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Introduction

The concept of information is complex and corresponds to factual elements regarding an event or a situation, such as observations or news, as well as the amount of knowledge brought by these factual elements. A piece of information can be analysed either from the point of view of its content, semantics or meaning or from the point of view of its form, encoding or label. Claude Shannon [START_REF] Shannon | The mathematical theory of communication[END_REF] and Norbert Wiener [START_REF] Wiener | Cybernetics, or control and communication in the animal and the machine[END_REF] simultaneously introduced the first measure to evaluate information in 1948 in a general theory of communication. Both of them were only considering the information communicated by the observation of the occurrence of a message or an event among a set of messages or events, respectively in communications systems and in the framework of cybernetics. The numerical measure they introduced was based on probabilities and had nothing to do with semantics. In reaction to this proposal, Rudolf Carnap and Yehoshua Bar-Hillel [START_REF] Carnap | An outline of a theory of semantic information[END_REF] proposed to formalise the concept of semantic information on the basis of a logical approach of natural language, through the so-called amount of information. Later on, Edwin Thompson Jaynes [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] established the maximum entropy principle to make inferences on the basis of partial information, by looking for the maximum entropy, given the available knowledge. Solomon Kullback then introduced with Richard Leibler and developed the concept of discrimination measure or divergence enabling to compare two probability distributions [START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Kullback | Information theory and statistics[END_REF] .

Artificial intelligence was born in 1956 during the well-known "Dartmouth Summer Research Project on Artificial Intelligence" [START_REF] Mccarthy | A proposal for the Dartmouth summer research project on artificial intelligence[END_REF]. Even though it was not a direct emanation of cybernetics, it was strongly interrelated with it and it would have looked natural to consider Wiener's measure of information in Artificial Intelligence. It was not the case because Artificial Intelligence originally limited itself to symbolic methods, based on classical logic, rejecting any kind of numerical treatment of information, including probabilities. It might have looked relevant to use Carnap-Bar Hillel's measure of information, but this theory has never been applied to Artificial Intelligence, because of its numerical nature.

It is only in the 80s that some branches of Artificial Intelligence established a bridge with information theory. The Kullback discrimination measure [START_REF] Lemmer | Efficient minimum information updating for bayesian inferencing in expert systems[END_REF] and the maximum entropy principle [START_REF] Cheeseman | A method of computing generalized bayesian probability values for expert systems[END_REF] were for instance investigated in the framework of Bayesian inference and updating. One of the first consistent utilisations of measures of information in machine learning was Quinlan's decision trees [START_REF] Quinlan | Induction of decision trees[END_REF],

based on a concept of information gain used to choose an attribute providing its maximum value [START_REF] Jaynes | Information theory and statistical mechanics[END_REF]. At the same time, several other seminal works changed the view of numerical methods in Artificial Intelligence. Nilsson's probabilistic logic [START_REF] Nilsson | Probabilistic logic[END_REF] promoted Shannon's measure of information to develop a method to implement probabilistic entailment. Judea Pearl's early works and his book [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[END_REF] largely promoted the use of probabilities in Artificial Intelligence, his belief networks being considered as semantics-based systems. The optimisation of an entropy or a gain of information they recommended became popular in logic (for instance [START_REF] Goldszmidt | A maximum entropy approach to nonmonotonic reasoning[END_REF]) before being more largely applied in Artificial Intelligence.

Since this period, measuring the information provided by the observation of events has been a challenge. A number of quantities has been pointed out and studied in the literature to achieve this goal, called entropies or measures of information in the original probabilistic framework. Their extension to other frameworks such as fuzzy knowledge representation or its generalisations have given rise to the study of other aspects of information, for instance fuzziness or specificity. They have often been constructed by analogy with the probabilistic case, which may look artificial, but their properties go far beyond a simple analogy. They refer to the information contained in belief functions, for instance in [START_REF] Jiroušek | A new definition of entropy of belief functions in the Dempster-Shafer theory[END_REF][START_REF] Jiroušek | On properties of a new decomposable entropy of Dempster-Shafer belief functions[END_REF], or fuzzy systems, for instance in [START_REF] Zhang | Information structures and uncertainty measures in a fully fuzzy information system[END_REF]. Such entropies are used in Bayesian networks [START_REF] Gao | Learning bayesian network parameters via minimax algorithm[END_REF] or decision making systems [START_REF] Jiang | Strategy selection under entropy measures in movement-based three-way decision[END_REF][START_REF] Allahverdyan | Adaptive decision making via entropy minimization[END_REF]. We propose to continue the analysis initiated in [START_REF] Bouchon-Meunier | Entropy measures and views of information[END_REF] and formalised in [START_REF] Bouchon-Meunier | Entropy and monotonicity, in: Information Processing and Management of Uncertainty in Knowledge-Based Systems[END_REF], in focusing on the property of monotonicity, which appears essential for the notion of entropy and its utilisation in Artificial Intelligence. Most of the measures existing in the literature point out properties which have in common to be related to different aspects of monotonicity based on an order taking into account the context, the point of view or the knowledge representation. The entropy increases when the means to perform observations is refined, the concept of refinement taking various forms, from the utilisation of a better tool providing less vagueness to the utilisation of additional features to obtain more detailed information or, to express it in a more colourful language in the case where a photo brings information on an object, from zooming on the object to taking additional photos from another side of the object. The importance of the monotonicity of entropy, considered under the angle of the coarseness of information, has been pointed out in [START_REF] Amari | Information geometry in optimization, machine learning and statistical inference[END_REF]. Other views of the monotonicity of entropy have been proposed in random variable analysis, see for instance [START_REF] Artstein | Solution of shannon's problem on the monotonicity of entropy[END_REF].

This paper does not pretend to review all entropies or quantities of information introduced in the literature and related to artificial intelligence, in any way, as this would be far beyond the size of this manuscript. We only focus on a study of the common property of monotonicity of such measures with regard to a refinement of information, showing that the main differences between these quantities come from the diversity of orders defining such a refinement. Our aim is to propose a clarification of the concept of refinement of information and the underlying monotonicity, and to illustrate this paradigm by the utilisation of such measures in Artificial Intelligence.

The paper is organised as follows. In Section 2, we introduce entropy measures and definitions of monotonicity according to three different forms associated with different visions of the refinement of information. In Section 3, we illustrate these visions on various classic entropy measures: probabilistic entropies, measures of fuzziness, similarity relation-based entropy measures, entropies in the settings of the Atanassov intuitionistic fuzzy sets, and we develop also a study on popular divergence measures. In Section 4, we review some common uses of entropies in Artificial Intelligence and their highlighted properties of monotonicity. Finally, some conclusions are drawn and a set of perspectives is presented in Section 5.

Monotonicity of entropy measures

Shannon [START_REF] Shannon | The mathematical theory of communication[END_REF] clearly based his definition of entropy, considered as "measures of information, choice and uncertainty" on a concept of monotonicity, as he states "The uncertainty of y is never increased by knowledge of x. It will be decreased unless x and y are independent events, in which case it is not changed", which can be regarded as an interpretation of recursivity he furthermore requires from entropy. Additivity and recursivity are among the most important algebraic properties of entropy [START_REF] Aczél | On Measures of Information and their Characterizations[END_REF], and they imply an increase of the entropy resulting from the refinement of information acquired on an event through observations. Later on, Renyi [START_REF] Rényi | On measures of entropy and information[END_REF] introduced the first of a long list of generalisations of Shannon entropy, still satisfying a property of additivity. It is worth mentioning Mugur-Schächter's work [START_REF] Mugur-Schächter | The general relativity of descriptions[END_REF] on the general relativity of descriptions. She considers that any process of knowledge extraction is associated with epistemic operators called a delimiter and a view, representing the influence of the context and the observation tool on the considered event.

A refinement of information results from a change in the observation tool. In his generalised information theory, Kampé de Fériet [START_REF] Kampé De Fériet | Mesures de l'information par un ensemble d'observateurs[END_REF][START_REF] Kampé De Fériet | Mesure de l'information fournie par un événement[END_REF] takes into account observers and also requests a monotonicity of information with respect to an order on events.

Information theory do not pretend to evaluate all aspects, and it provides an evaluation of the decrease of uncertainty after an observation of events by means of entropies.

Given the amount of data available in the numerical world, which is covering all aspects of modern life, evaluating information is a major issue. All tools enabling the user to compare two pieces of information, to evaluate the information available in a given environment, to make diagnosis or prediction on the basis of information provided by observations or data, to aggregate chunks of information, are useful. Unfortunately, there are many such tools and it is difficult to see their common features. This is why we propose to analyse measures of information and to revisit classic approaches of information evaluation in order to focus on monotonicity which we consider the most natural and relevant property requested from such a tool. Let us consider a set of objects or events that represent the real world. In this paper, for the sake of simplicity, we only consider finite sets, but this work could be generalised to non-countable sets. We use the notation proposed in the seminal paper by Aczél and Daróczy on the so-called inset entropy [START_REF] Aczél | A mixed theory of information. I: Symmetric, recursive and measurable entropies of randomized systems of events[END_REF] to formalise the available information on the set of objects or events and taking into account the context, the point of view and the chosen knowledge representation.

We consider an algebra B defined on a finite universe U. For any integer n > 0, we note:

• X n = {(x 1 , . . . , x n ) | x i ∈ B, x i ∩ x j = 0 if i = j, ∀i, j = 1, . . . , n}; • P n = {(p 1 , . . . , p n ) | p i ∈ [0, 1]
}, p i being associated with x i through a function p : B → [0, 1], a particular case being a probability measure defined on (U, B);

• W n = {(w x1 , . . . , w xn ) | w xi ∈ R + , ∀i = 1, . . . , n}, a family of n-tuples of weights 1 associated with n-tuples of B through a function f : B → R +n , such that f (x 1 , . . . , x n ) = (w x1 , . . . , w xn ).
Similarly to the definition of inset entropy [START_REF] Aczél | A mixed theory of information. I: Symmetric, recursive and measurable entropies of randomized systems of events[END_REF], we introduce an entropy measure as a sequence of mappings E n : X n ×P n ×W n → R + satisfying several properties among a long list, for instance available in [START_REF] Aczél | On Measures of Information and their Characterizations[END_REF] or in [START_REF] Klir | Uncertainty-Based Information[END_REF].

In the sequel, for the sake of simplicity, we use the notation

     x 1 , . . . , x n p 1 , . . . , p n w x1 , . . . , w xn     
rather than ((x 1 , . . . , x n ), (p 1 , . . . , p n ), (w x1 , . . . , w xn )) to represent an element of X n × P n × W n , according to the notation used in [START_REF] Aczél | A mixed theory of information. I: Symmetric, recursive and measurable entropies of randomized systems of events[END_REF].

We claim that the most significant properties to characterise an entropy measure are relative to monotonicity with respect to a refinement of information which can take various forms, depending on a chosen order. Such a monotonicity corresponds to the natural idea that the more details, precision, certainty we obtain from the observation of objects or events, or equivalently the more refined information we have on them, the bigger the amount of information we have on these objects or events.

To use a metaphor, we can consider that we are facing a picture of an object providing some amount of information on it. We can first improve the light on the object before taking another picture in order to decrease the fuzziness of the details, or take another picture with a higher resolution, which gives more information on the object according to an increase of the precision, both cases corresponding to a monotonicity described in 2.1. We can also select a part of the object and make several pictures of this part, in a form of weak recursivity described in 2.2. We can finally partition the object into different parts and, for each of them, make more pictures providing a bigger amount of information on the object, in a form of weak additivity presented in 2.3.

We present these three forms of monotonicity which can be adapted to the knowledge representation we choose, as highlighted in the next sections.

O-monotonicity

The first form of monotonicity, noted O-monotonicity, is defined according to a given (partial) order on the elements: the monotonicity highlights a link between the order of the elements and the order induced by the measure.

Definition

Let ≺ be a partial order on a reliable observation of the objects or events, O-monotonicity can be written as follows: if

     x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      ≺      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      then E n      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      ≤ E n      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n     

Particular cases

Examples of monotonicity can be based on the following partial orders:

     x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      ≺      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n     
if and only if one of the following conditions is satisfied: (O1), called sharpness in [START_REF] De Luca | A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[END_REF], or (O2)

(O1) ∀i = 1, . . . , n, if w i ≥ 1 2 then w i ≤ w i ; 170 (O2) ∀i = 1, . . . , n, w i ≥ w i .
These examples are based on an order related to W . Other orders, for instance related to P , could be also used. Such examples will be studied later.

R-monotonicity

The second form of monotonicity, noted R-monotonicity, is based on a 175 decrease of the coarseness of a partition of the universe of discourse.

Definition

R-monotonicity can correspond to a property of weak recursivity defined as follows:

E n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w x1 , w x2 , . . . , w xn      ≥ E n-1      x 1 ∪ x 2 , x 3 , . . . , x n p 1 + p 2 , p 3 , . . . , p n w x1∪x2 w x3 , . . . , w xn     
A particular case of weak recursivity is what we call the ψ-recursivity, defined for a function ψ : X 2 × P 2 × W 2 → R + as:

E n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w x1 , w x2 . . . , w xn      = E n-1      x 1 ∪ x 2 , x 3 . . . , x n p 1 + p 2 , p 3 . . . , p n w x1∪x2 , w x3 . . . , w xn      +ψ      x 1 , x 2 p 1 , p 2 w x1 , w x2      E 2      x 1 , x 2 p1 p1+p2 , p2 p1+p2 w x1 , w x2      .

Particular case

The classic property of recursivity corresponds to:

ψ 0      x 1 , x 2 p 1 , p 2 w x1 , w x2      = p 1 + p 2 ,
where the weights are not taken into account.

A-monotonicity

The third form of monotonicity, noted A-monotonicity, is based on the consideration of a secondary finite universe U and an algebra B on U providing more details on the observed phenomenon or object, through additional observations.

Definition

Similarly to the situation on U, we consider for any integer m

• X m = {(x 1 , . . . , x m ) | x i ∈ B , ∀i}; • P m = {(p 1 , . . . , p m ) | p i ∈ [0, 1]}, p i being associated with x i through a function p : B → [0, 1]; • W m = {(w 1 , . . . , w m ) | w i ∈ R + ;
∀i}, a family of m-tuples of weights associated with m-tuples of elements of B through a function f :

B → R + , such that f (x i ) = w i .
We further suppose that there exist two combination operators and • enabling us to equip the Cartesian product of U × U with similar distributions:

• P n P m = {(p 1 p 1 , . . . , p i p j , . . .) | p i p j ∈ [0, 1]}, p i p j being associated 195 with (x i , x j ) for any i and j through a function p p ,

• W n • W m = {(w 1,1 , . . . , w i,j , . . .) | w i,j ∈ R + , ∀i, j}, is defined through a function f • f : B × B → R + , such that: f • f (x 1 , x j ) = w i,j for all i = 1, . . . , n and j = 1, . . . , m.
Such a refinement leads to a property of weak additivity stating the following:

E n×m      (x 1 , x 1 ), (x 1 , x 2 ), . . . , (x i , x j ), . . . , (x n , x m ) p 1 p 1 , p 1 p 2 , . . . , p i p j , . . . , p n p m w x1,x 1 , w x1,x 2 , . . . , w xi,x j , . . . , w xn,x m      ≥ max      E n      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      , E m      x 1 , . . . , x m p 1 , . . . , p m w 1 , . . . , w m          
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The classic additivity property stands in the case where U and U are independent universes, p and p being probability distributions on (U, B) and (U , B ), weights generally not being taken into account. It yields:

E n×m      (x 1 , x 1 ), (x 1 , x 2 ), . . . , (x i , x j ), . . . , (x n , x m ) p 1 p 1 , p 1 p 2 , . . . , p i p j , . . . , p n p m w x1,x 1 , w x1,x 2 , . . . , w xi,x j , . . . , w xn,x m      = E n      x 1 , . . . , x n p 1 , . . . , p n w x1 , . . . , w xn      + E m      x 1 , . . . , x m p 1 , . . . , p m w x 1 , . . . , w x m     

Diverse entropy measures

In this section, the previous definitions of monotonicity are studied in the 205 case of classical and well-known entropy measures.

Shannon and weighted entropies

It is well-known that the classic Shannon entropy defined as:

E S n (p) = - n i=1 p i log p i ,
only taking into account X n and P n , is additive and recursive and then Rmonotonous and A-monotonous.

Its generalisation to the case where weights are associated with events to rep-210 resent a cost or an importance is a weighted entropy defined on X n × P n × W n as follows [START_REF] Guiaşu | Weighted entropy[END_REF]:

E w n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w 1 , w 2 , . . . , w n      = - n i=1 w i p i log p i .
The weighted entropy is O-monotonous with regard to the partial order (O2).

It is also recursive, and then R-monotonous when considering

w x1∪x2 = (p 1 w 1 + p 2 w 2 ) (p 1 + p 2 ) .
In addition, the weighted entropy is A-monotonous as soon as we consider an aggregation function at least equal to the maximum:

E n×m      (x 1 , x 1 ), . . . . . . , (x n , x m ) p 1 p 1 , . . . . . . , p n p m w 1 • w 1 , w 1 • w 2 , . . . , w n • w m      ≥ max      E n      x 1 , . . . , x n p 1 , . . . , p n w 1 , . . . , w n      , E m      x 1 , . . . , x m p 1 , . . . , p m w 1 , . . . , w m          
whenever w i • w j ≥ max(w i , w j ) for all i = 1, . . . , n and j = 1, . . . , m

An entropy of the same form as the weighted entropy has been introduced

by Zadeh [33] in the case where weights are replaced by membership degrees, and the so-called entropy of a fuzzy set is defined as:

E Z n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n µ 1 , µ 2 , . . . , µ n      = - n i=1 µ i p i log p i .
It is obviously still O-monotonous (with partial order (O2)), and A-monotonous according to [START_REF] Zadeh | Probability measures of fuzzy events[END_REF].

Parameterised entropies

A number of generalisations of Shannon's entropies flourished in the 60s and in the 70s, independent of W n and preserving some of the basic properties of Shannon's entropy. The first one was the Renyi's entropy of order α, defined as:

E Rα n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w 1 , w 2 , . . . , w n      = 1 1 -α log n i=1 p i α ,
for a parameter α strictly positive and different from 1, the Shannon entropy corresponding to the limit case when α tends to 1. This quantity is additive, as proved in [START_REF] Rényi | On measures of entropy and information[END_REF], and then A-monotonous, but not recursive. It is easy to see that Renyi's entropy of order α is nevertheless R-monotonous.

Another parameterised form of entropy is Daróczy's entropy of type β, for a parameter β strictly positive and different from 1, defined as [START_REF] Daróczy | Generalized information functions[END_REF]:

E Dβ n (p) = 1 2 1-β -1 ( n i=1 p i β -1).
The Shannon entropy corresponds to the limit case when β tends to 1. When β = 2, we obtain a quantity proportional by a factor 2 to the Gini diversity index [START_REF] Breiman | Classification and Regression Trees[END_REF] used in the construction of decision trees by the Cart method.

It was known not to be either additive or recursive and was proved to satisfy recursivity of type β, equivalent to the weak recursivity we consider, with:

ψ      x 1 , x 2 p 1 , p 2 w x1 , w x2      = (p 1 + p 2 ) β .
It also satisfies an additivity of type β, implying the weak additivity. The Daróczy's entropy of type β is then R-monotonous and A-monotonous.

Measure of fuzziness

Shortly after the weighted entropy, another entropy measure was introduced by De Luca and Termini by analogy with the Shannon entropy, but in a nonprobabilistic framework [START_REF] De Luca | A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[END_REF], and then independently of P n . It is a measure of fuzziness, in the case where f is the membership function of a fuzzy set on U :

E DLT n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w 1 , w 2 , . . . , w n      = - n i=1 w i log w i - n i=1 (1 -w i ) log(1 -w i ).
A major property of this quantity is its O-monotonicity with respect to the above mentioned partial order (O1) defining the sharpness.
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It can further be observed that, in the case where the weights are possibility degrees, ie. max(w 1 , . . . , w n ) = 1, this measure of fuzziness is also weakly recursive and then R-monotonous:

E DLT n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n w 1 , w 2 , . . . , w n      ≥ E DLT n-1      x 1 ∪ x 2 , x 3 , . . . , x n p 1 + p 2 , p 3 , . . . , p n max(w 1 , w 2 ), w 3 , . . . , w n     

Entropy measures under similarity relations

We consider a similarity relation S on U = {x 1 , . . . , x n }, reflexive, symmetric and min-transitive. R.R. Yager [START_REF] Yager | Entropy measures under similarity relations[END_REF] defines the following entropy measure on 

X n × P n × W n : E Sim n      x 1 ,
(O3) S S ⇔ S(x i , x j ) ≤ S (x i , x j ) ∀i, j.
This entropy measure is also A-monotonous, if we define a joint similarity relation S × S on the Cartesian product U × U as follows, for two similarity relations S defined on U and S defined on U :

S × S ((x i , y j ), (x k , y l )) = min S(x i , x k ), S (y j , y l )

for any x i and x k in U , any y j and y l in U .

Ambiguity or nonspecificity

In the framework of possibility distributions, corresponding to a fuzzy setbased knowledge representation in which a membership degree is interpreted as the possibility of the observed variable to take a given value, with a maximum equal to 1, a measure of ambiguity or non-specificity has been introduced by [START_REF] Higashi | Measures of uncertainty and information based on possibility distributions[END_REF] and called U-uncertainty. It is defined under the hypothesis that the x i are ranked according to a possibility distribution:

π 1 ≥ π 2 ≥ ... ≥ π n and π 1 > 0.
This quantity, independent of P , got more popularity when pointed out by [START_REF] Yuan | Induction of fuzzy decision trees[END_REF] in the induction of fuzzy decision trees.

E HK n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n π 1 , π 2 , . . . , π n      = n-1 i=1 (π i -π i+1 ) log i.
It was proved [START_REF] Klir | Fuzzy Sets, Uncertainty, and Information[END_REF] that this quantity is O2-monotonous. It is also additive, then A-monotonous, when the two possibility distributions are non-interactive, as follows:

E HK n×m      (x 1 , x 1 ), . . . , (x n , x m ) p 1 p 1 , . . . , p n p m min(π 1 , π 1 ), . . . , min(π n , π m )      ≥ max      E HK n      x 1 , . . . , x n p 1 , . . . , p n π 1 , . . . , π n      , E HK m      x 1 , . . . , x m p 1 , . . . , p m π 1 , . . . , π m          
It is also recursive, and then R-monotonous.

Divergence

Kulback and Leibler's divergence [START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Kullback | Information theory and statistics[END_REF] is another form of entropy, when W n is identical with P n , corresponding to the following:

J KL n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n q 1 , q 2 , . . . , q n      = n i=1 p i log( p i q i ),
where p 1 , p 2 , . . . , p n and q 1 , q 2 , . . . , q n are two probability distributions on the same set of events, for instance a prior and a posterior distribution. They prove that J KL n is additive, and therefore A-monotonous. This divergence is also recursive, such that:

J KL n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n q 1 , q 2 . . . , q n      = J KL n-1         x 1 ∪ x 2 , x 3 . . . , x n p 1 + p 2 , p 3 . . . , p n q 1 + q 2 , q 3 . . . , q n         + (p 1 + p 2 )J KL 2      x 1 , x 2 p1 p1+p2 , p2 p1+p2 q1 q1+q2 , q2 q1+q2      It is therefore R-monotonous.
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Parameterised forms of divergence were introduced, in the same spirit as the parameterised entropies. The first one is divergence of order α introduced by Renyi [START_REF] Rényi | On measures of entropy and information[END_REF] as the gain of information resulting from the replacement of q 1 , q 2 , . . . , q n by p 1 , p 2 , . . . , p n , defined as follows:

J Rα n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n q 1 , q 2 , . . . , q n      = 1 α -1 log n i=1 p α i q α-1 i ,
for α ≥ 0 and α = 1. It is additive, and therefore A-monotonous.

The second parameterised divergence was introduced by Rathie and Kannappan [START_REF] Rathie | A directed-divergence function of type β[END_REF] as the directed divergence of type β:

J RKβ n      x 1 , x 2 , . . . , x n p 1 , p 2 , . . . , p n q 1 , q 2 , . . . , q n      = 1 2 β-1 -1 ( n i=1 p β i q β-1 i -1).
The authors proved that it is R-monotonous. Furthermore, they prove that it has a form of strong non-additivity entailing the following:

J RKβ n×m      (x 1 , x 1
), (x 1 , x 2 ), . . . , (x i , x j ), . . . , (x n , x m ) p 1 p 1 , p 1 p 2 , . . . , p i p j , . . . , p n p m q 1 q 1 , q 1 q 2 , . . . , q i q j , . . . ,

q n q m      = J RKβ n      x 1 , . . . , x n p 1 , . . . , p n q 1 , . . . , q n      + n i=1 p β i q 1-β i J RKβ m      x 1 , . . . , x m p 1 , . . . , p m q 1 , . . . , q m     
which implies a property of A-monotonicity

Intuitionistic entropy measures

In this section, we consider the setting of the Atanassov intuitionistic fuzzy sets (AIFS) where several entropy measures have been introduced [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF][START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF]. First of all, some basics of AIFS are recalled.

Let X be a universe, an Atanassov intuitionistic fuzzy set (AIFS) A of X is defined [START_REF] Atanassov | Intuitionistic fuzzy sets[END_REF] by:

A = {(x, µ A (x), ν A (x))|x ∈ X} with µ : X → [0, 1], ν : X → [0, 1] and 0 ≤ µ A (x) + ν A (x) ≤ 1, ∀x ∈ X.
Here, µ A (x) and ν A (x) represent respectively the membership degree and the non-membership degree of x in A. Given an intuitionistic fuzzy set A of X, the hesitancy lying on the membership of x to A is the intuitionistic index of x to

A defined for all x ∈ X as π A (x) = 1 -(µ A (x) + ν A (x)). It is easy to see that we always have π A (x) ∈ [0, 1].
The inclusion of AIFS is defined as:

A ⊆ B if and only if µ A (x) ≤ µ B (x) and ν A (x) ≥ ν B (x), ∀x ∈ X.
The union of two AIFS A and B is defined as the AIFS A ∪ B such that

µ A∪B (x) = max(µ A (x), µ B (x)) and ν A∪B (x) = min(ν A (x), ν B (x)), ∀x ∈ X.
The intersection of two AIFS A and B is defined as the AIFS A ∩ B such that

µ A∩B (x) = min(µ A (x), µ B (x)) and ν A∩B (x) = max(ν A (x), ν B (x)), ∀x ∈ X. It can be easily seen that µ A∪B (x) ∈ [0, 1] and µ A∩B (x) ∈ [0, 1].

Definitions of entropy measures for AIFS.

Several works in AIFS theory have proposed the definition for an entropy of an intuitionistic fuzzy set A. With our notations, we represent these quantities as:

280 E IF S n      x 1 , . . . , x n p 1 , . . . , p n (µ 1 , ν 1 ), . . . , (µ n , ν n )      , with µ A (x i ) = µ i and ν A (x i ) = ν i .
Here, the weights from W n are thus defined

as tuples from [0, 1] × [0, 1].
There exist various definitions of entropy measures in the AIFS setting [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF],

independent of P n . For instance, the entropy measure given in [START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF] is defined as:

E IF S,S n      x 1 , . . . , x n p 1 , . . . , p n (µ 1 , ν 1 ), . . . , (µ n , ν n )      = 1 - 1 2n n i=1 |µ i -ν i |
In [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF], the following entropy measure is also introduced:

E IF S,G n      x 1 , . . . , x n p 1 , . . . , p n (µ 1 , ν 1 ), . . . , (µ n , ν n )      = 1 2n n i=1 1 -|µ i -ν i | (1 + π i ), with π i = 1 -(µ i + ν i ).
Another way to define an entropy measure is presented in [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on intervalvalued fuzzy sets[END_REF] where the definition is based on extensions of the Hamming distance and the Euclidean distance to AIFS. For instance, the following entropy measure is proposed:

E IF S,B n      x 1 , . . . , x n p 1 , . . . , p n (µ 1 , ν 1 ), . . . , (µ n , ν n )      = n i=1 π i 3.7.2.
Entropy measures for AIFS and monotonicity.

In [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF], it is recalled that, in the AIFS setting, a monotonicity property for 285 an entropy measure could be ensured by definition. The authors present several definitions that lie on the definition of a partial order on W n and the concept of less fuzzy than. The following definitions of partial order could be used.

(O4)

A is less fuzzy than B if for all x ∈ X µ A (x) ≤ µ B (x) and

ν A (x) ≥ ν B (x) if µ B (x) ≤ ν B (x), or µ A (x) ≥ µ B (x) and ν A (x) ≤ ν B (x) if µ B (x) ≥ ν B (x)

, and (O5)

A is less fuzzy than B if

µ A (x) ≤ µ B (x) and ν A (x) ≤ ν B (x), ∀x ∈ X,
O-monotonicity. It is easy to see that (O4) and (O5) yield two versions of O-monotonicity. These definitions of monotonicity produce particular forms of E IF S :

• E IF S,S n
satisfies the monotonicity based on (O4) as it is stated in [START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF];

• E IF S,G n
satisfies the monotonicity based on (O4), as it is stated in [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF];

• E IF S,B
n satisfies the monotonicity based on (O5) as it could be found in [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on intervalvalued fuzzy sets[END_REF] where this entropy is given as example.

R-monotonicity.

The measure E IF S,B n satisfies the R-monotonicity if we have

E IF S,B n      x 1 , . . . , x n p 1 , . . . , p n (µ 1 , ν 1 ), . . . , (µ n , ν n )      ≥ E IF S,B n-1      x 1 ∪ x 2 , x 3 , . . . , x n p 1 + p 2 , p 3 , . . . , p n (max(µ 1 , µ 2 ), min(ν 1 , ν 2 )), (µ 3 , ν 3 ), . . . , (µ n , ν n )     
.

considering the union of AIFS as defined in the introduction of this section.

Hereafter, for the sake of simplicity, we note these two measures E IF S,B n and

E IF S,B n-1
respectively.

We have

E IF S,B n -E IF S,B n-1 = 1 -µ 1 -ν 1 + 1 -µ 2 -ν 2 -1 + max(µ 1 , µ 2 ) + min(ν 1 , ν 2 ) = 1 + (max(µ 1 , µ 2 ) -µ 1 -µ 2 ) + (min(ν 1 , ν 2 ) -ν 1 -ν 2 )
and thus

E IF S,B n -E IF SB n-1 = 1 -min(µ 1 , µ 2 ) -max(ν 1 , ν 2 )
This corresponds to the intuitionistic index of the intersection of AIFS, and thus, as a consequence, we have

E IF S,B n -E IF S,B n-1
≥ 0 and E IF S,B n satisfies the R-monotonicity.

Entropies in Artificial Intelligence

Entropies are very commonly used in Artificial Intelligence. Indeed, their monotonicity properties could be one of the main reasons for this success. In the following, some applications of entropies in Artificial Intelligence are presented and the kind of monotonicity involved is highlighted (that could explain why such an entropy is chosen in such applications). Our aim is not to propose a complete review of such applications but to show that an entropy can be considered as a universal tool.

Beyond the search of the maximum entropy common when probabilistic measures are used, monotonicity or maximisation of entropy has also been the core of methods based on non-probabilistic entropies.

Maximum Entropy Principle

A derived utilisation of the concept of monotonicity is the very commonly used maximum entropy principle (Maxent). It was first proposed by Jaynes [START_REF] Jaynes | Information theory and statistical mechanics[END_REF],

in the simple case where weights are not involved, as a way to choose the most appropriate probability distribution to cope with the uncertainty, as the one being "maximally noncommittal with regard to missing information". Jaynes introduced this principle in the case of the Shannon entropy, because of the easiness to solve the optimisation problem of maximising the entropy under

Entropies in Machine Learning

As previously said in the introduction, one of the well-known uses of entropies is in machine learning where the Shannon entropy is very popular.

In supervised learning, a common use of such a measure is dedicated to the learning of a decision tree from a training data set [START_REF] Quinlan | Induction of decision trees[END_REF], [START_REF] Breiman | Classification and Regression Trees[END_REF]. Shannon entropy is not the unique measure to be used in such a process [START_REF] Marsala | Ranking attributes to build fuzzy decision trees: a comparative study of measures[END_REF] but it is one of the most efficient. We can for instance also cite the Gini index of diversity which is also popular [START_REF] Breiman | Classification and Regression Trees[END_REF].

Here, for this kind of tree-like splitting processes, the R-monotonicity is the main property that is sought for. Indeed, measures following this kind of monotonicity property enable the better choice of description attributes when splitting the training set to reduce the uncertainty related to the prediction of the class.

In the building of fuzzy decision trees, other measures have been introduced.

For instance, Renyi's entropy was used in presence of unbalanced datasets in [START_REF] Gajowniczek | Comparison of decision trees with Rényi and Tsallis entropy applied for imbalanced churn dataset[END_REF]. In a fuzzy setting, De Luca and Termini's non-probabilistic entropy [START_REF] De Luca | A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[END_REF] was used to construct fuzzy decision trees [START_REF] Cios | Continuous ID3 algorithm with fuzzy entropy measures[END_REF] and also for feature selection in classification [START_REF] Luukka | Feature selection using fuzzy entropy measures with similarity classifier[END_REF]. In both approaches, this entropy is used to select attributes bringing the maximum information.

Another example is the use by Yuan's and Shaw's of the measure of ambiguity issued from Higashi and Klir's measure of ambiguity [START_REF] Klir | Fuzzy Sets, Uncertainty, and Information[END_REF] to build fuzzy decision trees [START_REF] Yuan | Induction of fuzzy decision trees[END_REF].

In these cases, with such measures able to handle fuzzy sets, the R-monotonicity is not the main property needed, but the O-monotonicity is more important when used to compare membership functions.

Shannon entropy is also very frequently used as a regularisation term. It is for instance the case in semi-supervised learning [START_REF] Grandvalet | Semi-supervised learning by entropy minimization[END_REF]. In this setting, considering a set of variables involved in the optimisation of a given function, entropy regularisation introduces an entropy term in the function to optimise (either maximise or minimise) in order to lead to a sparse distribution on the value (minimisation of the entropy) or a homogeneous distribution (maximisation of the entropy). Here again, it is the R-monotonicity of the entropy that is called in: the involved process is similar to the one described for the maximum entropy principle.

In unsupervised learning, a popular example of the use of the Shannon entropy lies in a regularisation term for the cost function in fuzzy clustering [START_REF] Kruse | Fundamentals of fuzzy clustering[END_REF].

This regularisation term should be built on the basis of probabilities, weights, fuzzy memberships,... In this case, there are two possibilities, either the entropic regularisation term must be maximised and leads to a uniform distribution of the related values, or it should be minimised to leads to a distribution with null values in order to introduce sparsity in the trained model.

Entropies in Other Applications Domains

One notable use of entropies could be found in biology, in the study of ecological systems. The Shannon entropy, as well as the Gini-Simpson index, could be used to evaluate the diversity of the species in an ecosystem [START_REF] Guiaşu | Entropy in Ecology and Ethology[END_REF], [START_REF] Guiaşu | The weighted Gini-Simpson index: Revitalizing an old index of biodiversity[END_REF]. In this framework, each specie is associated with a probability of occurrence that enables the definition of a distribution of probabilities regarding all the species present in the ecosystem. Here, the Shannon entropy applied to this distribution is a suitable tool to evaluate the diversity of the species and enables the comparison among ecosystems or to model species geographic distributions [START_REF] Austin | Spatial prediction of species distribution: an interface between ecological theory and statistical modelling[END_REF], [START_REF] Phillips | Maximum entropy modeling of species geographic distributions[END_REF].

Similarly to the case of the Maxent principle, it can be highlighted that the R-monotonicity is the property needed in this process.

There are several domains in which the Maxent principle is used. We can cite for instance, non-monotonic reasoning where Shannon entropy is used to build a probability distribution during the decision process in order to select plausible conclusions [START_REF] Goldszmidt | A maximum entropy approach to nonmonotonic reasoning[END_REF]. Another use can be found in description logics [START_REF] Wilhelm | Counting strategies for the probabilistic description logic ALC me under the principle of maximum entropy[END_REF] where this principle is also used to make a choice between models.

Conclusion

Entropy and measures of information have been extensively studied for 70 years. The original quantities dealing with probabilities of events have been extended to take into account fuzzy sets, intuitionistic fuzzy sets and other representation models of uncertainty and imprecision. Most of the proposed measures are only based on a formal analogy between the introduced quantities and classic entropies, in spite of the fact that their purpose is different, entropies measuring the decrease of uncertainty resulting from the occurrence of an event, while fuzzy set related measures evaluate the imprecision of events and the fuzziness or non-specificity of the studied observations.

All these quantities have in common a few or many fundamental properties, depending on the case. Various works have listed such properties, for instance [START_REF] Aczél | On Measures of Information and their Characterizations[END_REF], [START_REF] Klir | Uncertainty-Based Information[END_REF], [START_REF] Klir | Fuzzy Sets, Uncertainty, and Information[END_REF] and shown which quantities satisfy or do not satisfy them. Attempts have also been done to exhibit classes of quantities with a similar behaviour with regard to sets of properties [START_REF] Bouchon | Entropic models[END_REF].

In this paper, we highlight the common property of monotonicity of entropy measures with regard to a refinement of information, showing that the main differences between these quantities come from the diversity of orders defining such a refinement. This paper is not intended to provide a review of all entropy measures existing in the literature, but to clarify the concept of refinement of information and the underlying monotonicity, and to illustrate this paradigm by classic examples in a sample of knowledge representation environments, namely the classic probabilistic one, the fuzzy one, the similarity-based one and the intuitionistic fuzzy framework. A focus is put on the importance of monotonicity when entropies or measures of information are used in Artificial Intelligence.

In the future, we will point out new forms of monotonicity useful in Artificial

Intelligence and we will provide some hints to choose one or the other measure of information in a given context.

  x 2 , . . . , x n p 1 , p 2 , . . . , p
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n S 1 , S 2 , . . . , S n j S(x i , x j ) for all i = 1, . . . n.

In the following, for the sake of simplicity, wx i is denoted w i when the meaning of i is clear.

the condition of probabilities having a sum equal to 1. His aim was to benefit of a form of monotonicity of the entropy with respect to missing information tolerance. In his work, Jaynes argued [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] that "Mathematically, the maximumentropy distribution has the important property that no possibility is ignored" and he based his proof on the fact that "if all the p i are equal, the quantity

) is a monotonic increasing function of n". In our setting, this Maxent principle can be related to the R-monotonicity of the Shannon entropy: the higher the number of non-null probabilities, the higher the entropy. It is easy to see this fact when considering a set of events on which a distribution of probability should be identified. Let P 1 and P 2 be two distributions of probability on this set of events. Between P 1 and P 2 , Jaynes' principle argues that the distribution that the most covers the set of events should be preferred, which means the one that maximises the number of non-null probabilities associated with the events. In the case where P 1 and P 2 have the same number of non-null probabilities, the one that provides a more homogeneous distribution is preferred (the one that maximises the Shannon entropy). This property is, in fact, a side effect of the Jaynes' maximum entropy principle.

Since the R-monotonicity could be considered as the heart of this principle, it highlights the fact that choosing between two distributions by using Maxent, does not provide any specific information on the relative position of two distributions of probability but only a general information about their relative spread.

In the same spirit, and again in the case where the only available information is provided by probability distributions, Kullback [START_REF] Kullback | Information theory and statistics[END_REF] introduced the concept of minimum discrimination information, corresponding to the minimum value of the Kullback and Leibler's divergence. These two principles have been extended to other entropies or divergences and widely used in Artificial Intelligence.