

Benchmarking the PreSPEC@GSI experiment for Coulex-multipolarimetry on the $\pi(p_3/2) \rightarrow \pi(p_1/2)$ spin-flip transition in ${}^{85}\text{Br}$

P. Napiralla, M. Lettmann, Clement Stahl, G. Rainovski, N. Pietralla, S. Afara, F. Ameil, T. Arici, S. Aydin, D. Barrientos, et al.

▶ To cite this version:

P. Napiralla, M. Lettmann, Clement Stahl, G. Rainovski, N. Pietralla, et al.. Benchmarking the Pre-SPEC@GSI experiment for Coulex-multipolarimetry on the $\pi(p_3/2) \rightarrow \pi(p_1/2)$ spin-flip transition in ⁸⁵Br. Eur.Phys.J.A, 2020, 56 (5), pp.147. 10.1140/epja/s10050-020-00148-2. hal-02870784

HAL Id: hal-02870784 https://hal.science/hal-02870784

Submitted on 2 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Benchmarking the PreSPEC@GSI Experiment for Coulex-Multipolarimetry on the $\pi(p_{3/2}) \rightarrow \pi(p_{1/2})$ Spin-Flip Transition in ^{85}Br

P. Napiralla^{1,2}, M. Lettmann¹, C. Stahl¹, G. Rainovski³, N. Pietralla¹, S. Afara⁴, F. Ameil², T. Arici², S. Aydin⁵, D. Barrientos⁶, P. Bednarczyk⁷, M. A. Bentley⁸, G. Benzoni⁹, B. Birkenbach¹⁰, A. Blazhev¹⁰, A. J. Boston¹¹, P. Boutachkov^{1,2}, A. Bracco⁹, B. Bruyneel¹², E. Clément¹³, M. L. Cortés^{1,2,14}, F. C. L. Crespi⁹, D. M. Cullen¹⁵, D. Curien¹⁶, P. Désesquelles¹⁷, F. Didierjean¹⁶, C. Domingo-Pardo¹⁸, G. Duchêne¹⁶, J. Eberth¹⁰, H. Egger¹⁹, C. Fahlander²⁰, J. Gerl², K. A. Gladnishki³, P. Golubev²⁰, V. González²¹, M. Górska², A. Gottardo²², L. Grassi²³, T. Habermann², L. J. Harkness-Brennan¹¹, H. Hess¹⁰, D. G. Jenkins⁸, P. R. John¹, J. Jolie¹⁰, D. S. Judson¹¹, I. Kojouharov², W. Korten¹², M. Labiche²⁴, N. Lalović²⁰, C. Lizarazo^{1,2}, C. Louchart-Henning^{1,2}, A. Maj⁷, R. Menegazzo²⁵, D. Mengoni²³, E. Merchan^{1,2}, B. Million⁹, O. Möller¹, T. Möller¹, K. Moschner¹⁰, V. Modamio¹⁴, D. Napoli¹⁴, B.S. Nara Singh^{26,27}, Zs. Podolyák²⁸, S. Pietri², D. Ralet^{22,1,2}, M. Reese², P. Reiter¹⁰, D. Rudolph²⁰, E. Sanchis²¹, L. G. Sarmiento²⁰, H. Schaffner², J. Simpson²⁴, P. P. Singh², J. J. Valiente-Dobón¹⁴, V. Werner¹, and O. Wieland⁹

- ¹ Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
- ² GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- ³ Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
- ⁴ King Saud University, P. O. BOX 2454, Riyadh 11451, Saudi Arabia
- ⁵ Aksaray University, Bahçe Saray Mahallesi, Aksaray-Adana Yolu, 68100 Sağlık/Aksaray Merkez/Aksaray, Tureky
- ⁶ CERN, CH-1211 Geneva 23, Switzerland
- ⁷ The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
- ⁸ Department of Physics, University of York, Heslington YO10 5DD, United Kingdom
- ⁹ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
- ¹⁰ Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
- ¹¹ Oliver Lodge Laboratory, The University of Liverpool, Liverpool, L69 7ZE, United Kingdom
- ¹² Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ¹³ Grand Accélérateur National d'Ions Lourds GANIL, CEA/DSAM and CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 05, France
- ¹⁴ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell'Università, 2, 35020 Legnaro PD, Italy
- ¹⁵ Nuclear Physics Group, Schuster Laboratory, University of Manchester, Manchester, M13 9PL, United Kingdom
- ¹⁶ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- ¹⁷ CSNSM, Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bat 104, F-91405 Orsay Campus, France
- ¹⁸ Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
- ¹⁹ AG Numerik und Wissenschaftliches Rechnen, Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany
- ²⁰ Department of Physics, Lund University, SE-22100 Lund, Sweden
- ²¹ Departamento de Ingeniería Electrónica, Universidad de Valencia, Burjassot, Valencia, Spain
- ²² Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- ²³ Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova and INFN, Sezione di Padova, I-35131 Padova, Italy
- ²⁴ STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom
- ²⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
- ²⁶ School of Physics & Astronomy, Schuster Building, The University of Manchester, Manchester M13 9PL, United Kingdom
- ²⁷ School of Engineering and Computing, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom
- ²⁸ Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom

Received: date / Revised version: date

Abstract. A first performance test of the Coulomb excitation multipolarimetry (*Coulex-multipolarimetry*) method is presented. It is based on a ⁸⁵Br $\pi p_{3/2} \rightarrow \pi p_{1/2}$ spin-flip experiment performed as part of the PreSPEC-AGATA campaign at the GSI Helmholtzzentrum für Schwerionenforschung (GSI). Via determination of background levels around the expected ⁸⁵Br excitations as well as measured ¹⁹⁷Au excitations, an upper limit for the *M*1 transition strength of the $1/2^-_1 \rightarrow 3/2^-_{\text{g.s.}}$ transition in ⁸⁵Br and a lower beam time limit for upcoming experimental campaigns utilizing *Coulex-multipolarimetry* have been inferred. The impact of the use of AGATA in its anticipated 1π configuration on these estimates is deduced via *Geant4* simulations.

PACS. XX.XX.XX No PACS code given

1 Introduction

The identification of single-particle states in even-odd nuclei via the measurement of spin-flip transitions is an experimental tool to investigate nuclear shell evolution in the vicinity of closed shells. These are transitions of a single nucleon between a $j_{>} = \ell + 1/2$ and a $j_{<} = \ell - 1/2$ state, i.e. between spin-orbit partners and exhibit some of the largest known M1 transition strengths of $\sim 1 \mu_N^2$. These large transitions strengths serve as a unique signature for spin-flip transitions, giving insight into the role of specific orbitals in nuclear eigenstates.

In order to investigate nuclear shell evolution towards the doubly-magic nucleus ⁷⁸Ni [1], many experimental [2– 4] and theoretical studies [3,5,6] have been performed in the vicinity of the nickel isotopic chain towards ⁷⁸Ni. These studies suggest severe changes in single-particle energies, interpreted as being caused by the tensor-force [5,6] as a function of the filling of the $\nu g_{9/2}$ shell. In the isotonic chain N = 50, the $1/2_1^- \rightarrow 3/2_{\rm g.s.}^-$ transition at 845 keV in ⁸⁷Rb with an *M*1 transition strength of $0.64_{-5}^{+8} \mu_N^2$ [7] was identified as the main fragment of the $\pi p_{1/2} \rightarrow \pi p_{3/2}$ single-particle transition. In the neutron-rich even-odd nucleus ⁸⁵Br, the $1/2_1^-$ state at 1191 keV is considered to be the most likely candidate for a $\pi p_{3/2} \rightarrow \pi p_{1/2}$ singleparticle excitation, which would correspond to a sudden increase in excitation energy of the $\pi p_{1/2}$ orbital from ⁸⁷Rb to ⁸⁵Br.

To this end, the simultaneous measurement of two crucial quantities, the level lifetime and the degree of M1character of its decay transition are required. The spin quantum number j = 1/2 of the upper level prevents the measurement of the E2/M1 multipole mixing ratio with the traditional method of angular correlations of the $1/2_1^- \rightarrow 3/2_{g.s.}^- \gamma$ -decay intensity due to isotropically emitted γ rays. Hence, a novel experimental technique, called Coulex-multipolarimetry [8] was proposed. It was designed such that a direct measurement of the E2/M1 multipole mixing ratio δ and the lifetime could be accessed via comparison of different experimental γ -ray yields in Coulombexcitation reactions. An experiment for benchmarking the potential of the method for future high-intensity relativistic ion beams was performed during the PreSPEC campaign [9] at GSI, utilizing the FRagment Separator (FRS) [10], the Lund-York-Cologne CAlorimeter (LYCCA) [11] the Advanced GAmma Tracking Array (AGATA) [12] and the High Energy deteCTOR (HECTOR) [13]. The method employs an unconventional target setup, utilizing two consecutive thick gold targets instead of one which allows for two different beam energies in a single setup.

In the following, a brief description of the experimental method and setup, expected yields of target- to beam-like excitations as well as data analysis methods are presented. The measured γ -ray spectra are presented and the achievable performance of the setup is discussed. Potential areas for improvements based on different geometrical setups of AGATA accessed via simulations as well as the impact of γ -ray tracking methods are shown. Estimates on necessary beam time for future experiments employing *Coulexmultipolarimetry* are given.

2 Experiment

2.1 Coulex-multipolarimetry

The Coulex-multipolarimetry was tested for the first time in order to measure the M1 transition strength of the potential spin-flip in ⁸⁵Br. Since the ratio of Coulomb excitation cross sections between M1 and E2 excitations scales with the incident beam velocity with β^2 [14], the E2/M1multipole-mixing ratio δ is accessible via measurement and comparison of Coulomb-excitation γ -ray yields for two different well chosen incident beam energies. For a sensitive range of multipole mixing ratios, here $0.01 \le \delta \le 0.1$, it is possible to access δ experimentally via γ -ray yield measurements [8]. To minimize the necessary beam time, the use of two consecutive targets with one incident beam energy instead of a single one with two beam energies was proposed. This approach relies on AGATA's high position resolution for Doppler corrections. Since the energy loss of the beam in matter can be measured or approximated via energy loss calculations, e.g., using ATIMA [15] or LISE++ [16], a second beam energy after the first target is realized, allowing for a measurement of two beam energies with a single incident beam.

2.2 Setup

The primary ⁸⁶Kr beam extracted from SIS18 at GSI with an incident kinetic energy of $730 \,\mathrm{MeV/u}$ impinged on a thick ⁹Be target. The produced fragments were massand charge-separated by the FRS in such a way that an almost pure neutron-rich ⁸⁵Br beam with an energy of $300 \,\mathrm{MeV/u}$ at an average particle rate of $4.9 \times 10^4 \,\mathrm{s^{-1}}$ has been achieved at the entrance to the experimental setup. Due to the achieved purity of the secondary beam during the data collection run, all particle-tracking and energy-loss detectors of the FRS were switched off to reduce dead-time and increase the feasibility of the data acquisition at this rate. Time-of-flight scintillation detectors were operating. Outgoing particle identification, energy loss, total energy and velocity measurements were achieved via LYCCA. After impinging on the gold targets with thicknesses of $2 \,\mathrm{g/cm^2}$ and $1 \,\mathrm{g/cm^2}$ respectively, the secondary ⁸⁵Br beam had a kinetic energy of approximately $242 \,\mathrm{MeV/u}$ after the first and $210 \,\mathrm{MeV/u}$ after the second target calculated via LISE++¹. This resulted in relative Doppler-shift differences $\Delta E/E \approx 33\%$ under the assumption of a γ ray emitted at the first target corresponding to a polar angle of 30° with respect to the beam direction. The emission angle at the second target in respect to the same detection point would be 47°. Emitted γ rays were detected by AGATA. During the experiment,

 $^{^{1}}$ He-parameterization [17] for energy-loss calculations was used.

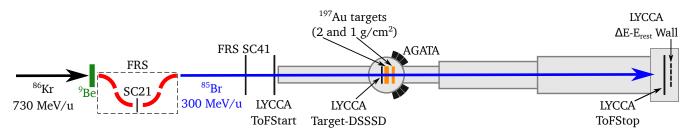


Fig. 1. A schematic drawing of the experimental setup adapted from [21]. The incident 86 Kr beam is depicted in black, the 9 Be fragmentation target in green, and the secondary 85 Br beam in blue. In addition, the FRS SC21 inside the FRS and the SC41 scintillator directly in front of the experimental hall as well as all LYCCA components present in the experiments are depicted. The target chamber with the two gold targets (in orange) as well as AGATA is shown in the center. For simplicity reasons, the FRS is only schematically shown with its dipole magnets in red (for details see [10]). LYCCA's ToFStart detector was not used in the analysis.

AGATA comprised 21 hexagonal 36-fold segmented HPGe detectors [18]. For particle identification of the outgoing beam, LYCCA's $\Delta E - E_{\text{rest}}$ wall was used [11]. Each wall module consisted of a double-sided silicon strip detector (DSSSD) used for energy-loss and position measurements with thicknesses in the range of $300 - 320 \,\mu\text{m}$ as well as nine CsI(Tl) scintillators for kinetic energy measurement with two possible thicknesses of 33 or $10 \,\mathrm{mm}$. Since the energy loss is proportional to the charge Z^2 of the incident particle and the total kinetic energy measurement is sensitive to the particles mass number A, the correlation between ΔE and E_{rest} can be used to identify the incident nuclei (see [11] for details). In the experimental setup, a total of 15 $\Delta E - E_{\text{rest}}$ wall modules were used. In addition, LYCCA's Time-of-Flight (ToF) detectors were used. They consisted of two independent plastic scintillators in a circular shape with a diameter of 270 mm and a thickness of 1 mm. The light yield from the beam particle interaction with the scintillators was read out by 32 photomultiplier tubes [19]. One ToF detector was situated in front of the reaction chamber called ToFStart and another one was situated in front of the $\Delta E - E_{\text{rest}}$ wall, called ToFStop. The ToFStop detector was used to measure the beam-spot position via the method proposed in [20] in front of the $\Delta E - E_{\rm rest}$ wall modules. A schematic drawing of the experimental setup is shown in Figure 1.

This first performance test of the *Coulex-multipolarimetry* was conducted with approximately three days of beam time. In the following, expected yields as well as necessary particle conditions for the benchmark test are presented.

3 Data Analysis

3.1 Expected Relative Yields

To estimate the performance of the *Coulex-multipolari*metry, the γ -ray detection-efficiency weighted excitation ratios of target-like ¹⁹⁷Au to beam-like ⁸⁵Br excitations need to be calculated. The main contributor to the ¹⁹⁷Au excitations is the $3/2_{\rm g.s.}^+ \rightarrow 7/2_1^+$ excitation with corresponding $E_{\gamma,\rm Au} = 547.5$ keV. The fraction η^* of target- to

Table 1. Excitation cross sections σ_i calculated via DWEIKO for gold target and bromine beam and their ratio η^* [see Eq. (1)] for two different beam energies $E_{\rm b}$ at their respective targets. In addition, the ratios of expected efficiencies are given by $\epsilon_{\gamma}({\rm Au})/\epsilon_{\overline{\gamma}}({\rm Br})$ as well as the γ -ray detection-efficiency weighted excitation ratios η , given by Eq. (3).

$\frac{E_{\rm b}}{({\rm MeV/u})}$	β	$\sigma_{ m Au}$ (mb)	$\sigma_{ m Br}$ (mb)	η^{\star}	$\frac{\epsilon_{\gamma}(\mathrm{Au})}{\overline{\epsilon_{\gamma}}(\mathrm{Br})}$	η
$\begin{array}{c} 300\\ 242 \end{array}$	$\begin{array}{c c} 0.65\\ 0.61 \end{array}$	$63.4 \\ 73.0$	$4.72 \\ 4.64$	$13.4 \\ 15.7$	$0.98 \\ 1.23$	$\begin{array}{c} 13.2\\ 19.4 \end{array}$

beam-like excitations can be estimated using DWEIKO [22, 23] via

$$\eta^{\star} \coloneqq \frac{\sigma_{\rm Au}(E_{\rm b})}{\sigma_{\rm Br}(E_{\rm b})} \tag{1}$$

with the kinetic energy of the incident ⁸⁵Br beam, $E_{\rm b}$, and the respective cross sections $\sigma_i(E_{\rm b})$ as a function of $E_{\rm b}$. To estimate the *M*1 transition strength of the spin-flip excitation in ⁸⁵Br, a transition of a proton from a j = 1/2to a j = 3/2 state for $\ell = 1$ is used, given by

$$B(M1, 1/2 \to 3/2) = \frac{1}{2} |\langle 3/2 || M1 || 1/2 \rangle|^2$$

= $\frac{1}{2\pi} (g_l^{\pi} - g_s^{\pi})^2 \mu_N^2$ (2)
= $3.34 \, \mu_N^2$.

Here, $g_l^{\pi} = 1$ is the orbital g-factor of proton and $g_s^{\pi} = 5.59$ its unquenched spin g-factor. In addition, a small E2 contribution of $B(E2,\downarrow) = 1$ W.u. is assumed, yielding an E2/M1 multipole-mixing ratio of $\delta = 0.026$ and a lifetime of approximately 10 fs. For the $7/2_1^+ \rightarrow 3/2_{g.s.}^+$ transition in ¹⁹⁷Au, $B(E2,\downarrow) = 33$ W.u. [24] is used. Nuclear excitations were neglected. With these assumptions, the calculated excitation cross sections and their respective η^* for the two different beam energies at the respective targets are given in Table 1. The γ -ray detection-efficiency weighted excitation ratios can be expressed via

$$\eta_i = \eta_i^{\star} \cdot \frac{\epsilon_{\gamma,i}(\mathrm{Au})}{\overline{\epsilon_{\gamma,i}}(\mathrm{Br})} \tag{3}$$

with the detection efficiency of incident $^{197}{\rm Au}\;\gamma$ rays emitted from target i

$$\epsilon_{\gamma,i}(\mathrm{Au}) = \frac{N_{\mathrm{abs,Au},i}}{N_{\mathrm{tot}}}, \qquad (4)$$

with $N_{\rm abs,Au,i}$ as the amount of fully-absorbed ¹⁹⁷Au γ rays emitted from target *i* and $N_{\rm tot}$ as the total amount of emitted γ rays. No significant Doppler-broadening of ¹⁹⁷Au γ rays is assumed. The integrated detection efficiency for γ rays emitted by the ⁸⁵Br beam nuclei with energy $E_{\gamma,\rm Br}$ at target *i*

$$\overline{\epsilon_{\gamma,i}}(\mathrm{Br}) = \int_{-1}^{1} \mathrm{d}\cos\Theta \,\frac{N(E'_{\gamma,\mathrm{Br}} \,|\, \mathrm{abs.}, i)}{N_{\mathrm{tot}}} \,. \tag{5}$$

Here, Θ is the angle of γ emission in the center-of-mass frame of the beam and the Doppler-shifted energy $E'_{\gamma,\text{Br}} = E'_{\gamma,\text{Br}}(\cos\Theta,\beta)$. The amount of Lorentz-transformed and Doppler-shifted γ rays with emission angle Θ that were fully absorbed by AGATA is $N(E'_{\gamma,\text{Br}} | \text{abs.}, i)$. Since only ratios between efficiencies are of interest [see Eq. (3)], a *Geant4* simulation [25–27] using the AGATA simulation code [28] was used to extract AGATA's ratio of detection efficiencies. Together with the simulated relative efficiencies, the γ -ray detection-efficiency weighted excitation ratios are $\eta_1 = 13.2$ and $\eta_2 = 19.4$, respectively (see Tab. 1).

3.2 Particle Conditions

To reduce the amount of background radiation in the γ -ray spectrum measured by AGATA, multiple particle conditions using LYCCA are applied. Particle identification can be achieved via a comparison of the energy loss ΔE in the DSSSD and the measured total kinetic energy of the beam E_{rest} in the CsI(Tl) crystals, which is shown in Figure 2. Only events with a particle multiplicity of one were analyzed since the assignment of energy-loss and total kinetic energy to identify an incident particle are not unambiguous for particle multiplicities larger than one. The multiplicity of one is assigned to a particle, if its particle multiplicity is equal to one both in the DSSSD and the CsI(Tl) detector wall. Roughly 33 % of all events had a particle multiplicity of one. The two-dimensional $E_{\text{rest}} - \Delta E$ spectrum (see Fig. 2) has been calibrated via LISE++ calculations based on the respective approximate energy losses of the ⁸⁵Br beam after passing the second gold target. The peak at $E_{\rm rest} = 17.5 \,\text{GeV}$ and $\Delta E = 305 \,\text{MeV}$ corresponds to ^{85}Br nuclei. For $15 \,\text{GeV} < E_{\rm rest} < 17.5 \,\text{GeV}$ and $\Delta E = 305 \,\mathrm{MeV}$, additional peaks arise that very likely also correspond to ⁸⁵Br nuclei. However, instabilities in the electronics most likely caused a wrong assignment of kinetic energy. In order to prevent a false identification of events that might not correspond to ⁸⁵Br, these events

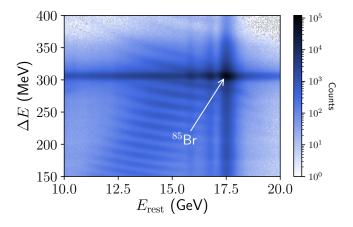


Fig. 2. A two-dimensional spectrum of total remaining kinetic energy $E_{\rm rest}$ in the CsI(Tl) scintillators vs. energy loss ΔE in the DSSSD of LYCCA's ΔE - $E_{\rm rest}$ wall modules. The peak at $E_{\rm rest} = 17.5 \,\text{GeV}$ and $\Delta E = 305 \,\text{MeV}$ corresponds to ⁸⁵Br nuclei. The diagonal lines correspond to various fragmentation products (see [11] for details).

were not included in the analysis. Hence, a reliable particle identification of LYCCA is limited to the peak at $E_{\rm rest} = 17.5(8) \,{\rm GeV}$ and $\Delta E = 305(14) \,{\rm MeV}$ which contains 14% of all events. Most of the measured events were caused by light particles such as protons, neutrons or γ rays.

In addition, LYCCA's time-of-flight detector in front of the $\Delta E - E_{\rm rest}$ wall, can be used to pinpoint the correct travel path of the incident particles to avoid a false correlation of ΔE and $E_{\rm rest}$. This is achieved via a comparison of measured x and y values on the respective detectors, ToFStop, DSSSD and CsI(Tl). Ideally, their x and y values should perfectly align for a single particle traveling through all three detectors under the assumption that the beam impinges on the respective detector planes perpendicularly. Roughly 71 % of all identified ⁸⁵Br events were aligning with the ToFStop in their respective x and y values.

To access measured γ rays that are coincident to identified ⁸⁵Br particles via LYCCA, the time difference between AGATA crystals and the FRS is used. This is achieved via the global trigger and synchronization system (GTS) timestamp which correlates AGATA's data acquisition system (NARVAL) [12] to the GSI internal Multi Branch System (MBS) [30,31], to which the FRS is coupled. The difference ΔT between the time of incident γ rays extracted from AGATA's pulse shapes compared to the particle time measured by the FRS scintillator SC21 (see Fig. 1) is shown in Figure 3.

4 Results

The resulting γ -ray spectrum measured by AGATA for all 73 h of beam time is shown in Figure 4. The total energy measured in the central contact in the respective AGATA crystals, referred to as cores, are depicted. Figure 4 shows

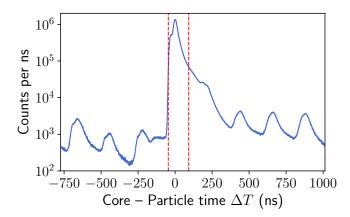


Fig. 3. Time difference ΔT between the particle time from FRS and AGATA's time extracted via PSA in nanoseconds. All 21 AGATA crystal - FRS time differences have been offset to align at $\Delta T = 0$ ns. The periodic structure is caused by the regular beam spills each 220 nanoseconds. The limits on ΔT shown as red dashed lines select the prompt peak. It contains roughly 90% of all data.

all core energies in black without any condition on particle detectors and in blue with applied conditions as outlined in Section 3. The Doppler-corrected spectra for both targets are depicted in Figure 5 with particle conditions applied. The interaction point with the largest deposited energy in the respective detector has been selected as the first interaction point of the incident γ ray. This point is used for calculating the angle between the beam direction and the emitted photon. The expected approximate beam velocities after the respective targets 1 and 2, defined as T_1 and T_2 , are $\beta_1 \approx 0.61$ and $\beta_2 \approx 0.58$ which were calculated via LISE++ calculations (similar to Sec. 3.1). These velocities are assumed as the beam velocity during emission of photons from potential excited states of beam-like ions at the respective targets.

As shown in Figure 6 (top), the Coulomb excitation of the ¹⁹⁷Au targets is present at 547.5 keV. In total, $A_{Au} =$ 2110(370) counts could be measured after applying all mentioned particle conditions (see Sec. 3). Given the in-cident particle rate of $4.9 \times 10^4 \, \text{s}^{-1}$ and the Coulombexcitation probability of the targets of 3×10^{-4} , calculated from the gold-excitation cross sections from DWEIKO together with the respective target thicknesses, the average rate of 197 Au excitations is 14.7 s^{-1} . With a photoabsorption efficiency of AGATA of 3.7% at a γ -ray energy of 547.5 keV, all mentioned conditions on the detected particles on the $\Delta E - E_{\text{rest}}$ wall together with ToFStop (see Sec. 3.2), the condition on the particle- γ time ΔT (see Fig. 3), an approximate geometrical efficiency of LYCCA of 88 % (see [21] for details) and the mean alive-time ratio² of the setup of 55 %, the amount of expected measurable γ rays from gold excitations is $A_{\rm Au, expec.} \approx 2030$, agreeing with the measured value $A_{\rm Au} = 2110(370)$ within uncertainties. It is assumed that all measured ¹⁹⁷Au excitations are caused by the identified ⁸⁵Br beam particles.

Since the ratio of target to beam excitations can be calculated using the assumed M1 and E2 transition strengths (see Sec. 3.1) via DWEIKO, 160 counts for T_1 and 110 counts for T_2 in the Doppler-corrected spectra for the potential spin-flip transitions of ⁸⁵Br are anticipated during the test experiment. As depicted in Figure 5 and 6 (bottom panel), no $1/2_1^- \rightarrow 3/2_{g.s.}^-$ transitions of ⁸⁵Br beam particles are noticeable above background in the Dopplercorrected spectra.

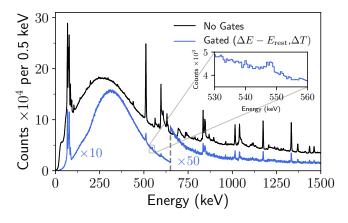


Fig. 4. Core energies measured by AGATA in \sim 73 h of beam time without conditions on any ancillary detectors in black and with ⁸⁵Br particle identification condition on LYCCA and time condition on prompt beam in blue (see Sec. 3). For better visibility, the gated spectrum was upscaled by a factor of ten for energies up to 650 keV and by a factor of 50 for larger energies.

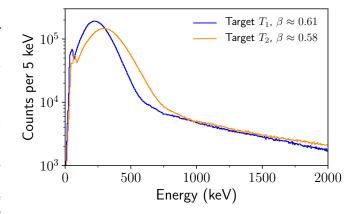


Fig. 5. Doppler-corrected spectra for the respective velocities β after target 1 (blue) and target 2 (orange). Conditions as outlined in Section 3 are applied. No $1/2_1^- \rightarrow 3/2_{g.s.}^-$ transitions of ⁸⁵Br are noticeable.

Although the potential $\pi p_{3/2} \rightarrow \pi p_{1/2}$ spin-flip transition in ⁸⁵Br could not be resolved via the measured core

 $^{^{2}}$ Ratio of measurable time in an arbitrary time window.

energies, a detection limit can be estimated using the measured data.

5 Discussion

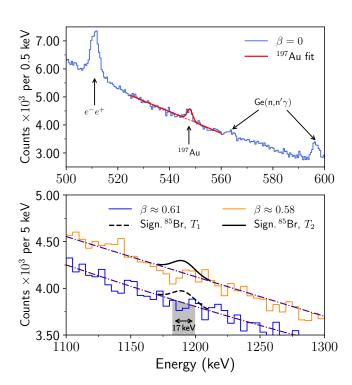


Fig. 6. Top: Zoom into gated spectrum (no Dopplercorrections) from Fig. 4 around the ¹⁹⁷Au Coulomb-excitation peak. A background subtracted fit on the ¹⁹⁷Au peak is depicted (red). Bottom: Doppler-corrected spectra for T_1 ($\beta \approx$ 0.61) and T_2 ($\beta \approx 0.58$) around the energy of the potential spin-flip transition in ⁸⁵Br. Hypothetical statistical significant [see Eq. (7)] ⁸⁵Br peaks at 1191 keV above the background radiation (approximated via a quadratic function; purple, dasheddotted) are depicted for T_1 (black, dashed) and T_2 (black, solid). The integration window used for estimating the potential ⁸⁵Br peak is shown in gray with width $2\sigma_E = 17 \text{ keV}$ [see Eq. (6)].

To calculate the detection limit for a potential $\pi p_{3/2} \rightarrow \pi p_{1/2}$ excitation in ⁸⁵Br, a regression via a second order polynomial $p_{T_i}(E)$ to the Doppler-corrected spectra around the area of interest of the potential spin-flip transition in ⁸⁵Br at 1191 keV is performed. A second-order polynomial is used to account for the slight quadratic behavior at the area of interest around 1191 keV (see Fig. 5). The regressions are illustrated in Figure 6 (bottom). The detection limit for a potential peak can be estimated via the background area for the respective targets T_i

$$A_{B,T_i} = \int_{E_{\gamma,\mathrm{Br}}-\sigma_E}^{E_{\gamma,\mathrm{Br}}+\sigma_E} \mathrm{d}E \, p_{T_i}(E) \,, \tag{6}$$

with $\sigma_E = 8.5 \text{ keV} \ [= 20 \text{ keV}$ full width at half maximum (FWHM)] as the width of the integration interval. Due to uncertainties arising during the Doppler-correction process, the peak width of the peak at 1191 keV is expected to be significantly broader than for γ rays emitted from nuclei at rest. In addition, the expected peak shape of the Doppler-corrected 1191 keV γ rays is complex, differing from a Gaussian distribution [8]. Assuming a Gaussian shape with a FWHM $\approx 20 \text{ keV}$, calculated via *Geant4* simulations, as an approximation, the minimum number of counts A_P necessary to identify a peak that is above the background level is approximately given by [29]

$$A_{P,T_i} = 4.65 \, \Delta A_{B,T_i} = 4.65 \sqrt{A_{B,T_i}} \,. \tag{7}$$

With $A_{B,T_1} = 13060$ and $A_{B,T_2} = 14140$, the potential ⁸⁵Br peak has to consist of at least 530 counts for T_1 or 550 counts for T_2 to be statistically significant. The statistically significant peaks are depicted in Figure 6 (bottom). From the assumed ratio of ⁸⁵Br to ¹⁹⁷Au excitations, the minimal amount of necessary target excitations can be inferred (see Sec. 3.1). Given the ratio of $\eta_1 = 13.2$ for T_1 and $\eta_2 = 19.4$ for T_2 , a total of $N_{\text{need},T_1} = 7000$ or $N_{\text{need},T_2} = 10670$ detected respective target excitations would be necessary to be able to detect a significant amount of beam excitations (see Fig. 6). The ratio of necessary N_{need,T_1} and N_{need,T_2} to measured N_{meas} target excitations is

$$\xi := \frac{N_{\text{need}}}{N_{\text{meas}}} = \frac{\rho N_{\text{need},T_1} + (1-\rho) N_{\text{need},T_2}}{N_{\text{meas}}} = 4.3(8) \,. \tag{8}$$

Here,

$$\rho = \frac{N_{T_1}}{N_{T_1} + N_{T_2}} \frac{\sigma_{\text{Br}, T_1}}{\sigma_{\text{Br}, T_2}} = \frac{3.9 \times 10^5}{(3.9 + 4.9) \times 10^5} \frac{4.72 \,\text{mb}}{4.64 \,\text{mb}} \approx 0.45$$
(9)

is used as the ratio between the photo-absorption efficiency of ⁸⁵Br $1/2_1^- \rightarrow 3/2_{g.s.}^-$ transition γ rays purely emitted from T_1 compared to T_2 scaled by their respective excitation cross sections σ_{Br,T_i} (see Tab. 1). The different N_{T_i} have been calculated via a *Geant4* simulation with Doppler-shifted 1191 keV γ rays emitted either from T_1 or T_2 with respective beam velocities $\beta_1 \approx 0.61$ and $\beta_2 \approx 0.58$. In addition, the isotropically distributed angle of emission Θ of the simulated γ rays in the center-of-mass frame of the beam is Lorentz-transformed via

$$\cos\vartheta = \frac{\cos\Theta + \beta_i}{1 + \beta_i \cos\Theta}, \quad i \in \{1, 2\}$$
(10)

where ϑ is the angle of emission in the laboratory frame.

To get an estimate on the upper limit of the M1 transition strength of the spin-flip excitation, the ratio

$$\kappa = \frac{A_{\rm Au}}{\rho A_{\rm Bg,1} + (1-\rho)A_{\rm Bg,2}}$$
(11)

between the measured $^{197}\mathrm{Au}$ excitations A_{Au} as well as the upper limit of a potential $^{85}\mathrm{Br}$ peak being indistinguishable from the background level within a 95 % confidence

interval, given by [29]

$$A_{\text{Bg},i} = 2.33 \sqrt{A_{B,T_i}}$$
 (12)

can be used, yielding $\kappa = 7.8(14)$. Since $\kappa \approx \sigma_{\mathrm{Au},T_i}/\sigma_{\mathrm{Br},T_i}$ also holds, due to A_{Au} and $A_{\mathrm{Bg},i}$ being linked to the respective cross sections, the upper limit for the cross section of ⁸⁵Br at T_2 hence can be estimated via

$$\sigma_{\mathrm{Br},T_2} < \frac{\sigma_{\mathrm{Au},T_2}}{\kappa - \Delta \kappa} = 11.4 \,\mathrm{mb}\,. \tag{13}$$

Using DWEIKO, the M1 transition strength has an upper limit at $B(M1,\downarrow) < 9.5 \mu_N^2$. T_2 was used here since it results in a larger upper limit for the $B(M1,\downarrow)$ value than T_1 . A $B(E2,\downarrow) = 1$ W.u. with resulting $\delta = 0.015$ would still allow for the application of the *Coulex-multipolarime*try for such a large $B(M1,\downarrow)$ value.

Given the assumption made in Section 3.1, the amount of necessary beam time for the used setup can be estimated. Since the amount of measurable ⁸⁵Br transitions are directly linked to the measurable ¹⁹⁷Au transitions via η_i , it follows that

$$A_{\rm Br} = \frac{A_{\rm Au}}{\rho \,\eta_1 + (1 - \rho) \,\eta_2} = \varrho A_{\rm Au} \,, \tag{14}$$

where ρ is used to account for the different probabilities of target- to beam-like excitations (see Sec. 3.1). In addition, from Equation (7) follows that

$$A_{\rm Br} \ge 4.65 \left[\rho \sqrt{A_{B,T_1}} + (1-\rho) \sqrt{A_{B,T_2}} \right].$$
 (15)

To access the measurement time, all peak areas $A_i(t)$ can be expressed in terms of a counting rate $\dot{A}_i(t)$ via

$$A_i(t) = \dot{A}_i(t) t \approx \frac{A_{i,\text{meas}}}{t_{\text{meas}}} t , \qquad (16)$$

where t is the time, $t_{\text{meas}} = 73$ h the measurement time and $A_{i,\text{meas}}$ the respective measured amount of counts (e.g. A_{Au}). Using Equations (14–16), the necessary measurement time for the given assumptions on $B(M1,\downarrow)$, $B(E2,\downarrow)$ and the resulting δ (see Sec. 3.1) is

$$t_{\text{need}} = t_{\text{meas}} \frac{4.65^2 \left[\rho \sqrt{A_{B,T_1}} + (1-\rho) \sqrt{A_{B,T_2}}\right]^2}{\varrho^2 A_{\text{Au}}^2} \quad (17)$$
$$= 1330(470) \,\text{h} \,.$$

Hence, a significant ⁸⁵Br peak at an energy of 1191 keV should be achievable in ≈ 55 days of beam time, given that the made assumptions on the transition strengths in ⁸⁵Br are correct. Accessing particle multiplicities larger than one, resulting in roughly twice the amount of analyzable statistics, could decrease the necessary beam time down to ≈ 28 days, still rendering a measurement within the given limits of 73 hours of beam time impossible.

The planned AGATA 1π configuration [32] with 45 crystals will further reduce the required beam time significantly. The expected reduction can be extracted from

Table 2. Expected increase of measurable ⁸⁵Br excitations ν with AGATA 1π . Here, $N_{1\pi}$ are the number of photoabsorbed γ rays with an energy of 1191 keV (Doppler-shifted and Lorentz-boosted) in the AGATA 1π setup and N_{PreSPEC} respectively in the PreSPEC setup of AGATA.

Target	$N_{1\pi}$	$N_{\rm PreSPEC}$	ν
$T_1 (@ 0 cm) T_2 (@ 10 cm)$	$\begin{array}{c} 1.05\times10^6\\ 1.38\times10^6\end{array}$	$\begin{array}{c} 3.9\times10^5\\ 4.9\times10^5\end{array}$	$2.70 \\ 2.83$

a Geant4 simulation. For comparison purposes, simulations were performed for both setups, AGATA@PreSPEC and AGATA 1π . Using beam velocities of $\beta_1 \approx 0.61$ and $\beta_2 \approx 0.58$ to take the Doppler effects into account. Table 2 gives the ratio

$$\nu \coloneqq \frac{N_{1\pi}}{N_{\text{PreSPEC}}} \tag{18}$$

of the photo-absoption events in AGATA 1π ($N_{1\pi}$) and PreSPEC (N_{PreSPEC}). Hence, an increase in statistics by a factor $\nu \in [2.70, 2.83]$ is anticipated, yielding a necessary beam time of ≈ 20 days, if AGATA 1π is used for the ⁸⁵Br experiment, under the condition that only events with a particle multiplicity of one are used.

Up to this point, only total energy depositions in the full respective crystals were used. However, one of AGATA's main features is the γ -ray tracking. Its impact on the analysis process is emphasized in the following.

6 Impact of γ -ray Tracking

Since AGATA is a γ -ray tracking spectrometer, the performed peak analysis of ¹⁹⁷Au (see Secs. 4 and 5) can also be done utilizing $\gamma\text{-}\mathrm{ray}$ tracked photons. To increase the selectivity of the used Mars Gamma-ray Tracking MGT [33-35], the χ^2 limit for accepted photons, referred to as χ^2_{Max} , has to be chosen such that the best ratio ξ [see Eq. (8)] can be achieved. The acceptance limit χ^2_{Max} is used to compare measured energies $E_{dep,i}$ at the respective interaction points x with their expected deposited energies stemming from geometrical angles between consecutive interaction points x_i calculated via the Compton-scattering formula. Larger values of χ^2_{Max} yield clusters of interaction points being often accepted as stemming from a single γ ray since even large discrepancies between assumed deposited energies from position measurement compared to actually measured deposited energies are accepted. This can lead to false reconstructions of γ rays, reducing the achievable Peak-to-Background (P/B) ratios. Here, P/B is defined as the number of counts in a peak-of-interest above the fitted background level divided by the number of counts in the same range in the background³. The smaller χ^2_{Max} ,

 $^{^3\,}$ A 2σ interval around the peak-of-interest was used for the P/B calculations.

the larger the rejection of potentially false, but also correct clusters. For details on γ -ray tracking, see [33–36].

Following the approach given in Sections 4 and 5, the γ -ray tracking with the mentioned acceptance limit of $\chi^2_{\text{Max}} = 0.08$ ultimately yielded the smallest $\xi = 3.7(6)$ [see Eq. (8)] as depicted in Figure 7. Although $\chi^2_{\text{Max}} =$

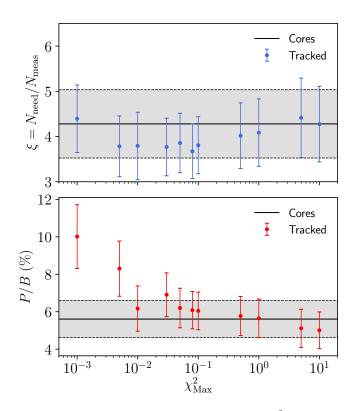


Fig. 7. Top: Detection limit ratios ξ for various χ^2_{Max} parameters of MGT (blue). The black line corresponds to core energies (see Secs. 4 and 5) with respective uncertainties as dashed lines. Bottom: Peak-to-Background (P/B) ratios for tracked γ rays as a function of χ^2_{Max} . The highest P/B ratio can be achieved for the lowest $\chi^2_{\text{Max}} = 10^{-3}$. However, the achieved ξ is not optimal in this scenario.

 10^{-3} resulted in a larger P/B = 10.0(17) %, the amount of measured counts in the ¹⁹⁷Au is 1050(180), roughly half as many events as measured in the core analysis (see Sec. 3). Since the amount of measured events in the Doppler-corrected background spectra are not as strongly suppressed, especially due to larger uncertainties in energy measurement as well as uncertainties arising in the Doppler-correction⁴, the resulting $\xi = 4.4(7)$ for $\chi_{\text{Max}} = 10^{-3}$ is even larger than for the core analysis.

larger than for the core analysis. As shown in Figure 8 for $\chi^2_{\text{Max}} = 0.08$, γ -ray tracking reduces the overall statistics severely but also suppresses unwanted background lines such as e^-e^+ annihilation events or Ge(n,n' γ) reactions. Photons that do not stem from the defined source positions are suppressed via γ -ray tracking methods since their hypothetical traveling path through the detector, assumed to start from

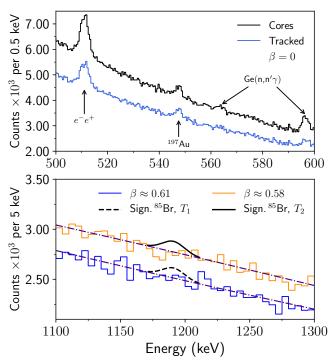


Fig. 8. Top: Tracked photon energies with applied particle conditions for $\chi^2_{\text{Max}} = 0.08$ (blue) and core energies (black). Although the overall statistics are reduced, events in the "tracked" histograms do not (necessarily) stem from the target position such as Ge(n,n' γ) reactions at around 596 keV as well as e^-e^+ annihilation photons at 511 keV are suppressed in comparison to the core spectrum. *Bottom*: Doppler-corrected spectra for tracked photons for T_1 and T_2 with their respective significant ⁸⁵Br peaks.

the source position, can strongly differ from their physical path. Applying γ -ray tracking, the background level in the Doppler-corrected spectra also decreases significantly. Comparing the P/B ratios of the ¹⁹⁷Au peak for tracked γ rays and core energies, a $P/B_{\rm core} = 5.6(9)$ % for the core energies and a $P/B_{\rm track} = 6.1(10)$ % for the tracked γ rays could be achieved. Under the assumption that AGATA 1π is available, γ -ray tracking could reduce the necessary beam time to ≈ 15 days, under the condition that only events with a particle multiplicity of one are used.

Depending on the assumed $B(M1,\downarrow)$ value, the necessary measurement time t_{need} varies strongly (see Fig. 9). For example, if a similar $B(M1,\downarrow)$ value as measured in ⁸⁷Rb is assumed, $t_{\text{need}} \approx 170$ d, an impractical amount of beam time. However, it is likely that a future experiment will be performed using, e.g., the Super-FRS [37], the successor of FRS at the Facility for Antiproton- and Ion-Research (FAIR). Since light particles such as protons or neutrons are the main cause for the present background, a sufficient reduction of these events achievable with the Super-FRS will most likely cause a strong reduction of background events. The impact of background reduction at the site of the experiment is shown in Figure 9. Assuming that the general background level is decreased by an

⁴ Point of γ -ray emission not perfectly known.

order of magnitude if the Super-FRS is used, the necessary measurement time would be reduced by that same factor, allowing a measurement of the $\pi p_{3/2} \rightarrow \pi p_{1/2}$ spin-flip in ⁸⁵Br for $B(M1,\downarrow) = 0.64 \mu_N^2$ as measured in ⁸⁷Rb in a similar time as achieved using the FRS for $B(M1,\downarrow) = 3.34 \mu_N^2$, corresponding to a proton spin-flip transition with an unquenched spin g-factor.

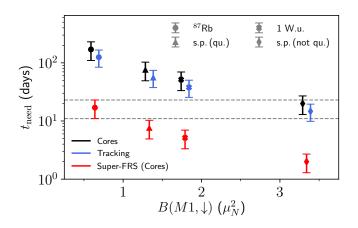


Fig. 9. Necessary measurement time t_{need} with AGATA 1π as a function of expected $B(M1,\downarrow)$ for a transition strength as measured in ⁸⁷Rb (dots at $0.64 \,\mu_n^2$), 1 W.u. (crosses at $1.75 \,\mu_N^2$), a single particle transition with quenched g_s^{π} (triangles at $1.33 \,\mu_N^2$) and without a quenched g_s^{π} (diamonds at $3.34 \,\mu_N^2$). Points in black depict the necessary time when core energies are used, blue if γ -ray tracking is used and red, if the Super-FRS is used as a fragment separator. Here, it is assumed that for a constant signal, the background is reduced by an order of magnitude compared to the present data set obtained using the FRS. Only the case where cores are used is depicted for this hypothetical case. A significant ⁸⁵Br peak could be measured using the Super-FRS for a $B(M1,\downarrow) = 0.64 \,\mu_N^2$ in a similar time as it would be measured using the FRS for $B(M1,\downarrow) = 3.34 \,\mu_N^2$.

7 Conclusion and Outlook

A first benchmark test of the *Coulex-multipolarimetry* method specifically developed for single-particle spin-flip experiments with AGATA via the expected $\pi p_{3/2} \rightarrow \pi p_{1/2}$ spin-flip excitation in ⁸⁵Br has been performed. In this experiment, a setup of two consecutive gold targets was used to measure target specific photon yields from ⁸⁵Br beam-excitations which should provide information about the M1 transition strength of the potential single-particle excitation. Although no de-excitations of the ⁸⁵Br beam particles were observed, background levels together with the measured amount of gold target excitations could be used to infer an upper limit of the M1 transition strength of $B(M1,\downarrow) < 9.5 \,\mu_N^2$ as well as the necessary amount of additional beam time of ≈ 55 days for the setup employed here. Via *Geant*4 simulations of AGATA, the impact of the upcoming AGATA 1π configuration has been studied.

Together with AGATA's γ -ray tracking capabilities, the amount of beam time using AGATA in its 1π configuration would be reduced by a factor of three. Further significant reduction of necessary beam time can be expected due to the anticipated decrease in beam-related background radiation at the HISPEC [38] site of the AGATA spectrometer. Hence, the experiment reported on here has served for identifying and establishing the limits of the available detector infrastructure at GSI in order to prepare for future experiments at HISPEC.

Acknowledgments

The authors want to thank A. Lopez-Martens for helpful advice on possible analysis methods and U. Friman-Gayer for statistics-related advice. In addition, the authors want to thank the AGATA collaboration for providing the necessary data. This work was supported by the German BMBF under grant numbers 05P19RDFN1, 05P18RDFN9 and 05P19PKFNA, the Bulgarian National Science fund under grant number DN 08/23, the Swedish Research Council under contracts Nos. 2010-147, 2011-5253 and 2011-6127, HGS-HIRe and HIC for FAIR. This work has been supported by the European Community FP7–Capacities, ENSAR Contract No. 262010.

References

- 1. R. Taniuchi et al., ^{78}Ni revealed as a doubly magic stronghold against nuclear deformation, Nature 569 (2019) 53.
- S. Franchoo et al., Beta Decay of ⁶⁸⁻⁷⁴Ni and Level Structure of Neutron-Rich Cu Isotopes, Physical Review Letters 81 (1998) 3100.
- S. Franchoo et al., Monopole migration in ^{69,71,73}Cu observed from β decay of laser-ionized ⁶⁸⁻⁷⁴Ni, Physical Review C 64 (2001) 054308.
- K. T. Flanagan et al., Nuclear Spins and Magnetic Moments of ^{71,73,75}Cu: Inversion of π2p_{3/2} and π1f_{5/2} Levels in ⁷⁵Cu, Physical Review Letters 103 (2009) 142501.
- 5. T. Otsuka et al., Evolution of Nuclear Shells due to the Tensor Force, Physical Review Letters 95 (2005) 232502.
- T. Otsuka et al., Novel Features of Nuclear Forces and Shell Evolution in Exotic Nuclei, Physical Review Letters 104 (2010) 012501.
- 7. C. Stahl et al., Identification of the proton $2p_{1/2} \rightarrow 2p_{3/2}$ M1 spin-flip transition in ⁸⁷Rb, Physical Review C 87 (2013) 037302.
- C. Stahl et al., Coulex-multipolarimetry with relativistic heavy-ion beams, Nuclear Instruments and Methods in Physics Research A 770 (2015) 123.
- N. Pietralla et al., On the Road to FAIR: 1^{st.} Operation of AGATA in PreSPEC at GSI, EPJ Web of Conferences 66 (2014) 02083.
- 10. H. Geissel et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions, Nuclear Instruments and Methods in Physics Research Section B 70 (1992) 14.

- 10 P. Napiralla et al.: Benchmarking the PreSPEC@GSI Experiment for Coulex-Multipolarimetry in ⁸⁵Br
- 11. P. Golubev, et al., The Lund-York-Cologne Calorimeter (LYCCA): Concept, design and prototype developments for a FAIR-NUSTAR detector system to discriminate relativistic heavy-ion reaction products, Nuclear Instruments and Methods in Physics Research Section A 723 (2013) 55.
- A. Akkoyun, et al., AGATA-Advanced GAmma Tracking Array, Nuclear Instruments and Methods in Physics Research A 668 (2012) 26.
- 13. A. Maj et al., Angular distribution of photons from the decay of the GDR in hot and rotating light Yb nuclei from exclusive experiments, Nuclear Physics A 571 (1994) 185.
- A. Winther and K. Alder, *Relativistic coulomb excitation*, Nuclear Physics A 319 (1979) 518.
- J. Lindhard and A. H.Sørensen, *Relativistic theory of stop*ping for heavy ions, Physical Review A 53 (1996) 2443.
- O. Tarasov and D. Bazin, LISE++: Radioactive beam production with in-flight separators, Nuclear Instruments and Methods in Physics Research B 266 (2008) 4657.
- F. Hubert et al., Range and Stopping-power tables for 2.5– 500 MeV/Nucleon Heavy Ions in Solids, Atomic Data and Nuclear Data 46 (1990) 1.
- N. Lalović et al., Performance of the AGATA γ-ray spectrometer in the PreSPEC set-up at GSI, Nuclear Instruments and Methods in Physics Research A 806 (2016) 258.
- R. Hoischen et al., Fast timing with plastic scintillators for in-beam heavy-ion spectroscopy, Nuclear Instruments and Methods in Physics Research A 654 (2011) 354.
- M. Reese et al., Position Sensitivity of LYCCA Time-of-Flight Detectors, GSI Report 2013-1 (2013) 185.
- 21. M. Reese, Intermediate-energy Coulomb excitation with the *PreSPEC-AGATA setup*, Ph.D. thesis, Technische Universität Darmstadt, 2018.
- 22. C. Bertulani, A computer program for relativistic multiple Coulomb and nuclear excitation, Computer Physics Communications 116 (1999) 23.
- C. Bertulani, DWEIKO, http://cpc.cs.qub.ac.uk/ summaries/ADRN_v1_0.html.
- A. E. Stuchbery et al., Measured Gyromagnetic Ratios and the Low-excitation Spectroscopy of ¹⁹⁷Au, Nuclear Physics A 486 (1988) 374.
- S. Agostinelli et al., Geant4 a simulation toolkit, Nuclear Instruments and Methods in Physics Research A 506 (2003) 250.
- 26. J. Allison *et al.*, *Geant4 Developments and Applications*, IEEE Transactions on Nuclear Science 53 (2006) 270.
- J. Allison et al., Recent developments in GEANT4, Nuclear Instruments and Methods in Physics Research A 835 (2016) 186.
- E. Farnea et al., Conceptual design and Monte Carlo simulations of the AGATA array, Nuclear Instruments and Methods in Physics Research A 621 (2010) 331.
- 29. G.F. Knoll, Radiation Detection and Measurement, volume 4, John Wiley & Sons (New York), 2010.
- H. Essel and N. Kurz, *The general purpose data acquisition system MBS*, 1999 IEEE Conference on Real-Time Computer Applications in Nuclear Particle and Plasma Physics (1999) 475.
- 31. H. Essel *et al.*, *The new data acquisition system at GSI*, IEEE Transactions on Nuclear Science 43 (1996) 1.
- 32. E. Clément, Conceptual design of the AGATA 1π array at GANIL, Nuclear Instruments and Methods in Physics Research A 855 (2017) 1.

- D. Bazzacco, Nuclear Physics A 746 (2004) 248 (Proceedings of the 2029Sixth International Conference on Radioactive Nuclear Beams (RNB6)).
- R. M. Lieder et al., The TMR network project "Development of γ-ray tracking detectors", Nuclear Physics A 682 (2001) 279c.
- 35. A. Korichi and T. Lauritsen, Tracking γ rays in highly segmented HPGe detectors: A review of AGATA and GRETINA, The European Physics Journal A 55 (2019) 121.
- A. Lopez-Martens et al., γ-ray tracking algorithms: a comparison, Nuclear Instruments and Methods in Physics Research A 533 (2004) 454.
- 37. H. Geissel et al., Technical Design Report on the Super-FRS, Technical report, GSI, 2009.
- Zs. Podolyák, The High-resolution In-flight Spectroscopy (HISPEC) project at FAIR, International Journal of Modern Physics E 15 (2006) 1967.