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1 Introduction

String theory in anti-de Sitter space-time is conjectured to be holographically dual to
conformal field theory [1]. The most prominent examples of the conjecture have more
than one supersymmetry. The corresponding boundary conformal field theories allow for a
topological twist [2] and therefore, by holographic duality, so does string theory in anti-de
Sitter space-time. Thus, topologically twisting quantum theories of gravity in anti-de Sitter
space-time is a natural enterprise.

At the supergravity level, there have been multiple contributions to understanding
the twisted theory in the bulk. Bulk supergravity path integrals have been shown to be
amenable to localization. See e.g. [3–8]. The approach to the twisting of supergravity in [9]
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on the other hand, is based on a BCOV type topological theory [10] generalized to arbi-
trary Calabi-Yau manifolds [11].1 It has been used to study the backreaction of D-branes
in a topological string theory in the spirit of the original derivation of the AdS/CFT cor-
respondence [12], including in three-dimensional anti-de Sitter space-time [13]. Moreover,
string theory on AdS3 at a curvature radius equal to the string length has been demon-
strated to have topological features, and has been holographically matched to an impressive
degree [14, 15]. Other approaches to topologically twist AdS3 string theory include [16, 17].

In this paper, we follow the conceptual road laid out in [18], where we exploited a
holographic duality between Chern-Simons supergravity in the bulk and a boundary con-
formal field theory with extended supersymmetry. In this simplified model of quantum
holography, we showed how to obtain a topologically twisted bulk theory. It was con-
structed by noting that the topological boundary energy-momentum tensor couples in a
twisted manner to the boundary degrees of freedom, and that therefore the introduction
of a non-trivial boundary metric requires twisted asymptotic boundary conditions in the
bulk. These twisted asymptotic boundary conditions, combined with a suitably defined
cohomology of physical states, define a bulk theory independent of the boundary metric.
In that sense, it is a topologically twisted theory of quantum gravity [18].

In this paper, we define a string theory in three-dimensional anti-de Sitter space-time
with specific couplings to the boundary metric. The bulk generating function of correlation
functions is defined as a functional of the boundary metric. The derivative of the generating
function with respect to the boundary metric is the boundary energy-momentum tensor.
Our goal will be to demonstrate that with an appropriate twist in the boundary conditions,
the boundary energy-momentum tensor is the energy-momentum tensor of the topologically
twisted boundary theory. Since the latter is known to be cohomologically exact, that
guarantees the independence of the bulk correlators from the boundary metric. Thus, we
take an important step in understanding the bulk topological string theory.

Our paper is structured as follows. In section 2 we review the string generating func-
tion of correlation functions. We emphasize that the string background around which we
expand must be on-shell, and that the choice of background solution, and in particular its
boundary conditions, determines the resulting boundary energy-momentum tensor. In sec-
tion 3 we describe three-dimensional anti-de Sitter string theory backgrounds with purely
NS-NS flux for a generic boundary metric. Next, we generalize these string backgrounds to
include an extra circle. The circle is a geometric counterpart to the U(1)R symmetry that
we need to topologically twist the boundary superconformal field theory. We render the de-
pendence of the AdS3 string background on the boundary metric explicit. We also present
the bulk solution with a boundary gauge field that couples to the R-symmetry current. In
section 4, we compute the world sheet vertex operators that correspond to the physical
boundary energy-momentum tensor, the R-symmetry current, as well as the topological
boundary energy-momentum tensor. The expressions are derived for a generic conformally
flat boundary. Finally, we prove in a simple manner that the boundary energy-momentum

1The topological string theory in question has been constructed in a mathematical framework. It would
be interesting to have a physical understanding of the theory close to the BCOV derivation of topological
string theory on Calabi-Yau three-folds.
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tensor for the string theory with appropriately twisted boundary conditions is indeed topo-
logical. We conclude with a summary and suggestions for future research in section 5.

2 The generating function

We define the string theory generating function Z of correlation functions:

Z[φ(0), J ] =
∞∑

genus=0
Zgenus[φ(0), J ] =

∞∑
genus=0

∫
[DX]genus exp(−S[φ(0), J,X]) . (2.1)

The generating function Z has a perturbative definition as a sum over genera. We em-
phasized that the generating function of correlation functions depends on the background
fields that we collectively denoted φ(0). The generating function is also a functional of the
sources J which couple to the normalizable string excitations. The correlation functions of
normalizable string states in the background φ(0) can be obtained genus by genus through
derivation with respect to the sources J and by path integrating over the world sheet fields
X and the moduli space of Riemann surfaces. In principle, we can shift the background
fields φ(0) by (for instance) coherent states of the normalizable modes, and obtain a differ-
ent background which is part of the same quantum theory [19]. The non-normalizable part
of the fields of the theory however are given once and for all, and they specify the quantum
theory of gravity at hand. The traditional definition of perturbative first quantized string
theory makes sense when the background as well as the perturbative excitations are on-shell.

We will study the generating function Z[φ(0), J ] and its derivatives in string theory in a
three-dimensional space-time with a negative cosmological constant. The most frequently
studied background in this category is the three-dimensional anti-de Sitter Poincaré patch
with metric:

ds2 = l2
(
dr2

r2 + r2dxdx̄

)
. (2.2)

The background is supported by a NS-NS three-form field strength H(3) which is pro-
portional to the volume form on the AdS3 space-time. The dilaton Φ is constant. The
boundary metric in the Poincaré patch (2.2) is flat. One of our goals is to understand
the bulk holographic counterpart to the distinction between a physical boundary theory
with a standard energy-momentum tensor, and a topologically twisted boundary theory
with an energy-momentum tensor which is trivial in cohomology. To make the distinction
between energy-momentum tensors, we need to study their coupling to the boundary met-
ric. We therefore analyze string theory on a broader set of backgrounds than the AdS3
space-time (2.2) with flat boundary.

In field theory, we compute the energy-momentum tensor as the derivative of the action
with respect to the metric. In our first quantized string theoretic approach, a good stand-in
for the space-time effective action is the generator of correlation functions Z. Indeed, it
has been argued that the string effective action is closely related to the generating function
of correlation functions (see e.g. [20] for a review). Thus, the boundary energy-momentum
tensor will measure the change of the generating function Z under perturbations of the
boundary metric.
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Therefore, we are motivated to study string theory in a bulk space-time metric Gµν
which depends on a boundary space-time metric g(0)

ij . To leading order in a radial expansion,
we study strings propagating in the background space-time:

ds2 = l2
(
dr2

r2 + r2g
(0)
ij dx

idxj +O(r0)dxidxj
)
. (2.3)

The boundary metric g(0)
ij is part of the non-normalizable boundary conditions in the bulk.

It is important to note that its introduction will also lead to subleading terms in the
metric since the total background must remain on-shell. Once we introduce the background
boundary metric g(0)

ij , the generating function Z[g(0)
ij , J ] becomes a functional of the metric.

We can differentiate the generating function Z with respect to the boundary metric to
obtain a world sheet vertex operator that codes the space-time boundary energy-momentum
tensor. This space-time energy-momentum tensor operator was determined in [21, 22] for a
flat boundary metric through slightly different means. A derivation that roughly matches
the scheme outlined above can be found in [23]. We will generalize the derivation to the
case of a generic conformally flat boundary.

Moreover, we wish to show that for AdS3 backgrounds dual to N = 2 superconformal
field theories on the boundary, there is a definition of bulk backgrounds depending on
boundary metrics g(0)

ij that leads to a topological boundary space-time energy-momentum
tensor. Indeed, the boundary N = 2 superconformal field theory can be twisted to a
topological conformal field theory [24, 25]. The energy-momentum tensor of the untwisted
boundary N = 2 superconformal field theory we denote by T , its left-moving U(1)R current
by J R and the left-moving N = 2 supercurrents by G±. The topological conformal field
theory is defined by restricting observables to a zero mode supercharge G+

0 cohomology,
and by observing that the twisted energy-momentum tensor

T top
xx = Txx + 1

2∇xJ
R
x (2.4)

is G+
0 exact as a consequence of the boundary N = 2 superconformal algebra [24, 25].

Thus, part of our task is to show that there is a string theory generating function of
correlation functions whose derivative with respect to the boundary metric gives rise to
the topological energy-momentum tensor T top. This is what we wish to demonstrate in
this paper for backgrounds with a conformally flat boundary.

3 The three-dimensional stringy geometries

In this section we dress standard three-dimensional solutions of Einstein gravity with a
negative cosmological constant and arbitrary boundary metric [26] with a NS-NS three-
form flux H(3) and a constant dilaton Φ such that they become solutions of the space-
time equations of motion of string theory. We then include an extra circle direction that
will model the U(1)R symmetry of our boundary conformal field theory with extended
supersymmetry. Next, we twist the solution to include a boundary metric dependent
fibering of the circle over the anti-de Sitter space-time.
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3.1 The stringy standard background

Three-dimensional gravity with a negative cosmological constant permits the following
solution in Fefferman-Graham gauge [26]

ds2 = l2
(
dr2

r2 + (r2g
(0)
ij + g

(2)
ij + r−2g

(4)
ij )dxidxj

)
, (3.1)

where g(0)
ij (xk) is a freely chosen boundary metric and the subleading terms in the metric

are largely determined by the Einstein equations:

g
(2)
ij = −1

2R
(0)g

(0)
ij −

4GN
l

Tij (3.2)

g
(4)
ij = 1

4g
(2)
ik g

(0)klg
(2)
lj . (3.3)

We introduced the three-dimensional Newton constant GN and a conserved boundary
energy-momentum tensor Tij which satisfies the trace anomaly T ii = −cR(0)/12 with
Brown-Henneaux central charge c = 3l/(2GN ) [27]. In the following we will consider a
solution to string theory based on this general relativity background. We consider a string
theory in its NS-NS sector, with a background metric Gµν , a NS-NS three-form flux H(3)
as well as a dilaton Φ. For now, we will ignore the rest of the internal manifold of the string
theory (which we do assume to be compact throughout). To first order in the inverse string
tension α′ the equations of motion for these fields in string theory read [28]:

α′Rµν + 2α′∇µ∇νΦ− α′

4 HµλωHν
λω = 0

−α
′

2 ∇
ωHωµν + α′∇ωΦHωµν = 0

cmatter − ccritical
6 − α′

2 ∇
2Φ + α′∇ωΦ∇ωΦ− α′

24HµνλH
µνλ = 0 . (3.4)

We take the dilaton Φ to be constant such that we have a constant string coupling. We
moreover consider the metric solution (3.1) which satisfies

Rµν = − 2
l2
Gµν . (3.5)

A NS-NS three-form flux proportional to the volume form saturates the first two equalities
in the space-time equations of motion (3.4):

H(3) = 2
l

√
|G| dxµ ∧ dxν ∧ dxρ . (3.6)

Indeed, we then have that Hµνρ = 2/l
√
|G|εµνρ and since the space-time metric Gµν is

covariantly constant, we satisfy the equations of motion. The last equation of motion
in (3.4) is also satisfied if we take into account the contribution of the flux to the total
world sheet central charge, as is standard in AdS3 string theory. We summarize the stringy
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standard background solution:

ds2 = l2
(
dr2

r2 + (r2g
(0)
ij + g

(2)
ij + r−2g

(4)
ij )dxidxj

)

H(3) = 2
l

√
|G| dxµ ∧ dxν ∧ dxρ

Φ = constant . (3.7)

This solution is standard in the sense that it is unique under the conditions that we keep the
dilaton constant, we fix the metric to be of the form (3.1) and we allow for NS-NS flux only,
in the three directions of space-time at hand.2 We worked at the level of the gravitational
approximation to string theory (as we will do in the rest of the paper), but it is important
to realize that many considerations can be made exact in α′. See e.g. [21–23, 29, 30]. While
one is not able to solve the world sheet conformal field theory in all these backgrounds,
performing conformal perturbation theory in generic deformations around Poincaré AdS3
is within reach. Finally, the variation of the generating function of correlation functions
with respect to the boundary metric component δg(0)

xx = hxx near the AdS3 solution gives
rise to the space-time energy-momentum component T xx as described in [21–23].

3.2 The twisted background

To obtain a topological string theory (in the sense that it will be independent of the
boundary values of the metric), we allow the boundary metric to couple to other degrees
of freedom in the theory [18]. Drawing inspiration from the topological twist of ordinary
quantum field theories [2], we expect that the boundary metric will also couple to the
derivative of the R-symmetry current.

Indeed, to topologically twist we need a boundary conformal field theory with at least
N = 2 supersymmetry and therefore a U(1)R symmetry. The conditions on the bulk
string theory in order to reach such boundary theories were carefully analyzed in [31]. If
we assume that the boundary conformal field theory has both a left and a right N = 2
superconformal algebra, then a reasonably generic representation of backgrounds that allow
for this boundary conformal symmetry are backgrounds with an extra circle direction.
Thus, we generalize the standard string background (3.7) to include an extra circle. When
we have an extra direction in space-time, more general solutions to the equations of motion
of string theory exist, including solutions that fibre the circle over the standard stringy
solution constructed above. To discuss these solutions, we first recall the dimensional
reduction of a four-dimensional string effective action.

3.2.1 Dimensional reduction

We consider a four-dimensional space-time that is the product of a three-dimensional space-
time with negative cosmological constant and a circle fibered over the locally AdS3 factor.

2The assumption that the NS-NS-flux moves in lockstep with the metric propagates throughout the
paper. A microscopic construction of the string theory background in terms of near horizon NS5-branes
and fundamental strings is bound to obey it.
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Again, we concentrate on the NS-NS sector. We pick a dilaton Φ which is constant and
consider a four-dimensional metric G4

MN as well as a NS-NS two-form B4
(2) of the type:

G4
MNdx

MdxN = Gµνdx
µdxν +G44(dθ +Aµdx

µ)2

B4
(2) = 1

2BMNdx
M ∧ dxN = 1

2Bµνdx
µ ∧ dxν +Bµ4dx

µ ∧ dθ , (3.8)

where the index M can take the three-dimensional values µ as well as 4. The fourth
direction with coordinate x4 = θ is a compact direction and the angle θ is identified
modulo 2πR. When we dimensionally reduce the four-dimensional string effective action

Sspace-time = 1
2κ2

0

∫
d4x(−G4)

1
2 e−2Φ

(
R+ 4∇µΦ∇µΦ− 1

12HMNLH
MNL

)
(3.9)

on the circle, we obtain the three-dimensional action [28]:

Sspace-time = 2πR
2κ2

0

∫
d3x(−G)

1
2 e−2Φ3

(
R3 − ∂µσ∂µσ + 4∂µΦ3∂

µΦ3 −
1
4e

2σFµνF
µν

− 1
12(H̃µνλH̃

µνλ + 3e−2σH4µνH4
µν)
)

(3.10)

where we introduced the notations

G44 = e2σ , Φ3 = Φ− σ/2 ,
H̃µνλ = (∂µBνλ −AµH4νλ) + cyclic . (3.11)

If we pick both the dilaton Φ and the metric component G44 = e2σ to be constant, then
the action reduces to a three-dimensional gravity coupled to two Maxwell fields as well as
an anti-symmetric two-form tensor:

Sspace-time= 2πR
2κ2

0

∫
d3x(−G)

1
2 e−2Φ3

(
R3−

1
12H̃µνλH̃

µνλ− 1
4e

2σFµνF
µν− 1

4e
−2σH4µνH4

µν
)
.

(3.12)
Thus, we have an almost standard three-dimensional Neveu-Schwarz-Neveu-Schwarz sector,
as well as two Maxwell fields Aµ and B4µ. In the following, we set the metric component
G44 = 1 by rescaling the coordinate θ. We furthermore redefine the Maxwell fields into a
new pair of U(1) gauge fields:

AR = 1
2l (Aµ +Bµ4)

ĀR = 1
2l (Aµ −Bµ4) . (3.13)

3.2.2 Degrees of freedom
An understanding of the dynamics of the gauge field fluctuations around the solution (3.7)
will be useful. To that end, we plug in the background NS-NS H(3) flux proportional to
the volume form in (3.12). We concentrate on the fluctuations of the gauge fields AR and
ĀR only, and find the quadratic part of the effective action

Squad
gauge = 2πRe−2Φ3

2κ2
0

∫
d3x

(
2l(AR ∧ dAR − ĀR ∧ dĀR)− l2(FR ∗ FR + F̄R ∗ F̄R)

)
.

(3.14)

– 7 –
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The free part of the equation of motion of the gauge field AR reads:

d ∗ FR = −2
l
dAR . (3.15)

As a consequence, the gauge field AR can be split into two terms [33]:

AR = ARflat −
l

2 ∗ F
R . (3.16)

The first term consists of a flat connection ARflat. The second term is proportional to the
Hodge dual of the gauge invariant field strength and satisfies the equation of motion

l ∗ d(AR −ARflat) = −2(AR −ARflat) (3.17)

of a massive field dual to a (2, 1) primary operator [32]. It is important to us that the
flat part of the gauge field is dual to the current while its curvature is dual to a higher
dimensional operator [32]. Moreover, note that the flat gauge field ARflat satisfies a first
order differential equation and that we therefore expect to fix a single component of the
flat gauge field at infinity when solving the equations of motion.

3.2.3 Flat generalizations

The dimensionally reduced action (3.12) makes it manifest that we can generalize the
stringy standard solution (3.7). Indeed, when the two Maxwell fields are flat, the NS-NS
equations of motion reduce to the three-dimensional equations of motion (3.4). We con-
clude that the stringy standard background (3.7) can be augmented to a four-dimensional
solution:

Φ : constant
Gµν : locally AdS3 with a non-trivial boundary metric
H : proportional to the volume form

G44 : constant
AR and ĀR : flat . (3.18)

3.2.4 The explicit boundary gauge field dependence

Firstly, we consider a class of solutions that allows us to compute the boundary U(1)R
current J R. The current couples to flat boundary gauge field fluctuations. Thus, we
add a flat boundary fluctuation of the gauge field to the background solution (3.7). We
parameterize the solution in terms of the fluctuation of the gauge field component δARx̄ and
find from the flatness equation that the other component is given by:

δARx =
∫ x̄

∂xδA
R
x̄ . (3.19)

This is a simple example of how the solution takes on a non-local character when we param-
eterize it in terms of boundary fluctuations that couple directly to conserved currents. It is
important to note that parameterising the theory in terms of a given boundary component

– 8 –
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is tantamount to adding a particular boundary term to the action [34]. The resulting action
should have an energy bounded from below. This requirement fixes the boundary compo-
nent to be chosen in terms of the sign of the Chern-Simons level of the quadratic effective
action (3.14) for the gauge fields [34]. We have chosen our boundary component accordingly.

3.2.5 The explicit boundary metric dependence

In the following, we choose to perturb the boundary metric around a conformally flat
metric. Conformally flat background metrics have the advantage of allowing for non-trivial
boundary curvature R(0), while still retaining some of the simplicity of the background with
a flat boundary metric.3 Thus, we firstly note that the equation (3.2) for the subleading
metric perturbation combined with the trace condition on the energy-momentum tensor
permits a closed form local solution for the conformally flat boundary metric:

g
(0) conf. flat
ij dxidxj = e2ωdxdx̄ . (3.20)

In the following we work with a background boundary metric which is a small perturbation
of the conformally flat metric, and we shall solve for the bulk metric explicitly. In this
generalization, non-local terms appear.

Thus, we wish to compute the explicit subleading metric dependence of the standard
solution (3.7) for a boundary metric of the form:4

ds2 = dr2

r2 + r2e2ωdxdx̄+ r2hxxdxdx

+(∂2
xω − (∂xω)2)dxdx+ 2∂x∂x̄ωdxdx̄+ (∂2

x̄ω − (∂x̄ω)2)dx̄dx̄
+δg(2)

xx dxdx+ 2δg(2)
xx̄ dxdx̄+ δg

(2)
x̄x̄ dx̄dx̄

+O(r−2) . (3.21)

As advertised, we have added a conformal factor e2ω and have explicitly solved for the
O(r0) subleading term as a function of the conformal factor ω. On top of this conformally
flat boundary metric, we have added a leading O(r2) perturbation hxx of the boundary
metric component g(0)

xx . Our task is to explicitly solve for the dependence of the subleading
terms δg(2)

ij as a functional of the leading perturbation hxx. Solving Einstein’s equations
to leading order in the metric perturbation hxx leads to the equalities:

δg(2)
xx = −1

2e
−2ω(∂x∂x̄hxx − 2∂x∂x̄ωhxx − 4∂xω∂x̄hxx) , (3.22)

δg
(2)
xx̄ = −1

2e
−2ω[∂2

x̄hxx − 2∂x̄ω∂x̄hxx − 2(∂2
x̄ω − (∂x̄ω)2)hxx] , (3.23)

δg
(2)
x̄x̄ = −1

2

∫ x

∂3
x̄(e−2ωhxx) . (3.24)

The exact subleading O(r−2) metric dependence on the perturbation is then easily obtained
by plugging this perturbation for g(2)

ij into the consequence (3.3) of Einstein’s equations.
3The curvature is crucial, to give but one example, to understand the boundary theory on a two-sphere.

Indeed, while the boundary theory we are aiming for may be locally independent of the metric, it still
depends on topological curvature invariants like the Euler number of the boundary Riemann surface.

4We often set the cosmological constant length scale l = 1 from now on.
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To understand the string theory background to this order, it is useful to be more
explicit about the NS-NS two-form potential B(2). We note that the square root of the
determinant of the three-dimensional metric Gµν (3.1) equals:

√
G = r

√
g(0)

1 +
g(0)ijg

(2)
ji

2r2 + 1
4r4

g(2)

g(0)

 . (3.25)

We can thus radially integate the NS-NS three-form to obtain the two-form gauge potential:

B(2) =
√
g(0)

(
r2 + log r g(0)ijg

(2)
ji −

1
4r2

g(2)

g(0)

)
dxi ∧ dxj . (3.26)

We keep our string background on the mass shell, and compute the perturbation of the
NS-NS two-form potential as a consequence of the metric perturbation hxx to zeroth (or
logarithmic) order in the radial coordinate r. We note that the metric perturbation hxx
does not change (the square root of the absolute value of) the determinant of the boundary
metric g(0)

ij — it remains
√
g(0) = 1

2e
2ω. Furthermore, we recall that the trace of the second

order of the boundary metric equals half the boundary Ricci scalar, g(0)ijg
(2)
ji = −R(0)/2,

such that we need the dependence of the Ricci-scalar on the perturbation hxx to first order:

R(0) = 4e−4ω(−2∂x̄hxx∂x̄ω + ∂2
x̄hxx − 2e2ω∂x∂x̄ω) . (3.27)

Combining equations (3.26) and (3.27), we know explicitly the NS-NS two-form potential
B(2) to first order in the metric perturbation hxx.

3.2.6 The asymptotic twisted generalization
Finally, we generalize the solution (3.7) to the background central to our intent. We
introduce a dependence of the U(1)R gauge field on the asymptotic boundary metric g(0)

ij

in order to couple the boundary metric non-trivially to the R-current. We draw inspiration
from the analogous exercise performed in supergroup Chern-Simons theory [18] as well
as from the literature on topological quantum field theories [2]. We wish to introduce a
coupling (J R ± J̄ R)µωµ between the R-currents and the spin connection one-form ω =
ωµdx

µ on the boundary, where the relative sign depends on the twist we perform.
In the following, we work near conformally flat boundaries. In conformally flat back-

grounds, the coordinates x and x̄ parameterize light-cone directions in Lorentzian signature.
The boundary R-currents remain chiral, and each current only couples to a single compo-
nent of the spin connection one-form. Thus, the gauge fields AR and ĀR near conformally
flat backgrounds are expected to have the boundary profile

ARx̄ = − i4ω
+−
x̄ , ĀRx = ∓ i4ω

+−
x (3.28)

where ω+− is the spin connection one-form associated to the boundary metric g(0)
ij .5 We

choose the perturbed zweibeins e±:

e+ = eωdx , e− = eωdx̄+ e−ωhxxdx . (3.29)
5We explicitly indicate the upper indices on the single component of the one-form spin connection in

order to avoid a clash of notation with the conformal factor ω.
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When we perform a metric perturbation hxx on top of the conformal background, the
response of the spin connection is chiral and equal to

δω+−
x = −2e−2ω∂x̄hxx = −2∇x̄(gx̄xhxx) , δω+−

x̄ = 0 . (3.30)

Thus, the response of the gauge field component ĀRx̄ to the perturbation equals

δĀRx = ± i2∇x̄(gx̄xhxx) , (3.31)

while the gauge field AR does not vary. We will think of the perturbation as pertaining
to the flat gauge field ĀRflat introduced in equation (3.16) which couples to the boundary
R-current. The other component of the gauge field guarantees that it indeed remains flat,
as in equation (3.19).

4 The space-time energy-momentum operator

In this section we use the perturbed background metrics and gauge potentials of section 3
and plug them into the generating function reviewed in section 2. We then differentiate
with respect to the metric and gauge field perturbations to obtain the world sheet vertex
operators that correspond to the boundary space-time energy-momentum tensor and R-
current in backgrounds with conformally flat boundary. We prove that the twisted string
theory background leads to a topological energy-momentum tensor.

4.1 The energy-momentum

The world sheet vertex operator that represents the physical energy-momentum tensor
of the boundary conformal field theory in AdS3 string theory was derived in [21, 22] for
a flat boundary. In the following, we compute the energy-momentum tensor from the
perspective of the generating function Z[g(0)

ij ] of correlation functions, for all conformally
flat backgrounds. Firstly, we define a world sheet vertex operator Tx̄x̄ as the derivative of
the generating function of correlation functions Z[g(0)

ij ] with respect to the boundary metric
perturbation δg(0)

xx = hxx relative to the conformally flat background metric (3.20). We use
the world sheet action S,

S = 1
2πα′

∫
d2z(GMN +BMN )∂XN ∂̄XM , (4.1)

the metric GMN and the NS-NS two-form B(2) that we obtained in section 3, as well as
the definition (2.1) of the generating function Z. These formulas enable us to functionally
differentiate the world sheet vertex operator that represents the physical boundary energy-
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momentum tensor component Tx̄x̄, to subleading order in the r−2 expansion:

Tx̄x̄(x′,x̄′) = l2e2ω(x′)

α′

∫
d2z

[
r2δ(2)(x−x′)∂x∂̄x

−1
2[(e−2ω∂x∂x̄δ

(2)(x−x′))−2∂x∂x̄ωδ(2)(x−x′)−4∂xω∂x̄(δ(2)(x−x′))]∂x∂̄x

−1
2[∂x̄(e−2ω(x)∂x̄δ

(2)(x′−x))−2e−2ω(∂2
x̄ω−(∂x̄ω)2)δ(2)(x−x′)](∂x∂̄x̄+∂x̄∂̄x)

−1
2

∫ x

∂3
x̄(e−2ωδ(2)(x−x′))∂x̄∂̄x̄ (4.2)

−logr∂x̄(e−2ω∂x̄(δ(2)(x−x′)))(∂x̄∂̄x−∂x∂̄x̄)
]
.

This is the space-time boundary energy-momentum tensor component Tx̄x̄ for locally AdS3
backgrounds with a conformally flat boundary. There is a leading term of order r2, a
subleading symmetric term independent of the radius, and a logarithmic term in the radius
that originates from the anti-symmetric tensor.6 When we restrict our general expression
to the case of a flat boundary metric (namely we put ω = constant) then the space-time
energy-momentum tensor agrees with the expression for the tensor found in [21, 22] up to
an anti-symmetric tensor gauge transformation.7 The equations of motion can be used to
simplify the expression (4.2). One can show that the term of order O(r2) in the energy-
momentum tensor collapses to a term of order O(r0) on shell and that the non-local term
vanishes to order O(r0).8

Secondly, in a conformally flat background the boundary can be curved and the Txx̄
component of the energy-momentum tensor can also be non-zero. Because the metric
variation δhxx̄ amounts to varying the conformal factor ω in the metric, the trace of the
energy-momentum tensor is easier to compute. We find that the component Txx̄ is given by

Txx̄ = e4ω

4 T
xx̄ = e4ω

4
1
2

4πδS√
g(0)δhxx̄

= πδS

δω
. (4.3)

The leading order in the vertex operator Txx̄ equals

Txx̄ = l2

α′

∫
d2z

[
∂x∂x̄δ

(2)(x′ − x)∂x∂̄x̄− log r∂x∂x̄δ(2)(x′ − x)∂x∂̄x̄
]

= l2

α′

∫
d2z

[
∂x∂x̄δ

(2)(x′ − x)∂x∂̄x̄+ ∂xδ
(2)(x′ − x)∂x∂̄ log r

]
. (4.4)

Upon partial integration, the first term is subleading, and the second term can be molded
into a more recognisable form using the equations of motion:

Txx̄ = l2

α′

∫
d2z∂δ(2)(x′−x)∂̄ log r = − l

2

α′

∫
d2z∂δ(2)(x′−x)∂̄ω = l2

α′

∫
d2zδ(2)(x′−x)∂∂̄ω .

6The logarithmic behaviour is familiar from the linear dilaton term in the action of a long string [35].
7This is demonstrated in detail in appendix A.
8See appendix B.
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The trace of the energy momentum tensor is therefore equal to

4e−2ω(x′)Txx̄ = − l
2R(0)

2α′
∫
d2zδ(2)(x′ − x)∂x∂̄x̄ . (4.5)

We recall the space-time central charge operator C st from [22]:

C st = 6 l
2

α′

∫
d2zδ(2)(x′ − x)∂x∂̄x̄ , (4.6)

and conclude that the trace of the energy momentum tensor T satisfies the operator relation

T ii = −C
st

12 R(0) . (4.7)

Thus, we have obtained all the components of the energy-momentum tensor.9 Finally, the
proof that the energy-momentum tensor in the conformally flat background is conserved,
namely that the operator equation ∇µTµν = 0 is valid, is given in appendix B.

4.2 The R-symmetry current

The R-current J R couples to the perturbation of the boundary gauge field. We have
prepared the ground for deriving the space-time R-current in subsection 3.2.4. Using the
explicit expression (3.19) for the gauge field fluctuation and plugging it into the string
world sheet action, and functionally differentiating, we find the R-current component:

J Rx (x′, x̄′) = 2il
α′

∫
d2z

[
δ(2)(x− x′)∂̄x̄∂θ + δARx (x, x̄)

δARx̄ (x′, x̄′)
∂̄x∂θ

]

= 2il
α′

∫
d2z

[
δ(2)(x− x′)∂̄x̄∂θ +

∫ x̄

∂xδ
(2)(x− x′)∂̄x∂θ

]
. (4.8)

We find a single current component since the flat gauge field is parameterized in terms of a
single component of the boundary gauge field.10 We can show that the current component
J Rx is holomorphic in conformally flat backgrounds, ∂x̄J Rx = 0, up to contact terms in the
quantum theory. Indeed, since the gauge field to which the current couples is flat, we have:

∂x̄
δARx (x, x̄)
δARx̄ (x′, x̄′)

= ∂xδ
(2)(x′ − x) . (4.9)

We can use this equation, the chain rule for functional derivation, as well as the chirality
of the world sheet current ∂θ, to show that

∂x̄′J Rx (x′, x̄′) = −2il
α′

∫
d2z∂̄(δ(2)(x′ − x))∂θ (4.10)

equals zero after partial integration.11,12

9The component Txx follows from a parity transformation applied to Tx̄x̄.
10To match onto the analysis of [31] with a flat boundary but a more general world sheet theory, one

identifies their world sheet current J0 with our J0 = i
√

2/α′∂θ, ignoring fermions throughout.
11Our reasoning generalizes the derivation in [22] to conformally flat backgrounds.
12We assume a vanishing gauge field background in the proof.
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4.3 The topological energy-momentum tensor

Recall that we work under the assumption that we have a string theory with space-time
boundary N = 2 superconformal symmetry. Topologically twisting that superconformal
field theory gives rise to a topological energy-momentum tensor of the form [24, 25]

T top
xx = Txx + 1

2∇xJ
R
x . (4.11)

The topological energy-momentum tensor is G+
0 exact because it follows from the boundary

N = 2 superconformal algebra that:

T top
xx = [G+

0 ,G
−] . (4.12)

The boundary twisted N = 2 superconformal theory has correlators that do not depend
on states that are exact in G+

0 cohomology, and therefore they do not depend on boundary
metric perturbations — they are topological. In this subsection, we finally wish to prove
that the twisted boundary conditions that we imposed on our string theory when we have
a non-trivial boundary metric, lead to a world sheet vertex operator expression for the
space-time energy-momentum tensor T top which verifies the relation (4.11) and therefore
indeed gives rise to a bulk string theory that is independent of the boundary metric.

Again, we differentiate the generating function of correlation functions Z[g(0)
ij ] with

respect to the boundary metric component hxx, but now with twisted boundary asymp-
totics (3.28). We find on the one hand the terms that we identified as the physical boundary
energy-momentum tensor Tx̄x̄ (4.2), and a few extra terms originating in the part of the
action which depends on the gauge fields:

T top
x̄x̄ = Tx̄x̄+ 2πe2ω

∫
d2x′

δS

δĀx̄(x′, x̄′)
δĀx̄(x′, x̄′)

δhxx
= Tx̄x̄− ie2ω

∫
d2x′J̄ Rx̄ (x′, x̄′)δĀx(x′, x̄′)

δhxx
.

(4.13)
Using the gauge field variation (3.31), one finds the topological energy-momentum tensor

T top
x̄x̄ = Tx̄x̄ ∓

1
2e

2ω∂x̄(e−2ωJ̄ Rx̄ )

= Tx̄x̄ ∓
1
2∇x̄J̄

R
x̄ , (4.14)

in the conformally flat background (3.20). The extra terms agree with half the covariant
derivative of the boundary R-current, thus proving the desired formula (4.11) for our
twisted string theory.13,14 The final result is closely tied to our choice of twisted asymptotic
boundary conditions (3.28). Indeed, the final equation follows from the twisted boundary
condition combined with the definition of the R-symmetry current. Our analysis has shown
that we can embed the whole of this reasoning in on-shell string theory.

13We have proven the anti-holomorphic counterpart of the formula. The holomorphic version is proven
analogously.

14In appendix C we briefly discuss how the trace of the energy-momentum tensor is modified in the
twisted theory.
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The expression (4.14) for the boundary energy-momentum tensor, combined with the
boundary N = 2 superconformal algebra, guarantees an anomalous R-charge conservation
rule for the correlators in the topologically twisted string theory. It will be interesting to
analyze its consequences, for instance by computing twisted bulk string theory correlation
functions from first principles.

5 Conclusions

We analyzed string theory in locally three-dimensional anti-de Sitter space-time with a gen-
eral boundary metric. We computed the world sheet vertex operator that represents the
space-time energy-momentum tensor for any background with a conformally flat boundary.
Furthermore, in the presence of a boundary N = 2 superconformal algebra, we demon-
strated that there exists an on-shell twist of the boundary conditions on the bulk string
theory such that the boundary energy-momentum tensor operator becomes topological.
Indeed, we know that the space-time energy-momentum tensor is topological since on the
one hand, the space-time N = 2 superconformal algebra can be derived from the bulk AdS3
string theory, and on the other hand, the symmetry algebra implies that the topological
energy-momentum tensor is G+

0 exact.
More work needs to be done to understand the bulk topological string theory well.

Firstly, one would like to compute the G+
0 cohomology directly from the bulk perspective (as

was done in the Chern-Simons supergravity in [18]). One can be hopeful that this is possible
to all orders in the string length over the curvature radius, in a generic conformal field
theory describing aN = 2 superconformal string background. The fact that world sheet and
space-time chiral primaries are closely related should help in this enterprise. Secondly, one
needs a first principle approach to the topological string world sheet correlation functions in
a fixed AdS3 background that takes into account (for instance) the space-time anomalous
R-charge conservation. For this phenomenon, the coupling of the string excitations to the
scalar curvature of the boundary metric is paramount, and that coupling plays a key role
in the topological correlation functions already for a boundary sphere. The conformally
flat background with non-zero conformal factor ω corresponding to a two-sphere is thus
an ideal playground to start computing topological string theory correlation functions. A
goal is to compute these correlation functions to all orders in the genus expansion in order
to match known boundary correlators at finite central charge.

While the N = 2 boundary superconformal algebra forms the backdrop to our rea-
sonings, we have only considered the bosonic subsectors of our world sheet and space-time
string theory in explicit calculations. Clearly, it would be desirable to extend our calcu-
lations to both world sheet and space-time fermions. The formulation of our asymptotic
boundary conditions is such that the extra terms that are generated in this process will
also satisfy the twist captured by equations (4.13) and (4.14).

It will certainly be interesting in these projects to keep the comparison with the ap-
proaches of [13–17] in mind. For instance, it would be useful to establish whether the
topologically twisted theory we approach through twisted boundary conditions is equiva-
lent to the theory based on the generalized BCOV topological string theory [10, 11, 13].
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Likewise, it may be instructive to twist the superstring theory at curvature radius
√
α′ to

compare it with (topological aspects of) the physical theory [14].
In our string theory background, we chose to lock the three-form NS-NS flux H(3) to

the metric Gµν while keeping the dilaton constant. The constant dilaton is a feature of
near horizon limits of NS5-branes de-singularised by smeared fundamental strings. Our
choice is likely to agree with a desired microscopic string theory construction of the AdS3
backgrounds with non-trivial boundary metric and boundary topology.

We recall that in the effective Chern-Simons-Maxwell theory for the R-symmetry gauge
fields, one obtains (canonical) massive vector fields that are the Hodge duals of the (left
and right) R-symmetry field strengths. It might be enlightening to determine a bulk
solution including the massive component of the gauge field e.g. using Fefferman-Graham
perturbation theory on the full equations of motion of the action (3.12), and to turn on
vacuum expectation values for the dual operators of dimensions (2, 1) and (1, 2).

We concentrated on AdS3 gravity with standard boundary conditions, standard twist,
and NS-NS flux. It is also possible to study more general boundary conditions for AdS3
gravity such as those considered in [36–38], and their extended supersymmetric counter-
parts.15 Again, one can perform the twist by picking the boundary conditions for the gauge
fields such that the gauge field dependent part in the action takes the form of a coupling
between the R-current and the boundary spin connection. Another variation consists in in-
troducing the background gauge field in only one of the two equations in (3.28). One obtains
the shift of the energy momentum tensor as in equation (4.14) only for the holomorphic or
the anti-holomorphic component. This corresponds to a half-twist [39] on the boundary.
Finally, one can also apply our logic to the asymptotic symmetry algebra in the presence of
Ramond-Ramond or mixed fluxes [40] and obtain a bulk topological theory in that manner.

While we concentrated on the AdS/CFT duality in three dimensions, the conceptual
approach we laid out transposes in a straightforward manner to other dimensions. A
universe of further developments is accessible in this manner.

Still more generally, we stress that the goal of proving topological subsectors of
AdS/CFT correspondences is worth pursuing in the light of the central role of the cor-
respondence in the broad debate on properties of unitary quantum theories of gravity.
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A A reduction to the literature

In this appendix, we demonstrate that our energy-momentum tensor (4.2) reduces to the
energy-momentum tensor of [21, 22] when restricted to a flat boundary with conformal

15As a preliminary exercise, one may wish to determine which subset of boundary conditions are consistent
with quantum gravity.
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factor ω = 0. To compare to [21, 22], we change coordinates:

r → eφ

x → γ

x̄ → γ̄ . (A.1)

Furthermore, the exact conformal field theory approach of [21, 22] matches naturally with
a different gauge choice for the NS-NS two-form B(2). We have the NS-NS three-form flux
H(3)

H(3) = (2e2φ
√
g(0) − ∂2

γhγ̄γ̄ + . . . )dφ ∧ dγ ∧ dγ̄ , (A.2)
and we can choose a gauge in which

Bγγ̄ = e2φ
√
g(0) +O(e−2φ)

Bγ̄φ = −∂γhγ̄γ̄ +O(e−2φ) . (A.3)

Using the coordinates (A.1), the expression for the energy-momentum tensor (4.2) adapted
to this gauge and to the case ω = 0, barred appropriately, reads:

Txx(x, x̄) = l2

α′

∫
d2z

[
e2φδ(2)(γ − x)∂γ̄∂̄γ̄ − 1

2∂x∂x̄(δ(2)(γ − x))∂γ̄∂̄γ̄

−1
2∂

2
x(δ(2)(γ − x))(∂γ∂̄γ̄ + ∂γ̄∂̄γ)− 1

2

∫ x̄

∂3
xδ

(2)(γ − x)∂γ∂̄γ (A.4)

+∂x(δ(2)(γ − x))∂̄γ̄∂φ+O(e−2φ)
]
.

The equations of motion imply that we have the order estimates

∂γ̄ = O(e−2φ) , ∂̄γ = O(e−2φ) . (A.5)

We can use these estimates to neglect a number of terms in the energy-momentum tensor:

Txx(x, x̄) ≈ l2

α′

∫
d2z

[
e2φδ(2)(γ − x)∂γ̄∂̄γ̄ − 1

2∂
2
x(δ(2)(γ − x))∂γ∂̄γ̄ + ∂x(δ(2)(γ − x))∂̄γ̄∂φ

]
.

Using a standard formula for the δ-function, we find:

Txx(x,x̄) = l2

α′

∫
d2z

[
e2φ∂γ̄∂̄

(
− 1
π(x−γ)

)
− 1

2∂
2
x∂̄

(
− 1
π(x−γ)

)
∂γ

+∂x∂̄
(
− 1
π(x−γ)

)
∂φ+O(e−2φ)

]
= l2

α′

∫
d2z

[
e2φ∂γ̄∂̄

(
− 1
π(x−γ)

)
−∂̄

(
− 1
π(x−γ)3

)
∂γ−∂̄

(
− 1
π(x−γ)2

)
∂φ+...

]
.

Finally, by partial integration and using the equations of motion once more we conclude

Txx(x, x̄) = l2

α′

∮
dz

2πi

[
e2φ∂γ̄

x− γ
− ∂γ

(x− γ)3 −
∂φ

(x− γ)2

]
+O(e−2φ) terms . (A.6)

This agrees with the boundary φ → ∞ limit of equation (6.2) of [22] (using the limiting
behavior of their function Λ → 1

x−γ and their equation (2.12)). Thus, the case of our
analysis where we restrict to a planar boundary matches the literature.16

16The value of the curvature radius l is l =
√
kα′ in the AdS3 background in [22].
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B The conservation of the energy-momentum

In this appendix, our goal is to prove the conservation of the energy-momentum tensor in
a conformally flat background. The idea of the proof is that the variation of the action
with respect to a space-time diffeomorphism is proportional to the world sheet equations
of motion. This is because a space-time diffeomorphism is a world sheet field variation
δXµ = ξµ. In an AdS background, and given the relation between the space-time action
and the world sheet partition function, we therefore expect equality between the variation
of the space-time action under boundary diffeomorphisms and the variation of the world
sheet action under field variations:∫

∂
d2x′

√
g(0)(x′)∇i (0)Tij(x′)ξj(x′) =

∫
d2z ξi(EOM)i . (B.1)

We shall compute the left hand side based on the expressions we found for the energy-
momentum tensor components, and the right hand side directly using the world sheet
action. The proof will consistent in the fact that the expressions agree and that therefore
the operator ∇i(0)Tij equals zero and the energy-momentum tensor is conserved.

We slightly deviate from the calculation in the bulk of the paper. We choose the
conformally flat background, and consider the anti-symmetric two-form in the gauge:17

Bxx̄ = 1
2e

2φ+2ω +O(e−2φ)

Bφx = 2∂xω . (B.2)

We work to zeroth order in the radial coordinate. It is sufficient to perform a boundary
diffeomorphism with as only variation δx̄ = ξx̄. When we differentiate (B.1) with respect
to ξx̄ on the left and right hand side, we find:√

g(0)(x′)∇i (0)Tix̄(x′) =
∫
d2zδ(x− x′)(EOM)x̄ , (B.3)

where (EOM)x̄ is proportional to the equation of motion obtained by varying x̄. A calcu-
lation in which we neglect subleading terms gives rise to:

(EOM)x̄ = l2

α′

∫
d2zδ(x−x′)

(
∂(e2φ+2ω∂̄x) + (∂x∂2

x̄ω− 2∂x∂x̄ω∂x̄ω)∂̄x̄∂x− 2∂x̄∂xω∂̄φ∂x
)
.

(B.4)
The second step in our proof is to compute the operator that equals the covariant derivative
of the energy-momentum tensor in the conformally flat background, and to show that it
agrees with the variation of the action (B.4). Thus, it will be exhibited to be a trivial
operator, proving conservation of energy-momentum.

The energy-momentum conservation operator equals:

∇iTij(x′, x̄′) = ∂x′Tx̄x̄(x′, x̄′) + ∂x̄′Txx̄ − 2∂x̄′ωTxx̄ . (B.5)
17The gauge we use here is a generalization of the one used for the AdS3 background in appendix A.

The difference with the bulk parameterization is an anti-symmetric gauge transformation which is BRST
trivial. Recall also from appendix A that we defined a coordinate eφ = r.
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We proceed as in the bulk of the paper, but in a mildly different gauge. The three form
H(3) is given by

H =
(

2e2φ
√
g(0) − 1

4e
2ωR(0) +O(e−2φ)

)
dφ ∧ dx ∧ dx̄ (B.6)

Exploiting the expression (3.27) for the Ricci scalar, we can pick the anti-symmetric tensor:

Bxx̄ = e2φ
√
g(0) +O(e−2φ)

Bφx = 2∂xω − e−2ω∂x̄hxx. (B.7)

The equations of motion imply the order estimates

∂̄x = O(e−2φ) , ∂x̄ = O(e−2φ) , ∂∂̄(φ+ ω) = O(e−2φ) . (B.8)

Therefore, the leading (non-vanishing) order of the energy-momentum tensor is

Tx̄x̄(x′) = l2e2ω(x′)

α′

∫
d2z

[
e2φδ(2)(x′ − x)∂x∂̄x− 1

2∂x̄(e−2ω(x)∂x̄δ
(2)(x′ − x))∂x∂̄x̄ (B.9)

+e−2ω(x)(∂2
x̄ω − (∂x̄ω)2)δ(2)(x′ − x)∂x∂̄x̄− e−2ω(x)∂x̄δ

(2)(x′ − x)∂x∂̄φ
]
.

One can distribute the factor e2ω(x′) on each term and use that e2ω(x′)δ(2)(x′ − x) =
e2ω(x)δ(2)(x′ − x) to simplify this energy momentum component:

Tx̄x̄(x′) = l2

α′

∫
d2z

[
e2φ+2ω(x)δ(2)(x′−x)∂x∂̄x− 1

2∂
2
x̄(δ(2)(x′−x))∂x∂̄x̄ (B.10)

−∂x̄(δ(2)(x′−x))∂x∂̄(φ+ω)−(∂x̄ω)2δ(2)(x′−x)∂x∂̄x̄−2∂x̄ωδ(2)(x′−x)∂x∂̄φ
]
.

Using the properties of the delta function, one can write

Tx̄x̄(x′) = −l
2

πα′

∫
d2z

[
∂

( 1
x̄′− x̄

)
e2φ+2ω(x)∂̄x− 1

2∂
2
x̄′∂

( 1
x̄′− x̄

)
∂̄x̄ (B.11)

+∂x̄′∂

( 1
x̄′− x̄

)
∂̄(φ+ω)+(∂x̄′ω)2∂

( 1
x̄′− x̄

)
∂̄x̄−2∂x̄′ω∂

( 1
x̄′− x̄

)
∂̄(φ+ω)

]
.

Then, the x′ derivative of the energy momentum tensor which appears in the covariant
derivative (B.5) is

∂x′Tx̄x̄(x′) = −l
2

πα′

∫
d2z

[
∂

(
∂x′

1
x̄′− x̄

)
e2φ+2ω(x)∂̄x− 1

2∂
(
∂x′∂2

x̄′
1

x̄′− x̄

)
∂̄x̄ (B.12)

+∂
(
∂x′∂x̄′

1
x̄′− x̄

)
∂̄(φ+ω)+∂∂x′

(
(∂x̄′ω)2

x̄′− x̄

)
∂̄x̄−2∂∂x′

(
∂x̄′ω

x̄′− x̄

)
∂̄(φ+ω)

]
.

The second and third terms are trivial, because they are akin to pure gauge vector fields
with well-defined gauge parameters, proportional to δ functions.18 Of the remaining terms,

18See e.g. [22] for an elaborate discussion of this point.
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we also consider only those that are not proportional to δ functions. We further manipulate:

∂x′Tx̄x̄(x′) = −l
2

πα′

∫
d2z

[
∂

(
∂x′

1
x̄′ − x̄

)
e2φ+2ω(x)∂̄x+ ∂

(
∂x′(∂x̄′ω)2

x̄′ − x̄

)
∂̄x̄

− 2∂
(
∂x′∂x̄′ω

x̄′ − x̄

)
∂̄(φ+ ω)

]
= −l

2

πα′

∫
d2z

[
∂

(
∂x′

1
x̄′ − x̄

)
e2φ+2ω(x)∂̄x+ 2∂x′∂x̄′ω∂

( 1
x̄′ − x̄

)
(∂x̄′ω)∂̄x̄

− 2∂x′∂x̄′ω∂

( 1
x̄′ − x̄

)
∂̄(φ+ ω)

]
= −l

2

α′

∫
d2z∂(δ(2)(x′ − x))e2φ+2ω(x)∂̄x

+2l2

α′
∂x′∂x̄′ω

∫
d2z

[
δ(2)(x′ − x)∂x̄′ω∂x∂̄x̄− δ(2)(x′ − x)∂x∂̄(φ+ ω)

]
= l2

α′

∫
d2z

[
δ(2)(x′ − x)(∂(e2φ+2ω(x)∂̄x)− 2∂x∂x̄ω∂x∂̄φ)

−∂(δ(2)(x′ − x)e2φ+2ω(x)∂̄x)
]
. (B.13)

The last term in the last line is a well-defined total derivative term that we can neglect.
Next, we covariantly differentiate the component Txx̄ and find the contribution:

∂x̄′Txx̄ − 2∂x̄′ωTxx̄ = l2

α′
∂x′∂x̄′∂x̄′ω

∫
d2zδ(2)(x′ − x)∂x∂̄x̄− 2∂x̄′ω

l2

α′
∂x′∂x̄′ω

×
∫
d2zδ(2)(x′ − x)∂x∂̄x̄ (B.14)

to the conservation equation. Combining the terms (B.13) and (B.14), we find that the
covariant derivative (B.5) is equal to

∇iTij = l2

α′

∫
d2zδ(2)(x′−x)

[
∂(e2φ+2ω(x)∂̄x)+∂x∂2

x̄ω∂x∂̄x̄−2∂x∂x̄ω∂x̄ω∂x∂̄x̄−2∂x∂x̄ω∂x∂̄φ
]
.

This matches the variation (B.4) of the action under an infinitesimal field redefinition.
Thus we have shown that the energy-momentum tensor is conserved.

C The twisted trace

The flat gauge fields that satisfy the boundary conditions (3.28) for conformally flat metric
(for a given choice of twist) are locally:

AR = i

2dω , ĀR = i

2dω. (C.1)

The action becomes

S = 1
2πα′

∫
d2z

[
(Gµν +Bµν)∂̄Xµ∂Xν + il∂̄ω∂θ + il∂ω∂̄θ + ∂θ∂̄θ

]
. (C.2)
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The equation of motion for the angle θ is

∂∂̄(θ + ilω) = 0. (C.3)

The variation of the conformal factor in the boundary condition gives rise to an extra term
in the energy-momentum tensor component T top

xx̄ :

T top
xx̄ = T phys

xx̄ + il

2α′
∫
d2z

[
∂̄(δ(2)(x′ − x))∂θ + ∂(δ(2)(x′ − x))∂̄θ

]
. (C.4)

Using the equation of motion (C.3), and up to BRST exact terms, we can write

T top
xx̄ = T phys

xx̄ + l2

2α′
∫
d2z

[
∂̄(δ(2)(x′ − x))∂ω + ∂(δ(2)(x′ − x))∂̄ω

]
= T phys

xx̄ − l2

α′

∫
d2zδ(2)(x′ − x)∂∂̄ω

= 0 , (C.5)

up to subleading terms, of order O(e−2φ) = O(r−2). Finally, let us remark that the twisted
action (C.2) shows that the left-moving and right-moving part of the circular direction
θ is shifted by ω upon twisting. When we perform the T-dual topological twist, it is
convenient to perform the above reasoning using the T-dual coordinate θdual = θL − θR.
The underlying reason is that it is the T-dual circle that renders the corresponding (axial)
U(1)R symmetry geometrical.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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