 0.181 3.98
WebRTC fingerprinting 0.144 3.17
W.outerHeight 0.117 2.58
Presence of fonts 0.110 2.42
N.plugins 0.100 2.21
W.outerWidth 0.074 1.63
WG.[…].UNMASKED_RENDERER_WEBGL 0.073 1.61
Height of first bounding box 0.070 1.53
S.availHeight 0.058 1.27
W.screenY 0.049 1.08
W.screenX 0.047 1.04
N.userAgent 0.046 1.00

Fig. 15. Our designed HTML5 canvas in PNG format.

Fig. 16. Our designedWebGL canvas in PNG format.

HTML5 canvas [10], audio fingerprinting [36]). Later on, these attributes were integrated within
challenge-response mechanisms [26, 38] that mitigate replay attacks. We call these attributes the
dynamic attributes, and include nine of them in our script: five HTML5 canvases, three audio fin-
gerprinting methods, and a WebGL canvas. To the best of our knowledge, no study evaluate the
properties of several dynamic attributes on a browser population, together with the evaluation
of various set of instructions. In this section, we seek to fill this gap, and focus on the properties
offered by the nine dynamic attributes of our fingerprinting script.

5.3.1 HTML5 canvas. The HTML5 canvas consists into asking the browser to draw an image by
using the canvas API, within the two-dimensional context called 2d. This method is already stud-
ied in several works, whether it is about its efficacy [10, 19, 29], its use on the web [14, 30], or the
distinctiveness provided by various sets of instructions [26]. However, to the best of our knowl-
edge, no study evaluates the different properties (e.g., distinctiveness, stability, collection time)
offered by various sets of complex instructions (i.e., mixes of texts, emojis, mathematical curves,
drawn using different colors). We seek to fill this gap, and evaluates the properties of five HTML5
canvases, generated following three sets of instructions and in two image formats (PNG and JPEG).

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 27

We name the canvases given the set of instructions used and their format. We call AmIUnique can-
vas the canvas generated by the set of instructions inspired by the AmIUnique17 study [29], and
extracted in PNG format. We call Morellian canvas the canvas generated by the set of instructions
that is similar to the Morellian study [26], which is extracted in PNG and JPEG formats. We call
custom canvas the canvas generated by a set of instructions that we designed, which is extracted
in PNG and JPEG formats. We collect the canvases by using the toDataURL function. The quality
parameter of this function goes from 0.0 to 1.0, and allow us to control the level of compression
of the JPEG versions. As we seek to compare the PNG canvases that are compressed without loss,
with their JPEG counterparts by using a high level of compression, we set the quality to 0.1 for
the JPEG versions. An example of the custom canvas in PNG format is displayed in Figure 15.
Examples of the AmIUnique canvas, and of the Morellian canvas, are provided in Appendix A.8.

We observe that canvases are less distinctive in JPEG format than in PNG format, but are more
stable. For example, the custom canvas has a normalized entropy of 0.420 when exported in PNG,
against 0.399 for the JPEG version. However, the PNG version has a sameness rate of 92.16%,
against 93.59% for the JPEG version. These differences are due to distinct images in PNG format
ending up the same after the lossy compression of the JPEG format. Acar et al. [1] assumes that
a canvas generated in a lossy compression format as JPEG is not an indicator of a fingerprinting
attempt. Although the JPEG version provides a lower distinctiveness than the PNG version, we
show that it is still highly distinctive when generated from a complex set of instructions. Indeed, it
is the second most distinctive attribute among ours (see Section 5.1.1). The time overhead induced
by the additional extraction in JPEG format is negligible. For example, the custom canvas has a
median collection time (MCT) increased by 3ms for the JPEG version, compared to the PNG version
that has a MCT of 266ms. We do not account the size differences as both formats are hashed, and
the resulting hashes weigh 64 bytes. The PNG and the JPEG versions are also highly correlated,
as knowing the value in the PNG format of the custom canvas leaves a normalized conditional
entropy (NCE) of 5.28 × 10−4 on the value of the JPEG format, whereas the inverse provides a
NCE of 0.021.

The properties of the three PNG canvases differ, with the custom canvas being the most distinc-
tive. First, the Morellian canvas is an enhanced version of the AmIUnique canvas, with additional
curves. This enhancement provides an increase of the distinctiveness, with a normalized entropy
of 0.385 for the Morellian canvas against 0.353 for the AmIUnique canvas, but also a decrease
of the sameness rate, with a respective sameness rate of 94.71% against 98.64%. Then, the custom
canvas is more complex than theMorellian canvas, as it includes several emojis, two strings includ-
ing Swedish letters, many overlapping ellipses, a color gradient background, and a rotation of all
these elements if the functionality is available. These improvements provide a higher normalized
entropy of 0.420, but also a lower sameness rate of 92.16%. The main drawback of adding more
complexity to the custom canvas is the temporal cost, as it has a MCT of 266ms, against 37ms for
the Morellian canvas, and 32ms for the AmIUnique canvas. However, it represents less than 10%
of the total median collection time of the fingerprints, which is 2.92 seconds, and less than 5% of
the median loading time of a web page on a desktop browser [6], which is 6.5 seconds. Finally,
knowing the value of the custom canvas leaves less variability on the value of the two other can-
vases than the opposite. When knowing the value of the Morellian canvas or of the AmIUnique
canvas, the custom canvas has a respective NCE of 0.079 and 0.103. However, knowing the value
of the custom canvas, the Morellian canvas has a NCE of 0.044, and the AmIUnique canvas has
a NCE of 0.037. To conclude, adding more instructions for the canvas drawing usually provides

17Contrarily to the AmIUnique study [29], we only have one sentence and one smiling face emoji instead of two, we do
not draw a colored rectangle, and the sentence is drawn using a color gradient.

, Vol. 1, No. 1, Article . Publication date: June 2020.

28 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

more distinctiveness, as each instruction can induce a difference between browsers, at the cost of
additional computation time. Moreover, each additional instruction can constitute an instability
factor, that negatively impacts the sameness rate.

5.3.2 WebGL canvas. TheWebGL canvas is an image that is also drawn using the HTML5 API, but
within the webgl or webgl2 contexts. These contexts use the WebGL library18 that leverages hard-
ware accelerations to render andmanipulate two-dimensional graphics, but also three-dimensional
scenes. Canvas fingerprinting was first introduced by Mowery et al. [33] by using the webgl con-
text, but afterwards most studies focused on the 2d context [2, 7, 10, 48]. This can result from the
unreliability of the method encountered by Laperdrix et al. [29], for which Cao et al. [11] proposed
a remedy by setting specific parameters.

Our WebGL canvas consists into sequential triangles with a color gradient, and is simpler than
our designed HTML5 canvas. It provides a normalized entropy of 0.263 against 0.420 for the cus-
tomHTML5 canvas, is more stable that the other canvases with a sameness rate of 98.97%, and has
a median collection time of 29ms against 266ms for the custom HTML5 canvas. Figure 16 displays
an example of our WebGL canvas.

5.3.3 Web Audio. Web Audio fingerprinting was discovered by Englehardt et al. [14] when assess-
ing the use of web tracking methods on the web, and more recently studied thoroughly byQueiroz
et al. [36]. It consists into processing audio data into the browser, and getting the rendered result.
Similarly to canvases, this processing relies on software and hardware components, and variations
occur between different component stacks. It works by creating an Audio Context, which in our
case is the OfflineAudioContext19, into which we manipulate Audio Nodes. The Audio Nodes
are of three types. Source nodes generate an audio signal (e.g., from a microphone or an audio
stream), destination nodes send the signal to be rendered (e.g., by speakers), and manipulation
nodes manipulate the signal (e.g., increasing the volume). These nodes are linked together to form
a network that goes from source nodes to destination nodes, and passes through manipulation
nodes. We refer the reader to [36] for a broader description of the main audio nodes.

We have three audio fingerprinting attributes. The audio fp simple (AFS) attribute relies on a
simple process. The attributes audio fp advanced (AFA) and audio fp advanced frequency data (AFA-
FD) rely on a more advanced process. Their concrete implementation is described in Appendix A.
Themost distinctive audio attribute is the AFA-FD that has a normalized entropy of 0.161, followed
by the AFS (0.153), and the AFA (0.147).They all have a sameness rate of approximately 95%.Their
values are the string representations of floating-point numbers, hence they have a median size of
17 bytes. The simple process has a median collection time (MCT) of 1.4 seconds, and the advanced
process has a MCT of 1.7 seconds. The AFA-FD is collected from the advanced version, and has a
negligible 4ms additional MCT compared to the AFA.

6 RELATEDWORKS
In this section, we present related works about the use of browser fingerprinting for authen-
tication. In addition, Section 2.5 compares our dataset with the previously studied large-scale
datasets [13, 19, 29, 35], and Section 5.1.1 compares the distinctiveness of our attributes with their
distinctiveness reported in previous studies [13, 19, 29].

We stress that most studies about browser fingerprinting focus on their use for identification.
The use of browser fingerprints for identification and for authentication differ in the objective

18https://get.webgl.org
19The advantage of using OfflineAudioContext is the manipulation of audio signal without playing any sound on a real
audio output.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://get.webgl.org

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 29

when given a presented fingerprint 𝑓 . In identification, we seek to find the identity (e.g., an ac-
count, an advertisement profile) to which 𝑓 belongs, among a pool of 𝑁 candidate identities. If
𝑓 is unrecognized, it is associated to a new identity that is then added to the candidate identities.
Hence, in identification we operate a 1-𝑁 comparison. On the contrary, in authentication the iden-
tity is already given (e.g., the claimed account), and we seek to verify that 𝑓 legitimately belongs
to this identity. Hence, in authentication we operate a 1-1 comparison20. The studies about the use
of browser fingerprints for identification usually evaluates the threat posed to privacy by browser
accessible information [13, 15, 19, 29, 33, 36, 44], propose counter-measures to avoid being tracked
by this technique [7, 27], or measure their usage in the wild [1, 14].

The first works about the use of browser fingerprinting for authentication focused on its use for
continuous authentication [34, 43, 47]. The objective is to verify that the authenticated session is
not hijacked. These studies focus on the integration of browser fingerprinting into an authentica-
tion mechanism, and provide few insights about the properties of the fingerprints (e.g., only [43]
analyze fingerprints, and focus on their classification efficacy). On the contrary, we identify several
properties used to evaluate authentication factors, against which we evaluate real-life browser fin-
gerprints, and explain the results by highlighting the contribution of single attributes. Moreover,
these studies only consider a small fraction of the hundreds of available attributes, that do not
include the dynamic attributes that can be used in a challenge-response mechanism to thwart re-
play attacks. We include more than 200 attributes – including 9 dynamic attributes – for which
we provide the implementation and the properties (e.g., number of distinct values, normalized
entropy).

Alaca et al. [4] provided a classification of the fingerprinting attributes, given properties that
include the stability, the distinctiveness, and the resource usage. They qualitatively estimate the
stability, the distinctiveness, and the resource usage of the attributes given their nature. For some
attributes, they provide the entropy measured in previous studies, and acknowledge that further
study is needed on this subject. We emphasize that comparing the entropy of the attributes be-
tween datasets of different sizes leads to comparability problems as explained by [29] (e.g., the at-
tribute of a dataset of 𝑁 fingerprints provides at most an entropy of log2 (𝑁) bits). We provide the
qualitative measure of these properties on our attributes from the analysis of real-life fingerprints,
and also evaluate the accuracy of a simple verification mechanism. About the attributes consid-
ered by [4], they include attributes that require interactions from the user, like the geolocation,
or that are related to the network protocol, like the TCP/IP stack fingerprinting that analyzes the
response to specially crafted messages. Moreover, their classification leads to different attributes
being grouped under a single designation, like the ”major software and hardware details” that
englobes the attribute family of the JavaScript properties that we describe in Appendix A. The at-
tributes of this family can show diverse properties, like the UserAgent that provides a normalized
entropy of 0.394 and a sameness rate of 0.98%, whereas the screenX property of the window object
provides a normalized entropy of 0.125 and a sameness rate of 0.93%. We show that more than
200 attributes are easily accessible (i.e., they require few lines of JavaScript), and do not require
any interaction from the user, which would reduce the usability (e.g., the user being asked permis-
sions several times). Moreover, we provide the exhaustive list of the attributes, with their concrete
implementation and their properties. We also evaluate the properties of distinctiveness, stability,
and resource usage on the complete fingerprints that combine as many attributes.

20If users register 𝑛 browsers to their account, as described in Appendix C, 𝑓 is compared to the fingerprint of these 𝑛
browsers that are already identified. Users are expected to register less than ten devices [39], hence 𝑛 is expected to be
smaller than𝑁 (e.g., a website having a thousand accounts registered). It would also be possible to find the right fingerprint
among the 𝑛 possibilities by leveraging the UserAgent to recognize which browser the user is using.

, Vol. 1, No. 1, Article . Publication date: June 2020.

30 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Markert et al. [32] recently presented a work in progress about the long-term analysis of fallback
authentication methods. They plan to measure the recovery rate of the evaluated methods, after
an elapsed time of 6, 12, and 18 months. These methods include the browser fingerprinting, for
which they acknowledge that “not much about browser fingerprinting-based security systems is
known”.

Rochet et al. [38] and Laperdrix et al. [26] proposed challenge-response mechanisms that rely on
dynamic attributes, especially the HTML5 canvas. The instructions provided to the canvas API are
changed on each authentication, making the generated image vary on each fingerprinting. Trivial
replay attacks then fails as the awaited canvas image changes each time. In this study, we propose
the evaluation of nine dynamic attributes that include five HTML5 canvases, one WebGL canvas,
and three audio fingerprinting methods.

7 CONCLUSION
In this study, we conduct the first large-scale empirical study of the properties of browser finger-
prints when used for web authentication. We make the link between the digital fingerprints that
distinguish Humans, and the browser fingerprints that distinguish browsers, to evaluate the latter
according to properties inspired by biometric authentication factors. We formalize and evaluate
the properties for the browser fingerprints to be usable and practical in an authentication context.
They include the distinctiveness of the fingerprints, their stability, their collection time, their size,
the loss of efficacy among browser types, and the accuracy of a simple illustrative verification
mechanism. We evaluate these properties on a real-life large-scale fingerprint dataset collected
over a period of 6 months, that contains 4, 145, 408 fingerprints composed of 216 attributes. The
attributes include nine dynamic attributes, which are used in state-of-the-art authentication mech-
anisms to mitigate replay attacks. We thoroughly describe the preprocessing steps to prepare the
dataset, and the browser population that, contrary to most of previous studies, is not biased to-
wards technically-savvy users. About the results, we show that our browser fingerprints provide
a unicity rate above 81.3%, considering our time-partitioned datasets. A rate that is stable over
the 6 months. Moreover, more than 94.7% of the fingerprints are shared by at most 8 browsers.
However, we observe a loss of distinctiveness from mobile browsers that show a lower unicity
rate of 42%. About the stability, and on average, more than 91% of the attributes are identical be-
tween two observations of the fingerprint of a browser, even when they are separated by nearly
6 months. About the memory and the time consumption of our fingerprints, we show that they
weigh a dozen of kilobytes, and take a few seconds to collect. Our simple verification mechanism
achieves an equal error rate of 0.61%, thanks to most of the consecutive fingerprints of a browser
having at least 234 identical attributes, whereas most of the fingerprints of different browsers have
fewer. To better comprehend the results on the complete fingerprints, we evaluate the contribution
of the attributes to each fingerprint property. We show that, although the attributes show a lower
distinctiveness compared to previous studies, 10% of the attributes provide a normalized entropy
higher than 0.25. Moreover, four attributes unconsidered by the previous large-scale studies are
part of the most distinctive of our attributes. They concern the size and position of elements of
the browser interface. About the stability, 85% of the attributes stay identical between 99% of the
pairs of consecutive fingerprints coming from the same browser. Few attributes consume a high
amount of resources, as only 33 attributes take more than 5ms to collect, and only 20 attributes
weigh more than 100 bytes. When looking at the correlation between the attributes, we find that
49 attributes can completely be inferred when knowing the value of another attribute. We remark
that the dynamic attributes are part of the most time-consuming attributes, but also the most dis-
tinctive attributes. We also show the importance of the set of instructions, as it influences both the
distinctiveness and the stability of the generated values (e.g., the canvas image). We conclude that

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 31

the browser fingerprints, obtained from the combination of the studied browser population and
the large surface of fingerprinting attributes, carry the promise to strengthen web authentication
mechanisms.

ACKNOWLEDGMENTS
We would like to thank Benoît Baudry and David Gross-Amblard for their valuable comments.

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and Claudia Diaz. 2014. The

Web Never Forgets: Persistent Tracking Mechanisms in the Wild. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’14). ACM, New York, NY, USA, 674–689. https://doi.org/10.1145/
2660267.2660347

[2] Nasser Mohammed Al-Fannah andWanpeng Li. 2017. Not All Browsers Are Created Equal: Comparing Web Browser
Fingerprintability. (March 2017). arXiv:1703.05066 http://arxiv.org/abs/1703.05066

[3] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J Mitchell. 2018. Beyond cookie monster amnesia: Real world
persistent online tracking. In Proceedings of ISC 2018. Springer-Verlag.

[4] Furkan Alaca and P. C. van Oorschot. 2016. Device Fingerprinting for AugmentingWeb Authentication: Classification
and Analysis of Methods. In Proceedings of the 32Nd Annual Conference on Computer Security Applications (ACSAC
’16). ACM, New York, NY, USA, 289–301. https://doi.org/10.1145/2991079.2991091

[5] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. [n.d.]. “Guess Who?” Large-Scale Data-Centric
Study of the Adequacy of Browser Fingerprints for Web Authentication. In Innovative Mobile and Internet Services
in Ubiquitous Computing (Cham, 2021) (Advances in Intelligent Systems and Computing), Leonard Barolli, Aneta
Poniszewska-Maranda, andHyunhee Park (Eds.). Springer International Publishing, 161–172. https://doi.org/10.1007/
978-3-030-50399-4_16

[6] The HTTP Archive. 2020. Median Loading Time of Web Pages. https://httparchive.org/reports/loading-speed#ol
accessed 2020-06-16.

[7] Peter Baumann, Stefan Katzenbeisser,Martin Stopczynski, and Erik Tews. 2016. Disguised ChromiumBrowser: Robust
Browser, Flash and Canvas Fingerprinting Protection. In Proceedings of the 2016 ACM on Workshop on Privacy in the
Electronic Society (New York, NY, USA, 2016) (WPES ’16). ACM, 37–46. https://doi.org/10.1145/2994620.2994621

[8] Joseph Bonneau. 2012. The science of guessing: analyzing an anonymized corpus of 70 million passwords. In Security
and Privacy (SP), 2012 IEEE Symposium on. IEEE, 538–552.

[9] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. 2015. Passwords and the Evolution of
Imperfect Authentication. Commun. ACM 58, 7 (June 2015), 78–87. https://doi.org/10.1145/2699390

[10] Elie Bursztein, Artem Malyshey, Tadek Pietraszek, and Kurt Thomas. 2016. Picasso: Lightweight Device Class Finger-
printing for Web Clients. (2016). https://research.google.com/pubs/pub45581.html

[11] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via OS and Hardware Level Features.
https://doi.org/10.14722/ndss.2017.23152

[12] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. 2014. The Tangled Web of
Password Reuse. In NDSS, Vol. 14. 23–26.

[13] Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing Technologies.
[14] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-site Measurement and Analysis. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New
York, NY, USA, 1388–1401. https://doi.org/10.1145/2976749.2978313

[15] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font metrics. 107–124.
[16] Marco Gamassi, Massimo Lazzaroni, Mauro Misino, Vincenzo Piuri, Daniele Sana, and Fabio Scotti. 2005. Quality

assessment of biometric systems: a comprehensive perspective based on accuracy and performance measurement. 54,
4 (2005), 1489–1496.

[17] Tom Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen. 2016. Accelerometer-Based Device Finger-
printing for Multi-factor Mobile Authentication. In Proceedings of the 8th International Symposium on Engineering
Secure Software and Systems - Volume 9639 (ESSoS 2016). Springer-Verlag New York, Inc., New York, NY, USA, 106–
121. https://doi.org/10.1007/978-3-319-30806-7_7

[18] Maximilian Golla,Theodor Schnitzler, andMarkus Dürmuth. 2018. “Will Any Password Do?” Exploring Rate-Limiting
on theWeb. InWho are you? Adventures in AuthenticationWorkshop 2018 (Baltimore, MD, USA). USENIX Association.

[19] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the Crowd: an Analysis of the Effective-
ness of Browser Fingerprinting at Large Scale. In The Web Conference.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2660267.2660347
https://arxiv.org/abs/1703.05066
http://arxiv.org/abs/1703.05066
https://doi.org/10.1145/2991079.2991091
https://doi.org/10.1007/978-3-030-50399-4_16
https://doi.org/10.1007/978-3-030-50399-4_16
https://httparchive.org/reports/loading-speed#ol
https://doi.org/10.1145/2994620.2994621
https://doi.org/10.1145/2699390
https://research.google.com/pubs/pub45581.html
https://doi.org/10.14722/ndss.2017.23152
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1007/978-3-319-30806-7_7

32 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

[20] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. 1998. Support vector machines.
Intelligent Systems and their applications (1998).

[21] Dan Jurafsky and James H. Martin. 2008. Speech and Language Processing.
[22] Nian-hua KANG, Ming-zhi CHEN, Ying-yan FENG, Wei-ning LIN, Chuan-bao LIU, and Guang-yao LI. 2017. Zero-

Permission Mobile Device Identification Based on the Similarity of Browser Fingerprints. DEStech Transactions on
Computer Science and Engineering (July 2017). https://doi.org/10.12783/dtcse/cst2017/12531

[23] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020. Carnus: Exploring the PrivacyThreats
of Browser Extension Fingerprinting. https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-
threats-of-browser-extension-fingerprinting

[24] Amin Faiz Khademi, Mohammad Zulkernine, and Komminist Weldemariam. 2015. An Empirical Evaluation of Web-
Based Fingerprinting. 32, 4 (2015), 46–52. https://doi.org/10.1109/MS.2015.77

[25] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling. 2016. Fingerprinting mobile devices
using personalized configurations. Proceedings on Privacy Enhancing Technologies 2016, 1 (2016), 4–19.

[26] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. 2019. Morellian Analysis for Browsers: Making
Web Authentication Stronger With Canvas Fingerprinting. In 16th Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (2019).

[27] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. 2017. FPRandom: Randomizing core browser objects to break
advanced device fingerprinting techniques. In ESSoS 2017 - 9th International Symposium on Engineering Secure Software
and Systems. Bonn, Germany, 17. https://hal.inria.fr/hal-01527580

[28] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020. Browser Fingerprinting: A Survey. 14, 2
(2020), 8:1–8:33. https://doi.org/10.1145/3386040

[29] Pierre Laperdrix,Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the Beast: Divertingmodern web browsers
to build unique browser fingerprints. In 37th IEEE Symposium on Security and Privacy.

[30] H. Le, F. Fallace, and P. Barlet-Ros. 2017. Towards accurate detection of obfuscated web tracking. In 2017 IEEE Interna-
tional Workshop on Measurement and Networking (M N) (2017-09). 1–6. https://doi.org/10.1109/IWMN.2017.8078365

[31] Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar. 2003. Handbook of Fingerprint Recognition (1 ed.).
Springer-Verlag. https://doi.org/10.1007/b97303

[32] Philipp Markert, Maximilian Golla, Elizabeth Stobert, and Markus Dürmuth. 2020. A Comparative Long-Term Study
of Fallback Authentication - Work in Progress. https://www.ndss-symposium.org/ndss-paper/auto-draft-30/

[33] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas in HTML5. In Proceedings of W2SP
2012. 1–12.

[34] Davy Preuveneers and Wouter Joosen. 2015. SmartAuth: Dynamic Context Fingerprinting for Continuous User Au-
thentication. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15). ACM, New York,
NY, USA, 2185–2191. https://doi.org/10.1145/2695664.2695908

[35] Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. 2020. Long-Term Observation on Browser
Fingerprinting: Users’ Trackability and Perspective. 2 (2020), 558–577.

[36] Jordan S. Queiroz and Eduardo L. Feitosa. 2019. A Web Browser Fingerprinting Method Based on the Web Audio API.
(22 Jan. 2019). https://doi.org/10.1093/comjnl/bxy146

[37] Nils Quermann, Marian Harbach, and Markus Dürmuth. 2018. The state of user authentication in the wild. In Who
are you (2018).

[38] Florentin Rochet, Kyriakos Efthymiadis, FranÃ§ois Koeune, and Olivier Pereira. 2019. SWAT: Seamless Web Authen-
tication Technology. In The World Wide Web Conference (New York, NY, USA, 2019) (WWW ’19). ACM, 1579–1589.
https://doi.org/10.1145/3308558.3313637

[39] Bardia Safaei, Amir Mahdi Monazzah, Milad Bafroei, and Alireza Ejlali. 2017. Reliability Side-Effects in Internet of
Things Application Layer Protocols. https://doi.org/10.1109/ICSRS.2017.8272822

[40] Michael Schwarz, Florian Lackner, and Daniel Gruss. 2019. JavaScript Template Attacks: Automatically Inferring Host
Information for Targeted Exploits. In NDSS (2019).

[41] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering Browser Extensions viaWeb Accessible
Resources. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy (CODASPY
’17). ACM, New York, NY, USA. https://doi.org/10.1145/3029806.3029820

[42] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2015. Mobile Device Fingerprinting Considered Harmful for
Risk-based Authentication. In Proceedings of the Eighth European Workshop on System Security.

[43] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2017. Leveraging Battery Usage from Mobile Devices for Active
Authentication. (25 Oct. 2017). https://doi.org/10.1155/2017/1367064

[44] Oleksii Starov andNick Nikiforakis. 2017. XHOUND:Quantifying the Fingerprintability of Browser Extensions. https:
//doi.org/10.1109/SP.2017.18

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.12783/dtcse/cst2017/12531
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting
https://www.ndss-symposium.org/ndss-paper/carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting
https://doi.org/10.1109/MS.2015.77
https://hal.inria.fr/hal-01527580
https://doi.org/10.1145/3386040
https://doi.org/10.1109/IWMN.2017.8078365
https://doi.org/10.1007/b97303
https://www.ndss-symposium.org/ndss-paper/auto-draft-30/
https://doi.org/10.1145/2695664.2695908
https://doi.org/10.1093/comjnl/bxy146
https://doi.org/10.1145/3308558.3313637
https://doi.org/10.1109/ICSRS.2017.8272822
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1155/2017/1367064
https://doi.org/10.1109/SP.2017.18
https://doi.org/10.1109/SP.2017.18

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 33

[45] K. Takasu, T. Saito, T. Yamada, and T. Ishikawa. 2015. A Survey of Hardware Features in Modern Browsers. In 2015
9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (2015-07). 520–524.
https://doi.org/10.1109/IMIS.2015.72

[46] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik Markov, Oxana Comanescu, Vijay
Eranti, Angelika Moscicki, et al. 2017. Data breaches, phishing, or malware?: Understanding the risks of stolen creden-
tials. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1421–1434.

[47] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl. 2013. SHPF: Enhancing HTTP(S)
Session Security with Browser Fingerprinting. In 2013 International Conference on Availability, Reliability and Security.
255–261. https://doi.org/10.1109/ARES.2013.33

[48] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018. FP-STALKER: Tracking Browser
Fingerprint Evolutions. IEEE, 14. https://hal.inria.fr/hal-01652021/document

[49] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. 2020. FP-Crawlers: Studying the Resilience
of Browser Fingerprinting to Block Crawlers. In NDSS Workshop on Measurements, Attacks, and Defenses for the Web
(MADWeb’20) (2020).

[50] StephanWiefling, Luigi Lo Iacono, and Markus Dürmuth. 2019. IsThis Really You? An Empirical Study on Risk-Based
Authentication Applied in the Wild. In ICT Systems Security and Privacy Protection (Cham, 2019) (IFIP Advances in
Information and Communication Technology). Springer International Publishing, 134–148. https://doi.org/10.1007/978-
3-030-22312-0_10

[51] Wenjia Wu, Jianan Wu, Yanhao Wang, Zhen Ling, and Ming Yang. 2016. Efficient Fingerprinting-Based Android
Device Identification with Zero-Permission Identifiers. IEEE Access PP (Nov. 2016), 1–1. https://doi.org/10.1109/
ACCESS.2016.2626395

[52] Vasilios Zorkadis and P Donos. 2004. On biometrics-based authentication and identification from a privacy-protection
perspective. (2004).

A BROWSER FINGERPRINTING ATTRIBUTES
In this section, we describe the 216 source attributes that are included in our script, and the 46 ex-
tracted attributes that are derived from source attributes. We group these attributes into families,
and provide references to related studies. Their name is sufficient to retrieve the corresponding
browser property, and when needed, we provide a brief description of the method for reproducibil-
ity. We focus here on the description of the method, and provide a complete list of the attributes
and their property in Appendix E.

A.1 JavaScript properties
Most attributes are properties that are accessed through common JavaScript objects.The navigator
object provides information on the browser (e.g., version), its customization (e.g., language), the un-
derlying system (e.g. operating system), and supported functionalities (e.g., list of available codecs).
The screen object provides information on the screen size, the orientation, the pixel density, and
the available space for the web page. The window object provides information on the window con-
taining the web page, like its size or the support of storage mechanisms. The document object
gives access to the web page content, but also to a few properties. Such properties are already
included in previous studies [13, 19, 29] or open source projects21, but are usually limited to less
than 15 properties.

A.2 HTTP headers
We include 16 attributes that are collected from HTTP headers, most of which are already used in
previous studies [13, 19, 29]. Among these 16 attributes, 15 consist of the value of an explicitly
specified header, and the last attribute stores any remaining fields as pairs of name and value.

21https://github.com/Valve/fingerprintjs2

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1109/IMIS.2015.72
https://doi.org/10.1109/ARES.2013.33
https://hal.inria.fr/hal-01652021/document
https://doi.org/10.1007/978-3-030-22312-0_10
https://doi.org/10.1007/978-3-030-22312-0_10
https://doi.org/10.1109/ACCESS.2016.2626395
https://doi.org/10.1109/ACCESS.2016.2626395
https://github.com/Valve/fingerprintjs2

34 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

A.3 Enumeration or presence of browser components
One attribute family that provides a high diversity is the browser components that are installed in
the browser. The presence of some components can directly be accessed (e.g., the installed plu-
gins 22), whereas the presence of others have to be inferred (e.g., the installed fonts). The list of
components that are given in this section have the components separated by a comma.

A.3.1 List attributes. Previous studies already identified the list of plugins and the list of fonts as
highly distinctive [13, 29], hence we include these two attributes in our fingerprinting script. We
enumerate the list of plugins, and check the size of text boxes [15] to infer the presence of 66 fonts.
Additionally, we get the list of mime types (i.e., the supported data format), and the list of speech
synthesis voices.

A.3.2 Support of video, audio, and streaming codecs. We infer the support of video codecs by creat-
ing a video element and checking if it can play a given type using the canPlayType() function.
The support of audio codecs is done using the same method, but for an audio element. We infer the
support of streaming codecs by calling the isTypeSupported() function of the window.[WebKit,
moz, ms, ∅]MediaSource object, using both the audio codecs and the video codecs for which we
check the presence. We apply the same method to infer the support of recording codecs, but on the
MediaRecorder object instead.

A.3.3 List of video codecs. The 15 video codecs forwhichwe infer the presence are the following: vi-
deo/mp2t; codecs=”avc1.42E01E,mp4a.40.2”, video/mp4; codecs=”avc1.42c00d”, video/mp4; codecs-
=”avc1.4D401E”, video/mp4; codecs=”mp4v.20.8”, video/mp4; codecs=”avc1.42E01E”, video/mp4;
codecs=”avc1.42E01E, mp4a.40.2”, video/mp4; codecs=”hvc1.1.L0.0”, video/mp4; codecs=”hev1.1.-
L0.0”, video/ogg; codecs=”theora”, video/ogg; codecs=”vorbis”, video/webm; codecs=”vp8”, video/-
webm; codecs=”vp9”, application/dash+xml, application/vnd.apple.mpegURL, audio/mpegurl.

A.3.4 List of audio codecs. The 9 audio codecs for which we infer the presence are the following:
audio/wav; codecs=”1”, audio/mpeg, audio/mp4; codecs=”mp4a.40.2”, audio/mp4; codecs=”ac-3”,
audio/mp4; codecs=”ec-3”, audio/ogg; codecs=”vorbis”, audio/ogg; codecs=”opus”, audio/webm; co-
decs=”vorbis”, audio/webm; codecs=”opus”.

A.3.5 List of detected fonts. The 66 fonts for whichwe infer the presence are the following: Andale
Mono; AppleGothic; Arial; Arial Black; Arial Hebrew; Arial MT; Arial Narrow; Arial Rounded MT
Bold; Arial Unicode MS; Bitstream Vera Sans Mono; Book Antiqua; Bookman Old Style; Calibri;
Cambria; Cambria Math; Century; Century Gothic; Century Schoolbook; Comic Sans; Comic Sans
MS; Consolas; Courier; Courier New; Garamond; Geneva; Georgia; Helvetica; Helvetica Neue; Im-
pact; Lucida Bright; Lucida Calligraphy; Lucida Console; Lucida Fax; LUCIDA GRANDE; Lucida
Handwriting; Lucida Sans; Lucida Sans Typewriter; Lucida Sans Unicode; Microsoft Sans Serif;
Monaco; Monotype Corsiva; MS Gothic; MS Outlook; MS PGothic; MS Reference Sans Serif; MS
Sans Serif; MS Serif; MYRIAD; MYRIAD PRO; Palatino; Palatino Linotype; Segoe Print; Segoe
Script; Segoe UI; Segoe UI Light; Segoe UI Semibold; Segoe UI Symbol; Tahoma; Times; Times New
Roman; Times New Roman PS; Trebuchet MS; Verdana; Wingdings; Wingdings 2; Wingdings 3.

A.4 Extension detection
The installed browser extensions cannot be directly accessed, but their presence can be inferred by
changes brought to the page content by the extension [44], or by the presence of web accessible
resources [23, 41]. We check the changes that can be brought to the page content by 8 extensions

22At the exception of the Firefox browsers that now only display the Flash plugin.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 35

Table 4. Extensions detected by the changes they bring to the page content.

Extension Page content change

Privowny W.privownyAddedListener[EXT] is supported
UBlock D.head has display: none !important; and :root as style
Pinterest D.body.data-pinterest-extension-installed is supported
Grammarly D.body.data-gr-c-s-loaded is supported
Adguard W.AG_onLoad is supported
Evernote Element with style-1-cropbar-clipper as id exists
TOTL W.ytCinema is supported
IE Tab W.ietab.getVersion() is supported

Table 5. Extensions detected by the availability of their web accessible resource. C stands for chrome, and R
stands for resource.

Extension Web accessible resource

Firebug C://firebug/skin/firebugBig.png
YahooToolbar R://635abd67-4fe9-1b23-4f01-e679fa7484c1/icon.png
EasyScreenshot C://easyscreenshot/skin/icon16.png
Ghostery R://firefox-at-ghostery-dot-com/data/images/ghosty-16px.png
Kaspersky R://urla-at-kaspersky-dot-com/data/icon-16.png
VideoDownloadHelper R://b9db16a4-6edc-47ec-a1f4-b86292ed211d/data/images/icon-18.png
GTranslate R://aff87fa2-a58e-4edd-b852-0a20203c1e17/icon.png
Privowny C://privowny/content/icons/privowny_extension_logo.png

that are listed in Table 4, and the availability of the web accessible resources of 8 extensions that
are listed in Table 5.

A.4.1 Detection of an ad blocker. We also infer the presence of an advertisement blocker by cre-
ating an invisible dummy advertisement, and by checking if it is removed or not. The dummy
advertisement is a created division with the id property set to ad_ads_pub_track, the class prop-
erty set to ads .html?ad= /?view=ad text-ad textAd text_ad text_ads text-ads, and the
style property set to width: 1px !important; height: 1px !important; position: abs-
olute !important; left: -1000px !important; top: -1000px !important;.

A.5 Size and color of web page elements
A.5.1 Bounding boxes. The attributes related to the bounding boxes concern a div element to
which we append a span element. The div element has his style property set to the values dis-
played in Table 5. The span element contains a specifically crafted text that is provided below.
The size of the bounding boxes (i.e., the width and the height of the rectangles of the div and the
span elements) are then collected using the getClientRects function. The text of the span ele-
ment is \ua9c0 \u2603 \u20B9 \u2604 \u269b \u2624 \u23B7 \u262c \u2651 \u269d \u-
0601 \u0603 \uaac1 \u060e \u06dd \ud83c\udfe1 mmmmmmmmmmlil \u102a. The characters
that start with a \u are special Unicode characters (e.g., emoji, letter of a non-latin alphabet).

A.5.2 Width and position of a created div. The attribute named width and position of a created div
is the properties of width and transform-origin of a newly created div element, obtained by

, Vol. 1, No. 1, Article . Publication date: June 2020.

36 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 6. Properties of the div element measured for the attributes related to the bounding boxes.

Property Value

position absolute
left -9999px
textAlign center
objectFit scale-down
font 68px / 83px Helvetica, Arial, Sans-serif
zoom 66%
MozTransform scale(0.66)
visibility hidden

calling the getComputedStyle function. This created div element is afterward used to infer the
color of layout components, as described below.

A.5.3 Colors of layout components. The attribute colors of layout components is obtained by ap-
plying the color of several layout components (e.g., the scroll bar) to the created div element,
and by getting the color back from the property W.getComputedStyle(new_div).color. Each of
the tested component gets its color extracted this way, and aggregated in this attribute. The color
of each element is afterward extracted as a single attribute. They are displayed at the end of the
Table 13.

A.6 WebGL properties
Our script collects several properties from the WebGL API. To obtain them, we create a canvas
element and get itsWebGL context by calling getContext()with any of the following parameters:
webgl, webgl2, moz-webgl, experimental-webgl, or experimental-webgl2.

The property MAX_TEXTURE_MAX_ANISOTROPY_EXT is obtained fromone of [WEBKIT_EXT_, MOZ-
EXT, EXT_]texture_filter_anisotropic. To get the UNMASKED attributes, we first get an
identifier named id from the unmasked property of the getExtension('WEBGL_debug_rende-
rer_info') object, and then get the actual value by calling getParameter(id). Finally, to get
the COMPRESSED_TEXTURE_FORMATS property, we have to load the [WEBKIT_]WEBGL_compressed-
_texture_s3tc extension first.

A.7 WebRTC fingerprinting
We include a WebRTC fingerprinting method similar to the method proposed by Takasu et al. [45].
Themethod consists into getting information about the SessionDescription Protocol of a generated
WebRTC connection. Due to the variability of this information, we create two different connections
and hold only the values that are identical between these two. As this method leaks internal IP
addresses, we hash them directly on the client.

A.8 HTML5 canvases inspired by previous studies
We dedicate the Section 5.3 to a focus on dynamic attributes, and provide here examples of the
two HTML5 canvases that are inspired by previous studies. Our script includes a canvas inspired
by the AmIUnique study [29] in both PNG and JPEG formats (example given at Figure 17), and
an enhanced version of it similar to the Morellian study [26] in PNG format (example given at
Figure 18).

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 37

Fig. 17. HTML5 canvas inspired by the AmIU-
nique [29] study in PNG format.

Fig. 18. HTML5 canvas similar to the Morellian [26]
study in PNG format.

A.9 Audio fingerprinting
We dedicate the Section 5.3 to a focus on dynamic attributes, and provide here the concrete imple-
mentation together with the network of AudioNode objects used within each audio fingerprinting
methods. These methods are inspired by the methods described by Englehardt et al. [14], and are
designed to form complex networks of AudioNode objects to have more chances to induce finger-
printable behaviors.

A.9.1 Simple audio fingerprinting method. The simple process consists of three OscillatorNode
objects that generate a periodic wave, connected to a single DynamicsCompressorNode, and fin-
ishing to a AudioDestinationNode. The architecture of the network of AudioNode objects for
the simple process is depicted in Figure 19, together with the parameters set for each node. The
OscillatorNode objects are started one after the other, and overlap at some time.The sequence of
events is the following: (1) the triangle oscillator node is started at 𝑡 = 0 seconds, (2) the square os-
cillator is started at 𝑡 = 0.10 seconds, (3) the triangle oscillator is stopped 𝑡 = 0.20 seconds, together
with the start of the sine oscillator node, (4) the square oscillator is stopped at 𝑡 = 0.25 seconds.
When the rendering of the audio context is done, the complete event is triggered, and gives ac-
cess to a renderedBuffer that contains the audio data encoded as a buffer of 32 bits floating-point
numbers. The audio fp simple (AFS) attribute is an integer computed as the sum of the values of
the renderedBuffer, that are first casted to absolute integers.

A.9.2 Advanced audio fingerprinting method. The advanced process consists of four Oscillator-
Node objects, two BiquadFilterNode objects, two PannerNode objects, one DynamicsCompressor-
Node, one AnalyserNode, and one AudioDestinationNode. The architecture of the networks of
AudioNode objects for the simple process is depicted in Figure 20, together with the parameters
set for each node. The OscillatorNode objects are started one after the other, and overlap at
some time. The sequence of events is the following: (1) the triangle oscillator node and the sine
oscillator node with a frequency of 280 are started at 𝑡 = 0 seconds, (2) the square oscillator is
started at 𝑡 = 0.05 seconds, (3) the triangle oscillator is stopped 𝑡 = 0.10 seconds, (4) the sine os-
cillator with a frequency of 170 is stopped at 𝑡 = 0.15 seconds, (5) the square oscillator is stopped
at 𝑡 = 0.20 seconds. When the rendering of the audio context is done, the complete event is trig-
gered, and gives access to a renderedBuffer that contains the audio data encoded as a buffer of
32 bits floating-point numbers. The audio fp advanced (AFA) attribute is an integer computed as
the sum of the values of the renderedBuffer, that are first casted to absolute integers. The audio
fp advanced frequency data (AFA-FD) attribute is the sum of the frequency data obtained through
the getFloatFrequencyData function of the Analyser Node.

B KEYWORDS
In this section, we provide the keywords used to infer the browser family, the operating system,
and if the browser is a robot (i.e., if it is an automatized tool, hence is not a genuine visitor). We
match these keywords on the UserAgent JavaScript property, that is first set to lower case. We
manually compiled the keywords, by searching for meaningful keywords. Afterward, we classify

, Vol. 1, No. 1, Article . Publication date: June 2020.

38 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Oscillator
Node

type = triangle
frequency = 1e4

Oscillator
Node

type = square
frequency = 1.3e4

Oscillator
Node

type = sine
frequency = 0.8e4

Dynamics
Compressor

Node

threshold = -25
knee = 15
ratio =15

reduction = -10
attack = 0.05
release = 0

Destination
Node

OfflineAudioContext

Fig. 19. Architecture of the network of AudioNode objects for the simple audio fingerprinting method.

Oscillator
Node

type = triangle
frequency = 250

Oscillator
Node

type = square
frequency = 210

Oscillator
Node

type = sine
frequency = 170

Dynamics
Compressor

Node

threshold = -60
knee = 10
ratio =10

reduction = -20
attack = 0

release = 0.25

Destination
Node

OfflineAudioContext

Oscillator
Node

type = sine
frequency = 280

Biquad
Filter
Node

type = notch
frequency = 210

Q = 10

Biquad
Filter
Node

type = highpass
frequency = 210

Q = 100

Panner
Node

position = (23, 17, -5)

Panner
Node

position = (-36, 28, 31)

Analyser
Node

Fig. 20. Architecture of the network of AudioNode objects for the simple audio fingerprinting method.

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 39

Table 7. The keywords and the exact UserAgent values that we consider as indicating a robot browser. Long
values are cut at a blank space and displayed with indentations.

Blacklisted keyword Blacklisted value

googlebot mozilla/4.0 (compatible; msie 7.0; windows nt 6.1; trident/7.0; slcc2;
evaliant .net clr 2.0.50727; .net clr 3.5.30729; .net clr 3.0.30729;
bot.html media center pc 6.0; .net4.0c; .net4.0e)
voilabot mozilla/5.0 (x11; linux x86_64) applewebkit/537.36 (khtml, like gecko)
google web preview chrome/52.0.2743.116 safari/537.36
spider mozilla/5.0 (windows nt 6.3; rv:36.0) gecko/20100101 firefox/36.0
bingpreview mozilla/5.0 (macintosh; intel mac os x 10.10; rv:38.0) gecko/20100101

firefox/38.0

the UserAgents given these keywords, and searched for additional keywords in the unclassified
UserAgents that remain. This process was repeated until every UserAgent was classified. This pro-
cess leads to a huge variety of finely-grained keywords, hence we only provide here the keywords
that are meaningful for this study.

B.1 Robot keywords
We check that the UserAgent HTTP header does not contain the keywords, nor is set to the exact
values, that are listed in Table 7.

B.2 Device type
To infer the device type of a browser, we match keywords sequentially with the UserAgent of
the browser. The set of keywords can overlap between two device types (e.g., the UserAgent of
tablet browsers often contain keywords of mobile browsers, like mobile for example). Due to
this overlapping problem, we verify that the UserAgent of the browser contains the keyword of
the device type, and does not contain the keyword of some other device types. Table 8 lists the
keywords that we leverage to infer each device type.

The mobile devices are smartphones, and do not include tablets. We assert that their UserAgent
contain a mobile keyword, and no tablet nor miscellaneous keyword. To infer that a device is a
tablet, we assert that their UserAgent contain a tablet keyword, and no miscellaneous keyword.
Themiscellaneous devices are game consoles and smart TVs.We assert that their UserAgent contain
a miscellaneous keyword. Finally, to infer that a device is a desktop computer, we assert that
their UserAgent does not contain any of the mobile, tablet, or miscellaneous keyword. In the
table, we omit a miscellaneous keyword due to its size, which is: opera/9.80 (linux i686; u; fr)
presto/2.10.287 version/12.00 ; sc/ihd92 stb.

B.3 Browser and operating system families
Table 9 lists the keywords that we leverage to infer the family of a browser, and Table 10 lists the
keywords that we leverage to infer the operating system family of a browser. As a keyword can
be in the UserAgent of two different families, we verify the keywords sequentially in the order
presented in the tables, and classify a device in the first family having a keyword that matches.

C BROWSER FINGERPRINTING-BASED AUTHENTICATION MECHANISM
Browser fingerprinting can enhance an authentication mechanism by providing an additional bar-
rier at a low usability and deployability cost. In this section, we provide an example of how it

, Vol. 1, No. 1, Article . Publication date: June 2020.

40 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 8. The keywords that we consider as indicat-
ing each device type.

Mobile Tablet Miscellaneous

phone ipad wii
mobile tablet playstation
android terra pad smart-tv
iphone tab smarttv
blackberry googletv
wpdesktop opera tv

appletv
nintendo
xbox

Table 9. The keywords that we consider as indicat-
ing each browser family.

Browser Family Keywords

Firefox Firefox
Internet Explorer MSIE, Trident/7.0
Chrome Chrome, Chromium

Table 10. The keywords that we consider as indicating each operating system family.

Operating System Family Keywords

Windows 10 Windows NT 10.0
Windows 7 Windows NT 6.1
Other Windows Windows NT, Windows 7, Windows 98, Windows 95,

Windows CE
Mac OS Mac OS X (but not iPad, nor iPhone)
Linux-based Linux, CrOS, NetBSD, FreeBSD, OpenBSD, Fedora, Ubuntu,

Mint
Android Android
Windows Phone Windows Phone
iOS iPad, iPhone (but not Mac OS X)

can concretely be implemented. The verifier controls a web platform on which users have a regis-
tered account. Each registered account is associated to an identifier, and to a set of authentication
factors. The authentication factors include the fingerprints of each registered browser for a user.
We emphasize that dynamic attributes can be integrated to the browser fingerprints to enforce a
challenge-response mechanism that mitigates replay attacks [26, 38].

Enrollment. The enrollment consists for a user to create his account and link the several authen-
tication factors that he uses. During this step, the user and the verifier agrees on the account iden-
tifier (e.g., username, email address, phone number) and on the authentication factors (e.g., pass-
word, email address, phone number) that are assigned to the user.The fingerprint of the browser in
use by the user during the enrollment is collected and stored as the first browser fingerprint of the
user. To register an additional browser, the user is required to authenticate using other strong fac-
tors (e.g., a physical token, one time passwords), before getting the fingerprint of this new browser
stored.

Authentication. During each authentication, the user claims an account by providing the identi-
fier and by presenting the used authentication factors.The verifier compares the presented authen-
tication factors with the ones stored for this user, and if they match the user is deemed legitimate

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 41

and is given access to the account. Otherwise, the user is denied access, and the verifier can take
preventive actions [18] according to her policy (e.g., blocking the account). The verifier notably
compares the collected browser fingerprint with the fingerprints of the browsers registered to the
account. If the other factors match, and the fingerprint of one of the registered browser matches
the collected fingerprint, the fingerprint stored for this browser is updated to the newly collected
one.

Account Recovery. It happens that legitimate users are not able to provide the authentication
factors (e.g., a password is forgotten, a physical token is lost). When it occurs, users are given
access to an account recovery mechanism [32] that leverages other authentication factors than the
usual ones (e.g., face-to-face verification, email verification). Users cannot mistake their browser
fingerprint, but it can become hard to recognize if too many changes are brought to the web
environment into which the browser is running. In this case, the user is asked to undergo the
account recovery step, and to select the registered browser for which to update its fingerprint.

D ADVANCED VERIFICATION MECHANISM
Section 3.3.4 describes a simple verification mechanism that simply checks that the number of
identical attributes between the presented fingerprint and the one stored is below a threshold.
In this section, we present the results obtained using an advanced verification mechanism that
incorporates matching functions that authorize limited changes between the attribute values of the
two fingerprints. The methodology to obtain the datasets is the same as described in Section 4.3.3.

D.1 Attributes matching
The advanced verification mechanism leverages matching functions for the comparison between
attributes. It counts the attributes that match between the two compared fingerprints, given the
matching functions, and considers the evolution legitimate if this number is above a threshold.
More formally, we seek to compare the stored fingerprint 𝑓 to the presented fingerprint 𝑔. To do
so, we compare the values 𝑓 [𝑎] and 𝑔[𝑎] of the attribute 𝑎 for the fingerprints 𝑓 and 𝑔, using
the matching function ≈𝑎 . The matching function ≈𝑎 of the attribute 𝑎 verifies that the distance
between 𝑓 [𝑎] and 𝑔[𝑎] are below a threshold 𝜃𝑎 . Finally, we deem that 𝑔 is a legitimate evolution
of 𝑓 , if the total number of matching attributes between 𝑓 and 𝑔 is above a threshold Θ.

Similarly to previous studies [13, 22, 48], we consider a distance measure that depends on the
type of the attribute. The Damerau-Levenshtein distance [21] is used for the textual attributes, the
Jaccard distance [51] is used for the set attributes, the absolute difference is used for the numerical
attributes, and the identity function is used for the categorical attributes. The distance thresholds
of each attribute is obtained by training a Support Vector Machines [20] model on the two classes
of each month sample, and extract the threshold from the resulting hyperplane. At the exception
of the dynamic attributes, that are required to be identical (i.e., the distance threshold is null) as
they would contribute to a challenge-response mechanism [26, 38].

D.2 Distribution of matching attributes
Figure 21 displays the distribution of the matching attributes between the same-browser compar-
isons and the different-browsers comparisons, starting from 51 matching attributes as there are
no observed value below. Figure 22 presents a focus that starts from 214 matching attributes, be-
low which there are less than 0.001 of the same-browser comparisons. We can observe that the
two classes are well separated, as 99% of the same-browser comparisons have at least 235 iden-
tical attributes, and 99% of the different-browsers comparisons are below. The different-browsers

, Vol. 1, No. 1, Article . Publication date: June 2020.

42 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

50 75 100 125 150 175 200 225 250
Number of matching attributes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
ti

on
 o

f c
om

pa
ri

so
ns

Same-browser
Different-browsers

Fig. 21. The number of matching attributes between
the same-browser comparisons and the different-
browsers comparisons.

215 220 225 230 235 240 245 250
Number of matching attributes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
ti

on
 o

f c
om

pa
ri

so
ns

Same-browser
Different-browsers

Fig. 22. The number of matching attributes between
the same-browser comparisons and the different-
browsers comparisons, starting from 214 matching
attributes.

comparisons have generally fewer and more spread number of matching attributes than the same-
browser comparisons. The different-browsers comparisons have between 51 and 253 matching
attributes, with an average of 134.59 attributes, and a standard deviation of 43.25 attributes. The
same-browser comparisons have between 81 and 253 matching attributes, with an average of
249.45 attributes, and a standard deviation of 3.69 attributes.

D.3 Distribution of match rates
Figure 23 displays the false match rate (FMR), which is the proportion of the same-browser compar-
isons that are classified as different-browsers comparisons, and the false non-match rate (FNMR),
which is the inverse. The displayed results are the average for each number of matching attributes
among the six samples. As there are no same-browser comparisons that have less than 235match-
ing attributes, the FNMR is null until this value. However, after exceeding this threshold, the FNMR
increases as same-browser comparisons begin to be classified as different-browsers comparisons.
The equal error rate, which is the rate where both the FMR and the FNMR are equal, is of 0.66%
and is achieved for 234 matching attributes.

D.4 Comparison with identical matching
The matching functions of the advanced verification mechanism leads to more attributes that
match than attributes that are identical between two fingerprints. The higher number of matching
attributes happens for the same-browser comparisons, but also for the different-browsers compar-
isons. This reduces the False Non-Match Rate (FNMR), but also increases the False-Match Rate
(FMR). Due to the FMR being higher, the equal error rate is slightly higher for the advanced veri-
fication mechanism that leverages matching functions.

Table 11 compares the results of the simple verification mechanism that leverages the identi-
cal attributes, and the advanced verification mechanism that leverages the matching attributes.
Considering the matching functions only increase the average number of matching attributes for
the same-browser comparisons by 0.81, whereas this increase is greater for the different-browsers
comparisons at 7.18. The matching functions seem to contribute more to falsely linking different-
browsers comparisons than same-browser comparisons. Due to this, the equal error rate is slightly
higher for the advanced verification mechanism than for the simple one, respectively at 0.67%
against 0.61%. Finally, we remark that the range of the identical attributes for the same-browser
comparisons only goes up to 252 attributes. This is explained by our deduplication step during the

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 43

50 75 100 125 150 175 200 225 250
Number of matching attributes

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
ra

te

FNMR
FMR

Fig. 23. False match rate (FMR) and false non-match rate (FNMR) given the required number of matching
attributes, averaged among the six samples.

Table 11. Comparison between the simple verification mechanism using identical attributes and the ad-
vanced verification mechanism using matching attributes.

Result Simple Advanced

Same-browser: range of identical or matching attributes [72; 252] [81; 253]
Same-browser: average identical or matching attributes 248.64 249.45
Same-browser: standard deviation 3.91 3.69
Different-browsers: range of identical or matching attributes [34; 253] [51; 253]
Different-browsers: average identical or matching attributes 127.41 134.59
Different-browsers: standard deviation 44.06 43.25
Equal error rate (EER) 0.62% 0.67%
Threshold of identical or matching attributes 231 233

preprocessing of the dataset (see Section 2.4.3) that removes the consecutive fingerprints that are
identical, hence they are forcibly different. As for the different-browsers comparisons, it always
goes up to 253 attributes, as coincidence can make fingerprints of different browsers match.

E ATTRIBUTES LIST AND PROPERTY
In this section, we provide the complete list of our fingerprinting attributes, together with their
property.

E.1 Properties distribution
In this section, we discuss the distribution of the properties of our 262 attributes that are displayed
in Table 13. We focus here on the distribution of the number of distinct values, and refer the reader
to Section 5 for the distribution of the other properties of the attributes, namely: the normalized
entropy, the minimum normalized conditional entropy, the sameness rate, the median collection

, Vol. 1, No. 1, Article . Publication date: June 2020.

44 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 12. The minimum, the average, the maximum, and the standard deviation (Std. dev.) of the distinct
values, of the normalized entropy, of the minimum normalized conditional entropy, of the median collection
time in seconds, of the median size in bytes, and of the sameness rate of the attributes.

Property Minimum Average Maximum Std. dev.

Distinct values 1 7,633 671,254 51,298
Normalized entropy 0.000 0.090 0.420 0.094
Minimum normalized conditional entropy 0.000 0.008 0.181 0.021
Sameness rate 0.470 0.982 1.000 0.069
Median collection time (seconds) 0.008 0.811 2.184 0.932
Median size (bytes) 1 23.51 502 60.84

time, and the median size. Table 12 provides the minimum, the average, the maximum, and the
standard deviation of these properties among the attributes.

E.1.1 Distribution of distinct values. Figure 24 depicts the cumulative distribution of the distinct
values among the attribute.The distinct values presents high variations, as can be seen by the stan-
dard deviation of 51, 298.We have 42% of the attributes that have 10 distinct values or less, 63% that
have 100 distinct values or less, and 79% that have 1, 000 distinct values or less. Only 5 attributes
have more than 100, 000 distinct values, which are the WebRTC fingerprinting method (671, 254
values), the list of plugins (314, 518 values), the custom canvas in the PNG format (269, 874 values)
and in the JPEG format (205, 005 values), together with the list of mime types (174, 876 values).

The values of the attributes are of different nature, impacting the distinct values that can be
observed among different population or time ranges. Some attributes have a fixed number of val-
ues, like the Boolean attributes or the categorical attributes that have a fixed set of possibilities.
Other attributes are composed of elements having a fixed set of possibilities, but their combination
provides a high number of values. It is the case for the attributes that are related to languages
that typically are a combination of language identifiers (e.g., fr), that can be valued (e.g., 𝑞 = 0.80).
These attributes also comprise the list of fonts, that is composed of Boolean values that indicates
the presence of a given font. Other attributes consists into an integer or a real number represented
as a floating-point number, resulting in a large set of possible values. This category comprises
any size related attribute (e.g., the screen width and height), or our audio fingerprinting method
which results are floating-point numbers with a high precision of more than 8 digits. Finally, some
attributes are textual information that can include version number, which also results in a high
number of distinct values. Moreover, as new values appear through time (e.g., new versions, new
software component), the set of the observed values is expected to grow over the observations.
Examples are the UserAgent or the list of plugins, as these attributes are typically composed of
the name and the version of several hardware and software components.

E.2 Attributes list
Table 13 lists our attributes, together with their number of distinct values seen during the experi-
ment (Values), their normalized entropy (N. Ent.), their sameness rate (% Same), their median size
(Size), and their median collection time (Time).

E.2.1 Attributes nomenclature. To stay concise, we replace the name of common JavaScript ob-
jects or of API calls by abbreviations. We denote D the JavaScript document object, M the Math
object,N the navigator object, S the screen object, andW the window object. Additionally, we de-
note A an initialized Audio Context, AA an initialized Audio Analyser, and AD the A.destination

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 45

100 101 102 103 104 105 106

Number of distinct attribute values (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
op

or
ti

on
 o

f t
he

 a
tt

ri
bu

te
s

Fig. 24. Cumulative distribution of the number of distinct values of the attributes, in logarithmic scale.

property. Finally, we denote WG an initialized WebGL Context, WM the WG.MAX_ prefix, and WI
the WG.IMPLEMENTATION_ prefix.

Due to the diversity of JavaScript engines, some properties are accessible through different
names, regularly prefixed by moz for Firefox or ms for Internet Explorer. We use square brackets to
easily denote these cases, and consider that A.[B, C]means that the property is accessed through
A.B or A.C. If there is only one element inside these brackets, this one is optional. We denote [...]
a part that is omitted but described in the corresponding attribute family description.

, Vol. 1, No. 1, Article . Publication date: June 2020.

46 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Table 13. Browser fingerprinting attributes, together with their distinct values, their normalized entropy,
their minimum normalized conditional entropy (MNCE), their stability, their median size, and their median
collection time. The attributes from which we derive the extracted ones are ignored for the MNCE.

Attribute Values N. Ent. MNCE % Same Size Time

N.userAgent 38,863 0.394 0.046 0.978 115 0.000
Listing of N 1,660 0.207 0.009 0.989 502 0.001
Listing of screen 82 0.129 0.000 0.999 209 0.000
N.language 228 0.066 0.006 0.999 2 0.000
N.languages 1,448 0.094 0.010 0.998 17 0.000
N.userLanguage 124 0.036 0.001 1.000 1 0.000
N.systemLanguage 115 0.037 0.001 1.000 1 0.000
N.browserLanguage 52 0.036 0.000 1.000 1 0.000
N.platform 32 0.068 0.000 1.000 5 0.000
N.appName 5 0.003 0.000 1.000 8 0.000
N.appVersion 37,310 0.342 0.000 0.984 107 0.000
N.appMinorVersion 10 0.035 0.000 1.000 1 0.000
N.product 2 0.003 0.000 1.000 5 0.000
N.productSub 10 0.067 0.000 1.000 8 0.000
N.vendor 21 0.064 0.000 1.000 1 0.000
N.vendorSub 2 0.035 0.000 1.000 1 0.000
N.cookieEnabled 1 0.000 0.000 1.000 4 0.000
N.cpuClass 6 0.039 0.000 1.000 1 0.000
N.oscpu 60 0.071 0.000 1.000 1 0.000
N.hardwareConcurrency 28 0.086 0.025 0.999 1 0.000
N.buildID 1,351 0.076 0.010 0.989 1 0.000
[N.security, D.security[Policy]] 30 0.038 0.001 1.000 7 0.000
N.permissions 3 0.045 0.000 1.000 1 0.000
W.Notification.permission 5 0.043 0.001 0.999 7 0.000
W.Notification.maxActions 3 0.041 0.000 1.000 1 0.000
N.[msM, m]axTouchPoints 42 0.098 0.004 0.999 3 0.000
D.createEvent(”TouchEvent”) support 3 0.032 0.000 1.000 1 0.000
W.ontouchstart support 3 0.032 0.000 1.000 1 0.000
N.javaEnabled() 4 0.045 0.008 0.997 1 0.000
N.taintEnabled() 3 0.045 0.000 1.000 1 0.000
[[N, W].doNotTrack, N.msDoNotTrack] 11 0.085 0.012 1.000 6 0.000
N.connection support 3 0.022 0.000 1.000 1 0.000
N.connection.type 12 0.028 0.003 0.992 1 0.000
N.connection.downlink 91 0.032 0.003 0.995 1 0.000
N.[mozC, c]onnection.bandwidth 6 0.023 0.000 1.000 3 0.000
N.mediaDevices support 3 0.044 0.000 0.999 1 0.000
N.mediaDevices.getSupportedConstraints() 12 0.090 0.000 0.997 144 0.000
W.Intl.Collator().resolvedOptions() 311 0.096 0.000 0.999 115 0.005
W.Intl.DateTimeFormat().resolvedOptions() 1,849 0.154 0.011 0.996 111 0.003
W.Intl.NumberFormat().resolvedOptions() 260 0.070 0.000 0.999 138 0.001
W.Intl.v8BreakIterator().resolvedOptions() 75 0.046 0.000 0.999 1 0.000
N.getGamepads() 18 0.090 0.000 0.998 1 0.001

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 47

Attribute Values N. Ent. MNCE % Same Size Time

W.InstallTrigger.enabled() 4 0.037 0.000 1.000 1 0.000
W.InstallTrigger.updateEnabled() 4 0.037 0.000 1.000 1 0.000
N.msManipulationViewsEnabled 5 0.052 0.000 1.000 3 0.000
N.[msP, p]ointerEnabled 9 0.051 0.000 1.000 3 0.000
D.msCapsLockWarningOff 3 0.039 0.000 1.000 1 0.000
D.msCSSOMElementFloatMetrics 4 0.039 0.000 1.000 1 0.000
N.[msW, w]ebdriver 6 0.048 0.001 1.000 3 0.000
W.Debug.debuggerEnabled 5 0.042 0.000 0.989 1 0.000
W.Debug.setNonUserCodeExceptions 4 0.042 0.000 0.989 1 0.000
new Date(2016, 1, 1).getTimezoneOffset() 60 0.008 0.001 0.999 2 0.000
Different Timezone at 01/01 and 06/01 3 0.005 0.002 0.999 1 0.000
S.width 1,280 0.192 0.005 0.987 4 0.000
S.height 1,016 0.188 0.015 0.987 3 0.000
W.screenX 3,071 0.125 0.047 0.925 1 0.000
W.screenY 1,181 0.126 0.049 0.925 1 0.000
S.availWidth 1,746 0.202 0.016 0.985 4 0.000
S.availHeight 1,353 0.268 0.058 0.984 3 0.000
S.availTop 460 0.060 0.003 1.000 1 0.000
S.availLeft 372 0.048 0.005 0.999 1 0.000
S.(pixelDepth, colorDepth) 14 0.031 0.001 1.000 5 0.000
S.deviceXDPI 249 0.073 0.000 0.993 1 0.000
S.deviceYDPI 249 0.073 0.000 0.993 1 0.000
S.systemXDPI 75 0.053 0.000 0.999 1 0.000
S.systemYDPI 75 0.053 0.000 0.999 1 0.000
S.logicalXDPI 6 0.039 0.000 1.000 1 0.000
S.logicalYDPI 6 0.039 0.000 1.000 1 0.000
W.innerWidth 2,572 0.263 0.023 0.957 4 0.000
W.innerHeight 2,297 0.388 0.181 0.906 3 0.000
W.outerWidth 2,481 0.293 0.074 0.909 4 0.000
W.outerHeight 4,046 0.327 0.117 0.872 3 0.000
W.devicePixelRatio 2,035 0.103 0.026 0.992 1 0.000
W.mozInnerScreenX 3,682 0.065 0.011 0.991 1 0.000
W.mozInnerScreenY 3,170 0.102 0.020 0.991 1 0.000
W.offscreenBuffering 4 0.067 0.000 1.000 4 0.000
S.orientation 3 0.044 0.000 1.000 1 0.000
S.[orientation.type, [moz, ms]Orientation] 26 0.107 0.003 0.994 21 0.000
S.orientation.angle 7 0.050 0.002 0.996 1 0.000
W.localStorage support 4 0.001 0.001 1.000 1 0.001
W.sessionStorage support 4 0.000 0.000 1.000 1 0.000
W.indexedDB support 3 0.002 0.000 1.000 1 0.000
W.openDatabase support 3 0.045 0.000 1.000 1 0.000
W.caches support 3 0.045 0.000 1.000 1 0.000
M.tan(-1e300) 15 0.087 0.002 1.000 19 0.000
M.tan(3.14159265359 * 0.3333 * 1e300) 12 0.085 0.000 0.999 18 0.000
M.acos(0.000000000000001) 4 0.058 0.000 1.000 18 0.000
M.acosh(1.000000000001) 7 0.071 0.000 1.000 24 0.000

, Vol. 1, No. 1, Article . Publication date: June 2020.

48 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Attribute Values N. Ent. MNCE % Same Size Time

M.asinh(0.00001) 6 0.071 0.000 1.000 23 0.000
M.asinh(1e300) 6 0.058 0.000 1.000 17 0.000
M.atan(2) 3 0.018 0.000 1.000 18 0.000
M.atan2(0.01, 1000) 3 0.045 0.000 1.000 23 0.000
M.atanh(0.0001) 5 0.070 0.000 1.000 22 0.000
M.cosh(15) 8 0.058 0.000 1.000 18 0.000
M.exp(-1e2) 8 0.028 0.000 1.000 21 0.000
M.exp(1e2) 9 0.028 0.000 1.000 22 0.000
M.LOG2E 3 0.039 0.000 1.000 18 0.000
M.LOG10E 3 0.000 0.000 1.000 18 0.000
M.E 2 0.000 0.000 1.000 17 0.000
M.LN10 3 0.000 0.000 1.000 17 0.000
D.defaultCharset 71 0.075 0.001 0.999 1 0.000
Width and height of fallback font text 2,347 0.199 nan 0.998 11 0.100
W.[performance, console].jsHeapSizeLimit 24 0.083 0.002 0.991 3 0.000
W.menubar.visible 5 0.035 0.000 1.000 4 0.000
W.isSecureContext 4 0.045 0.000 0.999 5 0.000
S.fontSmoothingEnabled 4 0.042 0.001 1.000 1 0.000
new Date(0) 1,846 0.118 0.004 0.998 82 0.004
new Date(”0001-1-1”) 2,107 0.150 0.010 0.999 60 0.002
new Date(0) then setFullYear(0) 2,376 0.136 0.013 0.998 61 0.001
Detection of an adblocker 19 0.002 0.001 0.999 1 2.157
Firebug resource detection 3 0.037 0.000 1.000 1 0.055
YahooToolbar resource detection 3 0.037 0.000 1.000 1 0.056
EasyScreenshot resource detection 3 0.037 0.000 1.000 1 0.056
Ghostery resource detection 3 0.037 0.000 1.000 1 0.057
Kaspersky resource detection 3 0.037 0.000 1.000 1 0.057
VideoDownloadHelper resource detection 3 0.038 0.001 0.998 1 0.057
GTranslate resource detection 3 0.037 0.000 1.000 1 0.059
Privowny resource detection 2 0.037 0.000 1.000 1 0.059
Privowny page content change 3 0.000 0.000 1.000 3 2.170
UBlock page content change 4 0.000 0.000 1.000 1 2.183
Pinterest page content change 10 0.001 0.001 0.999 1 2.153
Grammarly page content change 3 0.000 0.000 1.000 1 2.184
Adguard page content change 3 0.000 0.000 1.000 1 2.165
Evernote page content change 3 0.000 0.000 1.000 1 2.181
TOTL page content change 3 0.000 0.000 1.000 1 2.181
IE Tab page content change 11 0.000 0.000 1.000 1 2.156
WebRTC fingerprinting 671,254 0.294 0.144 0.765 1 0.764
WG.SHADING_LANGUAGE_VERSION 23 0.103 0.000 0.996 18 0.001
WG.VERSION 247 0.123 0.008 0.995 10 0.000
WG.VENDOR 11 0.080 0.000 0.997 7 0.000
WG.RENDERER 14 0.089 0.000 0.996 12 0.000
WG.ALIASED_POINT_SIZE_RANGE 42 0.129 0.006 0.996 5 0.000
WG.ALIASED_LINE_WIDTH_RANGE 30 0.077 0.003 0.996 3 0.000
WM.VIEWPORT_DIMS 13 0.107 0.009 0.995 11 0.000

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 49

Attribute Values N. Ent. MNCE % Same Size Time

WG.SUBPIXEL_BITS 9 0.039 0.001 0.997 1 0.000
WG.SAMPLE_BUFFERS 5 0.039 0.000 0.996 1 0.000
WG.SAMPLES 9 0.075 0.001 0.992 1 0.000
WG.COMPRESSED_TEXTURE_FORMATS 3 0.034 0.000 0.998 23 0.000
WM.VERTEX_UNIFORM_ATTRIBUTES 18 0.118 0.006 0.996 3 0.000
WM.COMBINED_TEXTURE_IMAGE_UNITS 19 0.079 0.003 0.996 2 0.000
WM.FRAGMENT_UNIFORM_ATTRIBUTES 18 0.109 0.004 0.996 3 0.000
WM.CUBE_MAP_TEXTURE_SIZE 11 0.084 0.008 0.995 5 0.000
WG.STENCIL_VALUE_MASK 8 0.050 0.000 0.996 10 0.000
WG.STENCIL_WRITEMASK 7 0.050 0.000 0.996 10 0.000
WG.STENCIL_BACK_VALUE_MASK 8 0.050 0.000 0.996 10 0.000
WG.STENCIL_BACK_WRITEMASK 7 0.050 0.000 0.996 10 0.000
WM.TEXTURE_SIZE 10 0.081 0.009 0.995 5 0.000
WG.DEPTH_BITS 7 0.047 0.000 0.996 2 0.000
WM.VARYING_ATTRIBUTES 19 0.121 0.009 0.996 2 0.000
WI.COLOR_READ_FORMAT 7 0.073 0.003 0.994 4 0.000
WM.RENDERBUFFER_SIZE 11 0.080 0.003 0.995 5 0.000
WG.STENCIL_BITS 5 0.016 0.000 0.997 1 0.000
WM.TEXTURE_IMAGE_UNITS 7 0.033 0.000 0.997 2 0.000
WM.VERTEX_ATTRIBS 8 0.017 0.000 0.997 2 0.000
WM.VERTEX_TEXTURE_IMAGE_UNITS 9 0.057 0.001 0.996 2 0.000
WI.COLOR_READ_TYPE 6 0.041 0.000 0.996 4 0.000
WM.TEXTURE_MAX_ANISOTROPY_EXT 9 0.029 0.000 0.997 2 0.001
WG.getContextAttributes() 54 0.114 0.009 0.995 138 0.000
WG.getSupportedExtensions() 535 0.209 0.027 0.990 401 0.008
WG.[…].UNMASKED_VENDOR_WEBGL 27 0.115 0.000 0.995 9 0.000
WG.[…].UNMASKED_RENDERER_WEBGL 3,786 0.268 0.073 0.991 20 0.000
WebGL precision format 25 0.071 0.001 0.996 114 0.001
Our designed WebGL canvas 1,158 0.263 0.023 0.990 64 0.041
Width and position of a created div 17,832 0.324 nan 0.940 18 0.086
Colors of layout components 7,707 0.153 nan 0.986 492 0.090
Size of bounding boxes of a created div 16,396 0.369 nan 0.470 31 0.195
Presence of fonts 17,960 0.305 0.110 0.996 198 0.456
Support of video codecs 84 0.114 0.001 0.999 78 0.002
Support of audio codecs 52 0.128 0.002 0.999 61 0.001
Support of streaming codecs 50 0.132 0.010 0.999 133 0.002
Support of recording codecs 7 0.069 0.000 0.999 140 0.001
W.speechSynthesis.getVoices() 3,967 0.204 0.034 0.945 250 0.550
N.plugins 314,518 0.394 0.100 0.950 134 0.001
N.mimeTypes 174,876 0.311 0.017 0.982 112 0.000
A.state 5 0.082 0.000 0.999 7 0.000
A.sampleRate 16 0.070 0.019 0.997 5 0.000
AD.channelCount 5 0.036 0.000 1.000 1 0.000
AD.channelCountMode 4 0.036 0.000 1.000 8 0.000
AD.channelInterpretation 4 0.036 0.000 1.000 8 0.000
AD.maxChannelCount 20 0.058 0.003 1.000 1 0.000

, Vol. 1, No. 1, Article . Publication date: June 2020.

50 Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel

Attribute Values N. Ent. MNCE % Same Size Time

AD.numberOfInputs 3 0.035 0.000 1.000 1 0.000
AD.numberOfOutputs 3 0.035 0.000 1.000 1 0.000
AA.channelCount 5 0.067 0.000 1.000 1 0.001
AA.channelCountMode 5 0.037 0.000 1.000 3 0.000
AA.channelInterpretation 4 0.036 0.000 1.000 8 0.000
AA.numberOfInputs 4 0.036 0.000 1.000 1 0.000
AA.numberOfOutputs 4 0.036 0.000 1.000 1 0.000
AA.fftSize 3 0.035 0.000 1.000 4 0.000
AA.frequencyBinCount 3 0.035 0.000 1.000 4 0.000
AA.maxDecibels 3 0.035 0.000 1.000 3 0.000
AA.minDecibels 3 0.035 0.000 1.000 4 0.000
AA.smoothingTimeConstant 4 0.046 0.000 0.998 3 0.000
Audio fp simple 337 0.153 0.004 0.958 18 1.403
Audio fp advanced 561 0.147 0.001 0.953 17 1.636
Audio fp advanced frequency data 546 0.161 0.011 0.950 17 1.639
Our designed HTML5 canvas (PNG) 269,874 0.420 0.021 0.922 64 0.260
Our designed HTML5 canvas (JPEG) 205,005 0.399 0.001 0.936 64 0.265
HTML5 canvas inspired by AmIUnique (PNG) 8,948 0.353 0.002 0.986 64 0.031
HTML5 canvas inspired by AmIUnique (JPEG) 6,514 0.312 0.001 0.989 64 0.039
HTML5 canvas similar to Morellian (PNG) 41,845 0.385 0.034 0.947 64 0.037
Accept HTTP header 26 0.028 0.000 0.997 3 0.000
Accept-Encoding HTTP header 30 0.019 0.002 1.000 13 0.000
Accept-Language HTTP header 2,833 0.124 0.022 0.999 35 0.000
User-Agent HTTP header 20,961 0.350 0.002 0.978 108 0.000
Accept-Charset HTTP header 18 0.002 0.000 1.000 1 0.000
Cache-Control HTTP header 47 0.055 0.023 0.706 1 0.000
Connection HTTP header 2 0.000 0.000 1.000 5 0.000
TE HTTP header 2 0.000 0.000 1.000 1 0.000
Upgrade-Insecure-Requests HTTP header 2 0.000 0.000 1.000 1 0.000
X-WAP-Profile HTTP header 4 0.000 0.000 1.000 1 0.000
X-Requested-With HTTP header 151 0.004 0.000 1.000 1 0.000
X-ATT-DeviceId HTTP header 1 0.000 0.000 1.000 1 0.000
X-UIDH HTTP header 1 0.000 0.000 1.000 1 0.000
X-Network-Info HTTP header 4 0.000 0.000 1.000 1 0.000
Via HTTP header 4,272 0.007 0.003 0.999 1 0.000
Any conditional HTTP headers 5,394 0.095 0.042 0.899 192 0.000
Number of bounding boxes 15 0.062 0.008 0.998 1 0.195
Number of plugins 54 0.147 0.000 0.984 1 0.001
Number of WebGL extensions 28 0.176 0.000 0.991 2 0.008
Width and height of first bounding box 12,937 0.350 nan 0.486 30 0.195
Width and height of second bounding box 1,332 0.103 nan 0.941 1 0.195
Width and height of third bounding box 772 0.076 nan 0.965 1 0.195
List of widths of bounding boxes 6,690 0.299 nan 0.986 16 0.195
List of heights of bounding boxes 2,222 0.264 nan 0.474 14 0.195
Width of first bounding box 4,418 0.281 0.038 0.987 14 0.195
Height of first bounding box 1,848 0.246 0.070 0.490 14 0.195

, Vol. 1, No. 1, Article . Publication date: June 2020.

A Large-scale Empirical Analysis of Browser Fingerprints Properties for Web Authentication 51

Attribute Values N. Ent. MNCE % Same Size Time

Width of second bounding box 471 0.085 0.002 0.998 1 0.195
Height of second bounding box 398 0.088 0.007 0.941 1 0.195
Width of third bounding box 224 0.060 0.004 0.999 1 0.195
Height of third bounding box 343 0.064 0.000 0.966 1 0.195
Width of a created div 15,473 0.316 0.007 0.940 6 0.086
Origin of a created div 16,375 0.316 0.008 0.942 11 0.086
Width of fallback font text 1,029 0.184 0.024 0.998 5 0.100
Height of fallback font text 1,159 0.164 0.010 0.998 5 0.100
Color of ActiveBorder element 702 0.078 0.005 1.000 18 0.090
Color of ActiveCaption element 475 0.073 0.002 1.000 18 0.090
Color of AppWorkspace element 321 0.067 0.001 1.000 18 0.090
Color of Background element 2,917 0.074 0.017 1.000 16 0.090
Color of ButtonFace element 297 0.079 0.004 1.000 18 0.090
Color of ButtonHighlight element 264 0.058 0.000 1.000 18 0.090
Color of ButtonShadow element 343 0.076 0.001 1.000 18 0.090
Color of ButtonText element 104 0.004 0.000 1.000 12 0.090
Color of CaptionText element 123 0.014 0.000 1.000 12 0.090
Color of GrayText element 333 0.071 0.004 1.000 18 0.090
Color of Highlight element 1,088 0.097 0.016 0.987 17 0.090
Color of HighlightText element 89 0.049 0.001 1.000 18 0.090
Color of InactiveBorder element 334 0.060 0.000 1.000 18 0.090
Color of InactiveCaption element 441 0.062 0.001 1.000 18 0.090
Color of InactiveCaptionText element 265 0.088 0.006 0.999 15 0.090
Color of InfoBackground element 239 0.057 0.000 1.000 18 0.090
Color of InfoText element 96 0.003 0.000 1.000 12 0.090
Color of Menu element 376 0.087 0.004 1.000 18 0.090
Color of MenuText element 124 0.020 0.001 1.000 12 0.090
Color of Scrollbar element 275 0.072 0.000 1.000 18 0.090
Color of ThreeDDarkShadow element 75 0.071 0.001 1.000 18 0.090
Color of ThreeDFace element 297 0.062 0.000 1.000 18 0.090
Color of ThreeDHighlight element 261 0.048 0.000 1.000 18 0.090
Color of ThreeDLightShadow element 280 0.074 0.001 1.000 18 0.090
Color of ThreeDShadow element 339 0.075 0.000 1.000 18 0.090
Color of Window element 329 0.019 0.001 1.000 18 0.090
Color of WindowFrame element 140 0.069 0.000 1.000 18 0.090
Color of WindowText element 107 0.004 0.000 1.000 12 0.090

, Vol. 1, No. 1, Article . Publication date: June 2020.

	Abstract
	1 Introduction
	2 Dataset
	2.1 Fingerprints collection
	2.2 Browser population bias
	2.3 Privacy concerns
	2.4 Data preprocessing
	2.5 Comparison with previous studies

	3 Authentication factor properties
	3.1 Distinctiveness
	3.2 Stability
	3.3 Performance

	4 Evaluation of browser fingerprints properties
	4.1 Distinctiveness
	4.2 Stability
	4.3 Performance
	4.4 Conclusion

	5 Attribute-wise analysis
	5.1 Contribution of particular attributes
	5.2 Correlation between attributes
	5.3 Focus on dynamic attributes

	6 Related works
	7 Conclusion
	Acknowledgments
	References
	A Browser fingerprinting attributes
	A.1 JavaScript properties
	A.2 HTTP headers
	A.3 Enumeration or presence of browser components
	A.4 Extension detection
	A.5 Size and color of web page elements
	A.6 WebGL properties
	A.7 WebRTC fingerprinting
	A.8 HTML5 canvases inspired by previous studies
	A.9 Audio fingerprinting

	B Keywords
	B.1 Robot keywords
	B.2 Device type
	B.3 Browser and operating system families

	C Browser fingerprinting-based authentication mechanism
	D Advanced verification mechanism
	D.1 Attributes matching
	D.2 Distribution of matching attributes
	D.3 Distribution of match rates
	D.4 Comparison with identical matching

	E Attributes list and property
	E.1 Properties distribution
	E.2 Attributes list

