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Abstract

Entropies and measures of information are extensively used in several domains

and applications in Artificial Intelligence. Among the original quantities from

Information theory and Probability theory, a lot of extensions have been intro-

duced to take into account fuzzy sets, intuitionistic fuzzy sets and other repre-

sentation models of uncertainty and imprecision. In this paper, we propose a

study of the common property of monotonicity of such measures with regard to

a refinement of information, showing that the main differences between these

quantities come from the diversity of orders defining such a refinement. Our

aim is to propose a clarification of the concept of refinement of information and

the underlying monotonicity, and to illustrate this paradigm by the utilisation

of such measures in Artificial Intelligence.

Keywords: Entropy, Monotonicity, Measure of fuzziness, Intuitionistic entropy

measure, Divergence. Artificial Intelligence.

1. Introduction

The concept of information is complex and corresponds to factual elements

regarding an event or a situation, such as observations or news, as well as the

amount of knowledge brought by these factual elements. A piece of information
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can be analysed either from the point of view of its content, semantics or mean-5

ing or from the point of view of its form, encoding or label. Claude Shannon [1]

and Norbert Wiener [2] simultaneously introduced the first measure to evalu-

ate information in 1948 in a general theory of communication. Both of them

were only considering the information communicated by the observation of the

occurrence of a message or an event among a set of messages or events, respec-10

tively in communications systems and in the framework of cybernetics. The

numerical measure they introduced was based on probabilities and had nothing

to do with semantics. In reaction to this proposal, Rudolf Carnap and Yehoshua

Bar-Hillel [3] proposed to formalise the concept of semantic information on the

basis of a logical approach of natural language, through the so-called amount15

of information. Later on, Edwin Thompson Jaynes [4] established the maxi-

mum entropy principle to make inferences on the basis of partial information,

by looking for the maximum entropy, given the available knowledge. Solomon

Kullback then introduced with Richard Leibler and developed the concept of

discrimination measure or divergence enabling to compare two probability dis-20

tributions [5, 6] .

Artificial intelligence was born in 1956 during the well-known ”Dartmouth

Summer Research Project on Artificial Intelligence” [7]. Even though it was

not a direct emanation of cybernetics, it was strongly interrelated with it and it

would have looked natural to consider Wiener’s measure of information in Ar-25

tificial Intelligence. It was not the case because Artificial Intelligence originally

limited itself to symbolic methods, based on classical logic, rejecting any kind

of numerical treatment of information, including probabilities. It might have

looked relevant to use Carnap-Bar Hillel’s measure of information, but this the-

ory has never been applied to Artificial Intelligence, because of its numerical30

nature.

It is only in the 80s that some branches of Artificial Intelligence established

a bridge with information theory. The Kullback discrimination measure [8] and

the maximum entropy principle [9] were for instance investigated in the frame-

work of Bayesian inference and updating. One of the first consistent utilisations35
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of measures of information in machine learning was Quinlan’s decision trees [10],

based on a concept of information gain used to choose an attribute providing

its maximum value [4]. At the same time, several other seminal works changed

the view of numerical methods in Artificial Intelligence. Nilsson’s probabilistic

logic [11] promoted Shannon’s measure of information to develop a method to40

implement probabilistic entailment. Judea Pearl’s early works and his book [12]

largely promoted the use of probabilities in Artificial Intelligence, his belief net-

works being considered as semantics-based systems. The optimisation of an

entropy or a gain of information they recommended became popular in logic

(for instance [13]) before being more largely applied in Artificial Intelligence.45

Since this period, measuring the information provided by the observation

of events has been a challenge. A number of quantities has been pointed out

and studied in the literature to achieve this goal, called entropies or measures

of information in the original probabilistic framework. Their extension to other

frameworks such as fuzzy knowledge representation or its generalisations have50

given rise to the study of other aspects of information, for instance fuzziness or

specificity. They have often been constructed by analogy with the probabilistic

case, which may look artificial, but their properties go far beyond a simple

analogy. They refer to the information contained in belief functions, for instance

in [14, 15], or fuzzy systems, for instance in [16]. Such entropies are used in55

Bayesian networks [17] or decision making systems [18, 19]. We propose to

continue the analysis initiated in [20] and formalised in [21], in focusing on the

property of monotonicity, which appears essential for the notion of entropy and

its utilisation in Artificial Intelligence. Most of the measures existing in the

literature point out properties which have in common to be related to different60

aspects of monotonicity based on an order taking into account the context, the

point of view or the knowledge representation. The entropy increases when

the means to perform observations is refined, the concept of refinement taking

various forms, from the utilisation of a better tool providing less vagueness to

the utilisation of additional features to obtain more detailed information or,65

to express it in a more colourful language in the case where a photo brings
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information on an object, from zooming on the object to taking additional

photos from another side of the object. The importance of the monotonicity

of entropy, considered under the angle of the coarseness of information, has

been pointed out in [22]. Other views of the monotonicity of entropy have been70

proposed in random variable analysis, see for instance [23].

This paper does not pretend to review all entropies or quantities of infor-

mation introduced in the literature and related to artificial intelligence, in any

way, as this would be far beyond the size of this manuscript. We only focus on

a study of the common property of monotonicity of such measures with regard75

to a refinement of information, showing that the main differences between these

quantities come from the diversity of orders defining such a refinement. Our

aim is to propose a clarification of the concept of refinement of information and

the underlying monotonicity, and to illustrate this paradigm by the utilisation

of such measures in Artificial Intelligence.80

The paper is organised as follows. In Section 2, we introduce entropy mea-

sures and definitions of monotonicity according to three different forms asso-

ciated with different visions of the refinement of information. In Section 3,

we illustrate these visions on various classic entropy measures: probabilistic

entropies, measures of fuzziness, similarity relation-based entropy measures, en-85

tropies in the settings of the Atanassov intuitionistic fuzzy sets, and we develop

also a study on popular divergence measures. In Section 4, we review some com-

mon uses of entropies in Artificial Intelligence and their highlighted properties

of monotonicity. Finally, some conclusions are drawn and a set of perspectives

is presented in Section 5.90

2. Monotonicity of entropy measures

Shannon [1] clearly based his definition of entropy, considered as “measures

of information, choice and uncertainty” on a concept of monotonicity, as he

states “The uncertainty of y is never increased by knowledge of x. It will be de-

creased unless x and y are independent events, in which case it is not changed”,95
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which can be regarded as an interpretation of recursivity he furthermore re-

quires from entropy. Additivity and recursivity are among the most important

algebraic properties of entropy [24], and they imply an increase of the entropy

resulting from the refinement of information acquired on an event through obser-

vations. Later on, Renyi [25] introduced the first of a long list of generalisations100

of Shannon entropy, still satisfying a property of additivity. It is worth mention-

ing Mugur-Schächter’s work [26] on the general relativity of descriptions. She

considers that any process of knowledge extraction is associated with epistemic

operators called a delimiter and a view, representing the influence of the context

and the observation tool on the considered event.105

A refinement of information results from a change in the observation tool. In

his generalised information theory, Kampé de Fériet [27, 28] takes into account

observers and also requests a monotonicity of information with respect to an

order on events.

Information theory do not pretend to evaluate all aspects, and it provides110

an evaluation of the decrease of uncertainty after an observation of events by

means of entropies.

Given the amount of data available in the numerical world, which is cover-

ing all aspects of modern life, evaluating information is a major issue. All tools

enabling the user to compare two pieces of information, to evaluate the infor-115

mation available in a given environment, to make diagnosis or prediction on the

basis of information provided by observations or data, to aggregate chunks of

information, are useful. Unfortunately, there are many such tools and it is diffi-

cult to see their common features. This is why we propose to analyse measures

of information and to revisit classic approaches of information evaluation in or-120

der to focus on monotonicity which we consider the most natural and relevant

property requested from such a tool.

Let us consider a set of objects or events that represent the real world. In

this paper, for the sake of simplicity, we only consider finite sets, but this work

could be generalised to non-countable sets. We use the notation proposed in125

the seminal paper by Aczél and Daróczy on the so-called inset entropy [29] to
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formalise the available information on the set of objects or events and taking into

account the context, the point of view and the chosen knowledge representation.

We consider an algebra B defined on a finite universe U . For any integer

n > 0, we note:130

• Xn = {(x1, . . . , xn) | xi ∈ B, xi ∩ xj = 0 if i 6= j, ∀i, j = 1, . . . , n};

• Pn = {(p1, . . . , pn) | pi ∈ [0, 1]}, pi being associated with xi through

a function p : B → [0, 1], a particular case being a probability measure

defined on (U ,B);

• Wn = {(wx1
, . . . , wxn

) | wxi
∈ R+,∀i = 1, . . . , n}, a family of n-tuples of135

weights1 associated with n-tuples of B through a function f : B → R+n,

such that f(x1, . . . , xn) = (wx1 , . . . , wxn).

Similarly to the definition of inset entropy [29], we introduce an entropy

measure as a sequence of mappings En : Xn×Pn×Wn → R+ satisfying several

properties among a long list, for instance available in [24] or in [30].140

In the sequel, for the sake of simplicity, we use the notation
x1, . . . , xn

p1, . . . , pn

wx1
, . . . , wxn


rather than ((x1, . . . , xn), (p1, . . . , pn), (wx1

, . . . , wxn
)) to represent an element

of Xn × Pn ×Wn, according to the notation used in [29].

We claim that the most significant properties to characterise an entropy

measure are relative to monotonicity with respect to a refinement of information

which can take various forms, depending on a chosen order. Such a monotonicity145

corresponds to the natural idea that the more details, precision, certainty we

obtain from the observation of objects or events, or equivalently the more refined

1In the following, for the sake of simplicity, wxi is denoted wi when the meaning of i is

clear.
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information we have on them, the bigger the amount of information we have on

these objects or events.

To use a metaphor, we can consider that we are facing a picture of an object150

providing some amount of information on it. We can first improve the light on

the object before taking another picture in order to decrease the fuzziness of

the details, or take another picture with a higher resolution, which gives more

information on the object according to an increase of the precision, both cases

corresponding to a monotonicity described in 2.1. We can also select a part of155

the object and make several pictures of this part, in a form of weak recursivity

described in 2.2. We can finally partition the object into different parts and, for

each of them, make more pictures providing a bigger amount of information on

the object, in a form of weak additivity presented in 2.3.

We present these three forms of monotonicity which can be adapted to the160

knowledge representation we choose, as highlighted in the next sections.

2.1. O-monotonicity

The first form of monotonicity, noted O-monotonicity, is defined according

to a given (partial) order on the elements: the monotonicity highlights a link

between the order of the elements and the order induced by the measure.165

2.1.1. Definition

Let ≺ be a partial order on a reliable observation of the objects or events,

O-monotonicity can be written as follows: if
x1, . . . , xn

p1, . . . , pn

w1, . . . , wn

 ≺


x′1, . . . , x′n

p′1, . . . , p′n

w′1, . . . , w′n


then

En


x1, . . . , xn

p1, . . . , pn

w1, . . . , wn

 ≤ En


x′1, . . . , x′n

p′1, . . . , p′n

w′1, . . . , w′n


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2.1.2. Particular cases

Examples of monotonicity can be based on the following partial orders:
x1, . . . , xn

p1, . . . , pn

w1, . . . , wn

 ≺


x1, . . . , xn

p1, . . . , pn

w′1, . . . , w′n


if and only if one of the following conditions is satisfied: (O1), called sharpness

in [31], or (O2)

(O1) ∀i = 1, . . . , n, if w′i ≥ 1
2 then w′i ≤ wi;170

(O2) ∀i = 1, . . . , n, w′i ≥ wi.

These examples are based on an order related to W . Other orders, for

instance related to P , could be also used. Such examples will be studied later.

2.2. R-monotonicity

The second form of monotonicity, noted R-monotonicity, is based on a175

decrease of the coarseness of a partition of the universe of discourse.

2.2.1. Definition

R-monotonicity can correspond to a property of weak recursivity defined

as follows:

En


x1, x2, . . . , xn

p1, p2, . . . , pn

wx1
, wx2

, . . . , wxn

 ≥ En−1


x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn

wx1∪x2
wx3

, . . . , wxn


A particular case of weak recursivity is what we call the ψ-recursivity, defined
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for a function ψ : X2 × P2 ×W2 → R+ as:

En


x1, x2, . . . , xn

p1, p2, . . . , pn

wx1
, wx2

. . . , wxn

 =

En−1


x1 ∪ x2, x3 . . . , xn

p1 + p2, p3 . . . , pn

wx1∪x2
, wx3

. . . , wxn

+ψ


x1, x2

p1, p2

wx1
, wx2

E2


x1, x2
p1

p1+p2
, p2

p1+p2

wx1
, wx2

 .

2.2.2. Particular case

The classic property of recursivity corresponds to:

ψ0


x1, x2

p1, p2

wx1 , wx2

 = p1 + p2,

where the weights are not taken into account.

2.3. A-monotonicity180

The third form of monotonicity, noted A-monotonicity, is based on the

consideration of a secondary finite universe U ′ and an algebra B′ on U ′ pro-

viding more details on the observed phenomenon or object, through additional

observations.

2.3.1. Definition185

Similarly to the situation on U , we consider for any integer m

• X ′m = {(x′1, . . . , x′m) | x′i ∈ B′, ∀i};

• P ′m = {(p′1, . . . , p′m) | p′i ∈ [0, 1]}, p′i being associated with x′i through a

function p′ : B′ → [0, 1];

• W ′m = {(w′1, . . . , w′m) | w′i ∈ R+;∀i}, a family of m-tuples of weights asso-190

ciated with m-tuples of elements of B′ through a function f ′ : B′ → R+,

such that f ′(x′i) = w′i.
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We further suppose that there exist two combination operators ? and ◦

enabling us to equip the Cartesian product of U ×U ′ with similar distributions:

• Pn?P ′m = {(p1?p′1, . . . , pi?p′j , . . .) | pi?p′j ∈ [0, 1]}, pi?p′j being associated195

with (xi, x
′
j) for any i and j through a function p ? p′,

• Wn ◦W ′m = {(w1,1, . . . , wi,j , . . .) | wi,j ∈ R+, ∀i, j}, is defined through

a function f ◦ f ′ : B × B′ → R+, such that: f ◦ f ′(x1, x′j) = wi,j for all

i = 1, . . . , n and j = 1, . . . ,m.

Such a refinement leads to a property of weak additivity stating the fol-

lowing:

En×m


(x1, x

′
1), (x1, x

′
2), . . . , (xi, x

′
j), . . . , (xn, x

′
m)

p1 ? p
′
1, p1 ? p

′
2, . . . , pi ? p

′
j , . . . , pn ? p

′
m

wx1,x′
1
, wx1,x′

2
, . . . , wxi,x′

j
, . . . , wxn,x′

m

 ≥

max

En


x1, . . . , xn

p1, . . . , pn

w1, . . . , wn

 , Em


x′1, . . . , x′m

p′1, . . . , p′m

w′1, . . . , w′m




2.3.2. Particular case200

The classic additivity property stands in the case where U and U ′ are

independent universes, p and p′ being probability distributions on (U ,B) and

(U ′,B′), weights generally not being taken into account. It yields:

En×m


(x1, x

′
1), (x1, x

′
2), . . . , (xi, x

′
j), . . . , (xn, x

′
m)

p1 ? p
′
1, p1 ? p

′
2, . . . , pi ? p

′
j , . . . , pn ? p

′
m

wx1,x′
1
, wx1,x′

2
, . . . , wxi,x′

j
, . . . , wxn,x′

m

 =

En


x1, . . . , xn

p1, . . . , pn

wx1
, . . . , wxn

+ Em


x′1, . . . , x′m

p′1, . . . , p′m

wx′
1
, . . . , wx′

m


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3. Diverse entropy measures

In this section, the previous definitions of monotonicity are studied in the205

case of classical and well-known entropy measures.

3.1. Shannon and weighted entropies

It is well-known that the classic Shannon entropy defined as:

ESn (p) = −
n∑
i=1

pi log pi,

only taking into account Xn and Pn, is additive and recursive and then R-

monotonous and A-monotonous.

Its generalisation to the case where weights are associated with events to rep-210

resent a cost or an importance is a weighted entropy defined onXn × Pn ×Wn

as follows [32]:

Ewn


x1, x2, . . . , xn

p1, p2, . . . , pn

w1, w2, . . . , wn

 = −
n∑
i=1

wi pi log pi.

The weighted entropy is O-monotonous with regard to the partial order (O2).

It is also recursive, and then R-monotonous when considering

wx1∪x2
=

(p1w1 + p2w2)

(p1 + p2)
.

In addition, the weighted entropy is A-monotonous as soon as we consider an

aggregation function at least equal to the maximum:

En×m


(x1, x

′
1), . . . . . . , (xn, x

′
m)

p1 ? p
′
1, . . . . . . , pn ? p

′
m

w1 ◦ w′1, w1 ◦ w′2, . . . , wn ◦ w′m

 ≥

max

En


x1, . . . , xn

p1, . . . , pn

w1, . . . , wn

 , Em


x1, . . . , xm

p1, . . . , pm

w′1, . . . , w′m



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whenever wi ◦ w′j≥ max(wi, w
′
j) for all i = 1, . . . , n and j = 1, . . . ,m

An entropy of the same form as the weighted entropy has been introduced

by Zadeh [33] in the case where weights are replaced by membership degrees,

and the so-called entropy of a fuzzy set is defined as:

EZn


x1, x2, . . . , xn

p1, p2, . . . , pn

µ1, µ2, . . . , µn

 = −
n∑
i=1

µi pi log pi.

It is obviously still O-monotonous (with partial order (O2)), and A-monoto-

nous according to [33].215

3.2. Parameterised entropies

A number of generalisations of Shannon’s entropies flourished in the 60s and

in the 70s, independent of Wn and preserving some of the basic properties of

Shannon’s entropy. The first one was the Renyi’s entropy of order α, defined

as:

ERαn


x1, x2, . . . , xn

p1, p2, . . . , pn

w1, w2, . . . , wn

 =
1

1− α
log

n∑
i=1

pi
α,

for a parameter α strictly positive and different from 1, the Shannon entropy

corresponding to the limit case when α tends to 1. This quantity is additive, as

proved in [25], and then A-monotonous, but not recursive. It is easy to see that

Renyi’s entropy of order α is nevertheless R-monotonous.220

Another parameterised form of entropy is Daróczy’s entropy of type β, for

a parameter β strictly positive and different from 1, defined as [34]:

EDβn (p) =
1

21−β − 1
(

n∑
i=1

pi
β − 1).

The Shannon entropy corresponds to the limit case when β tends to 1. When

β = 2, we obtain a quantity proportional by a factor 2 to the Gini diversity index

[35] used in the construction of decision trees by the Cart method.

It was known not to be either additive or recursive and was proved to satisfy

recursivity of type β, equivalent to the weak recursivity we consider, with:225
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ψ


x1, x2

p1, p2

wx1 , wx2

 = (p1 + p2)β .

It also satisfies an additivity of type β, implying the weak additivity. The

Daróczy’s entropy of type β is then R-monotonous and A-monotonous.

3.3. Measure of fuzziness

Shortly after the weighted entropy, another entropy measure was introduced

by De Luca and Termini by analogy with the Shannon entropy, but in a non-

probabilistic framework [31], and then independently of Pn. It is a measure of

fuzziness, in the case where f is the membership function of a fuzzy set on U :

EDLTn


x1, x2, . . . , xn

p1, p2, . . . , pn

w1, w2, . . . , wn

 = −
n∑
i=1

wi logwi −
n∑
i=1

(1− wi) log(1− wi).

A major property of this quantity is its O-monotonicity with respect to the

above mentioned partial order (O1) defining the sharpness.230

It can further be observed that, in the case where the weights are possibility

degrees, ie. max(w1, . . . , wn) = 1, this measure of fuzziness is also weakly

recursive and then R-monotonous:

EDLTn


x1, x2, . . . , xn

p1, p2, . . . , pn

w1, w2, . . . , wn

 ≥ EDLTn−1


x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn

max(w1, w2), w3, . . . , wn


3.4. Entropy measures under similarity relations

We consider a similarity relation S on U = {x1, . . . , xn}, reflexive, symmetric

and min-transitive. R.R. Yager [36] defines the following entropy measure on

Xn × Pn ×Wn:

ESimn


x1, x2, . . . , xn

p1, p2, . . . , pn

S1, S2, . . . , Sn

 = −
∑
xi∈U

pi logSi
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with Si =
∑
xj∈U

pj S(xi, xj) for all i = 1, . . . n.

The similarity reflects a point of view on the n events, making explicit to

which extent they are similar with regard to a given criterion. If we consider

two different points of view, symbolised by two similarity relations S and S′,235

we can show that this entropy measure is O-monotonous with respect to the

order (O3):


x1, . . . , xn

p1, . . . , pn

S1, . . . , Sn

 ≤


x1, . . . , xn

p1, . . . , pn

S
′
1, . . . , S

′
n


if and only if similarities S and S′ satisfy:

(O3) S � S′ ⇔ S(xi, xj) ≤ S′(xi, xj) ∀i, j.

This entropy measure is also A-monotonous, if we define a joint similarity240

relation S × S′ on the Cartesian product U × U ′ as follows, for two similarity

relations S defined on U and S′ defined on U ′:

S × S′((xi, yj), (xk, yl)) = min
(
S(xi, xk), S′(yj , yl)

)
for any xi and xk in U , any yj and yl in U ′.

3.5. Ambiguity or nonspecificity

In the framework of possibility distributions, corresponding to a fuzzy set-245

based knowledge representation in which a membership degree is interpreted as

the possibility of the observed variable to take a given value, with a maximum

equal to 1, a measure of ambiguity or non-specificity has been introduced by

[37] and called U-uncertainty. It is defined under the hypothesis that the xi are

ranked according to a possibility distribution: π1 ≥ π2 ≥ ... ≥ πn and π1 > 0.250

This quantity, independent of P , got more popularity when pointed out by

[38] in the induction of fuzzy decision trees.
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EHKn


x1, x2, . . . , xn

p1, p2, . . . , pn

π1, π2, . . . , πn

 =

n−1∑
i=1

(πi − πi+1) log i.

It was proved [39] that this quantity is O2-monotonous. It is also additive,

then A-monotonous, when the two possibility distributions are non-interactive,

as follows:

EHKn×m


(x1, x

′
1), . . . , (xn, x

′
m)

p1 ? p
′
1, . . . , pn ? p

′
m

min(π1, π
′
1), . . . , min(πn, π

′
m)

 ≥

max

EHKn


x1, . . . , xn

p1, . . . , pn

π1, . . . , πn

 , EHKm


x1, . . . , xm

p1, . . . , pm

π′1, . . . , π′m




It is also recursive, and then R-monotonous.

3.6. Divergence

Kulback and Leibler’s divergence [5, 6] is another form of entropy, when Wn

is identical with Pn, corresponding to the following:

JKLn


x1, x2, . . . , xn

p1, p2, . . . , pn

q1, q2, . . . , qn

 =

n∑
i=1

pi log(
pi
qi

),

where p1, p2, . . . , pn and q1, q2, . . . , qn are two probability distributions on the

same set of events, for instance a prior and a posterior distribution. They prove

that JKLn is additive, and therefore A-monotonous. This divergence is also
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recursive, such that:

JKLn


x1, x2, . . . , xn

p1, p2, . . . , pn

q1, q2 . . . , qn

 =

JKLn−1


x1 ∪ x2, x3 . . . , xn

p1 + p2, p3 . . . , pn

q1 + q2, q3 . . . , qn

+ (p1 + p2)JKL2


x1, x2
p1

p1+p2
, p2

p1+p2

q1
q1+q2

, q2
q1+q2


It is therefore R-monotonous.255

Parameterised forms of divergence were introduced, in the same spirit as

the parameterised entropies. The first one is divergence of order α introduced

by Renyi [25] as the gain of information resulting from the replacement of

q1, q2, . . . , qn by p1, p2, . . . , pn , defined as follows:

JRαn


x1, x2, . . . , xn

p1, p2, . . . , pn

q1, q2, . . . , qn

 =
1

α− 1
log

n∑
i=1

pαi
qα−1i

,

for α ≥ 0 and α 6= 1. It is additive, and therefore A-monotonous.

The second parameterised divergence was introduced by Rathie and Kan-

nappan [40] as the directed divergence of type β:

JRKβn


x1, x2, . . . , xn

p1, p2, . . . , pn

q1, q2, . . . , qn

 =
1

2β−1 − 1
(

n∑
i=1

pβi

qβ−1i

− 1).

The authors proved that it is R-monotonous. Furthermore, they prove that

it has a form of strong non-additivity entailing the following:
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JRKβn×m


(x1, x

′
1), (x1, x

′
2), . . . , (xi, x

′
j), . . . , (xn, x

′
m)

p1 ? p
′
1, p1 ? p

′
2, . . . , pi ? p

′
j , . . . , pn ? p

′
m

q1 ? q
′
1, q1 ? q

′
2, . . . , qi ? q

′
j , . . . , qn ? q

′
m

 =

JRKβn


x1, . . . , xn

p1, . . . , pn

q1, . . . , qn

 +

n∑
i=1

pβi

q1−βi

JRKβm


x′1, . . . , x′m

p′1, . . . , p′m

q′1, . . . , q′m


which implies a property of A-monotonicity

3.7. Intuitionistic entropy measures260

In this section, we consider the setting of the Atanassov intuitionistic fuzzy

sets (AIFS) where several entropy measures have been introduced [41, 42]. First

of all, some basics of AIFS are recalled.

Let X be a universe, an Atanassov intuitionistic fuzzy set (AIFS) A of X is

defined [43] by:

A = {(x, µA(x), νA(x))|x ∈ X}

with µ : X → [0, 1], ν : X → [0, 1] and 0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X.

Here, µA(x) and νA(x) represent respectively the membership degree and the265

non-membership degree of x in A. Given an intuitionistic fuzzy set A of X, the

hesitancy lying on the membership of x to A is the intuitionistic index of x to

A defined for all x ∈ X as πA(x) = 1 − (µA(x) + νA(x)). It is easy to see that

we always have πA(x) ∈ [0, 1].

The inclusion of AIFS is defined as: A ⊆ B if and only if µA(x) ≤ µB(x)270

and νA(x) ≥ νB(x), ∀x ∈ X.

The union of two AIFS A and B is defined as the AIFS A ∪ B such that

µA∪B(x) = max(µA(x), µB(x)) and νA∪B(x) = min(νA(x), νB(x)), ∀x ∈ X.

The intersection of two AIFS A and B is defined as the AIFS A ∩B such that

µA∩B(x) = min(µA(x), µB(x)) and νA∩B(x) = max(νA(x), νB(x)), ∀x ∈ X. It275

can be easily seen that µA∪B(x) ∈ [0, 1] and µA∩B(x) ∈ [0, 1].
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3.7.1. Definitions of entropy measures for AIFS.

Several works in AIFS theory have proposed the definition for an entropy of

an intuitionistic fuzzy set A. With our notations, we represent these quantities

as:280

EIFSn


x1, . . . , xn

p1, . . . , pn

(µ1, ν1), . . . , (µn, νn)

 ,

with µA(xi) = µi and νA(xi) = νi. Here, the weights from Wn are thus defined

as tuples from [0, 1]× [0, 1].

There exist various definitions of entropy measures in the AIFS setting [41],

independent of Pn. For instance, the entropy measure given in [42] is defined

as:

EIFS,Sn


x1, . . . , xn

p1, . . . , pn

(µ1, ν1), . . . , (µn, νn)

 = 1− 1

2n

n∑
i=1

|µi − νi|

In [41], the following entropy measure is also introduced:

EIFS,Gn


x1, . . . , xn

p1, . . . , pn

(µ1, ν1), . . . , (µn, νn)

 =
1

2n

n∑
i=1

(
1− |µi − νi|

)
(1 + πi),

with πi = 1− (µi + νi).

Another way to define an entropy measure is presented in [44] where the

definition is based on extensions of the Hamming distance and the Euclidean

distance to AIFS. For instance, the following entropy measure is proposed:

EIFS,Bn


x1, . . . , xn

p1, . . . , pn

(µ1, ν1), . . . , (µn, νn)

 =

n∑
i=1

πi

3.7.2. Entropy measures for AIFS and monotonicity.

In [41], it is recalled that, in the AIFS setting, a monotonicity property for285

an entropy measure could be ensured by definition. The authors present several
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definitions that lie on the definition of a partial order on Wn and the concept

of less fuzzy than. The following definitions of partial order could be used.

(O4)

A is less fuzzy than B if for all x ∈ X

µA(x) ≤ µB(x) and νA(x) ≥ νB(x) if µB(x) ≤ νB(x),

or µA(x) ≥ µB(x) and νA(x) ≤ νB(x) if µB(x) ≥ νB(x),

and290

(O5)
A is less fuzzy than B if

µA(x) ≤ µB(x) and νA(x) ≤ νB(x),∀x ∈ X,

O-monotonicity. It is easy to see that (O4) and (O5) yield two versions of

O-monotonicity. These definitions of monotonicity produce particular forms

of EIFS :

• EIFS,Sn satisfies the monotonicity based on (O4) as it is stated in [42];295

• EIFS,Gn satisfies the monotonicity based on (O4), as it is stated in [41];

• EIFS,Bn satisfies the monotonicity based on (O5) as it could be found

in [44] where this entropy is given as example.

R-monotonicity. The measure EIFS,Bn satisfies the R-monotonicity if we have

EIFS,Bn


x1, . . . , xn

p1, . . . , pn

(µ1, ν1), . . . , (µn, νn)

 ≥

EIFS,Bn−1


x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn

(max(µ1, µ2),min(ν1, ν2)), (µ3, ν3), . . . , (µn, νn)

 .

considering the union of AIFS as defined in the introduction of this section.

Hereafter, for the sake of simplicity, we note these two measures EIFS,Bn and300

EIFS,Bn−1 respectively.
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We have

EIFS,Bn − EIFS,Bn−1 = 1− µ1 − ν1 + 1− µ2 − ν2 − 1 + max(µ1, µ2) + min(ν1, ν2)

= 1 + (max(µ1, µ2)− µ1 − µ2) + (min(ν1, ν2)− ν1 − ν2)

and thus

EIFS,Bn − EIFSBn−1 = 1−min(µ1, µ2)−max(ν1, ν2)

This corresponds to the intuitionistic index of the intersection of AIFS, and

thus, as a consequence, we have EIFS,Bn −EIFS,Bn−1 ≥ 0 and EIFS,Bn satisfies the

R-monotonicity.

4. Entropies in Artificial Intelligence305

Entropies are very commonly used in Artificial Intelligence. Indeed, their

monotonicity properties could be one of the main reasons for this success. In the

following, some applications of entropies in Artificial Intelligence are presented

and the kind of monotonicity involved is highlighted (that could explain why

such an entropy is chosen in such applications). Our aim is not to propose310

a complete review of such applications but to show that an entropy can be

considered as a universal tool.

Beyond the search of the maximum entropy common when probabilistic

measures are used, monotonicity or maximisation of entropy has also been the

core of methods based on non-probabilistic entropies.315

4.1. Maximum Entropy Principle

A derived utilisation of the concept of monotonicity is the very commonly

used maximum entropy principle (Maxent). It was first proposed by Jaynes [4],

in the simple case where weights are not involved, as a way to choose the most

appropriate probability distribution to cope with the uncertainty, as the one320

being “maximally noncommittal with regard to missing information”. Jaynes

introduced this principle in the case of the Shannon entropy, because of the

easiness to solve the optimisation problem of maximising the entropy under
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the condition of probabilities having a sum equal to 1. His aim was to benefit

of a form of monotonicity of the entropy with respect to missing information325

tolerance. In his work, Jaynes argued [4] that “Mathematically, the maximum-

entropy distribution has the important property that no possibility is ignored”

and he based his proof on the fact that “if all the pi are equal, the quantity

A(n) = H( 1
n , . . . ,

1
n ) is a monotonic increasing function of n”.

In our setting, this Maxent principle can be related to the R-monotonicity330

of the Shannon entropy: the higher the number of non-null probabilities, the

higher the entropy. It is easy to see this fact when considering a set of events

on which a distribution of probability should be identified. Let P1 and P2

be two distributions of probability on this set of events. Between P1 and P2,

Jaynes’ principle argues that the distribution that the most covers the set of335

events should be preferred, which means the one that maximises the number of

non-null probabilities associated with the events. In the case where P1 and P2

have the same number of non-null probabilities, the one that provides a more

homogeneous distribution is preferred (the one that maximises the Shannon

entropy). This property is, in fact, a side effect of the Jaynes’ maximum entropy340

principle.

Since the R-monotonicity could be considered as the heart of this principle,

it highlights the fact that choosing between two distributions by using Max-

ent, does not provide any specific information on the relative position of two

distributions of probability but only a general information about their relative345

spread.

In the same spirit, and again in the case where the only available information

is provided by probability distributions, Kullback [6] introduced the concept of

minimum discrimination information, corresponding to the minimum value of

the Kullback and Leibler’s divergence.350

These two principles have been extended to other entropies or divergences

and widely used in Artificial Intelligence.
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4.2. Entropies in Machine Learning

As previously said in the introduction, one of the well-known uses of entropies

is in machine learning where the Shannon entropy is very popular.355

In supervised learning, a common use of such a measure is dedicated to the

learning of a decision tree from a training data set [10], [35]. Shannon entropy

is not the unique measure to be used in such a process [45] but it is one of the

most efficient. We can for instance also cite the Gini index of diversity which is

also popular [35].360

Here, for this kind of tree-like splitting processes, the R-monotonicity is

the main property that is sought for. Indeed, measures following this kind of

monotonicity property enable the better choice of description attributes when

splitting the training set to reduce the uncertainty related to the prediction of

the class.365

In the building of fuzzy decision trees, other measures have been introduced.

For instance, Renyi’s entropy was used in presence of unbalanced datasets in

[46]. In a fuzzy setting, De Luca and Termini’s non-probabilistic entropy [31]

was used to construct fuzzy decision trees [47] and also for feature selection in

classification [48]. In both approaches, this entropy is used to select attributes370

bringing the maximum information.

Another example is the use by Yuan’s and Shaw’s of the measure of ambi-

guity issued from Higashi and Klir’s measure of ambiguity [39] to build fuzzy

decision trees [38].

In these cases, with such measures able to handle fuzzy sets, the R-monotoni-375

city is not the main property needed, but the O-monotonicity is more important

when used to compare membership functions.

Shannon entropy is also very frequently used as a regularisation term. It is

for instance the case in semi-supervised learning [49]. In this setting, consider-

ing a set of variables involved in the optimisation of a given function, entropy380

regularisation introduces an entropy term in the function to optimise (either

maximise or minimise) in order to lead to a sparse distribution on the value

(minimisation of the entropy) or a homogeneous distribution (maximisation of

22



the entropy). Here again, it is the R-monotonicity of the entropy that is called

in: the involved process is similar to the one described for the maximum entropy385

principle.

In unsupervised learning, a popular example of the use of the Shannon en-

tropy lies in a regularisation term for the cost function in fuzzy clustering [50].

This regularisation term should be built on the basis of probabilities, weights,

fuzzy memberships,... In this case, there are two possibilities, either the entropic390

regularisation term must be maximised and leads to a uniform distribution of

the related values, or it should be minimised to leads to a distribution with null

values in order to introduce sparsity in the trained model.

4.3. Entropies in Other Applications Domains

One notable use of entropies could be found in biology, in the study of eco-395

logical systems. The Shannon entropy, as well as the Gini-Simpson index, could

be used to evaluate the diversity of the species in an ecosystem [51], [52]. In

this framework, each specie is associated with a probability of occurrence that

enables the definition of a distribution of probabilities regarding all the species

present in the ecosystem. Here, the Shannon entropy applied to this distribution400

is a suitable tool to evaluate the diversity of the species and enables the compar-

ison among ecosystems or to model species geographic distributions [53], [54].

Similarly to the case of the Maxent principle, it can be highlighted that the

R-monotonicity is the property needed in this process.

There are several domains in which the Maxent principle is used. We can405

cite for instance, non-monotonic reasoning where Shannon entropy is used to

build a probability distribution during the decision process in order to select

plausible conclusions [55]. Another use can be found in description logics [56]

where this principle is also used to make a choice between models.

5. Conclusion410

Entropy and measures of information have been extensively studied for 70

years. The original quantities dealing with probabilities of events have been
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extended to take into account fuzzy sets, intuitionistic fuzzy sets and other

representation models of uncertainty and imprecision. Most of the proposed

measures are only based on a formal analogy between the introduced quantities415

and classic entropies, in spite of the fact that their purpose is different, entropies

measuring the decrease of uncertainty resulting from the occurrence of an event,

while fuzzy set related measures evaluate the imprecision of events and the

fuzziness or non-specificity of the studied observations.

All these quantities have in common a few or many fundamental proper-420

ties, depending on the case. Various works have listed such properties, for

instance [24], [30], [39] and shown which quantities satisfy or do not satisfy

them. Attempts have also been done to exhibit classes of quantities with a

similar behaviour with regard to sets of properties [57].

In this paper, we highlight the common property of monotonicity of entropy425

measures with regard to a refinement of information, showing that the main

differences between these quantities come from the diversity of orders defining

such a refinement. This paper is not intended to provide a review of all entropy

measures existing in the literature, but to clarify the concept of refinement of

information and the underlying monotonicity, and to illustrate this paradigm by430

classic examples in a sample of knowledge representation environments, namely

the classic probabilistic one, the fuzzy one, the similarity-based one and the

intuitionistic fuzzy framework. A focus is put on the importance of monotonicity

when entropies or measures of information are used in Artificial Intelligence.

In the future, we will point out new forms of monotonicity useful in Artificial435

Intelligence and we will provide some hints to choose one or the other measure

of information in a given context.

References

[1] C. E. Shannon, The mathematical theory of communication, University of

Illinois Press, Urbana, USA, 1948, c. E. Shannon and W. Weaver Eds.440

[2] N. Wiener, Cybernetics, or control and communication in the animal and

24



the machine, 2nd Edition, Hermann & Cie & Camb. Mass. (MIT Press),

Paris, 1948.

[3] R. Carnap, Y. Bar-Hillel, An outline of a theory of semantic information,

Research Laboratory of Electronics, MIT Technical report NO 247.445

[4] E. T. Jaynes, Information theory and statistical mechanics, Physical Re-

view Series II. 106 (4) (1957) 620–630.

[5] S. Kullback, R. Leibler, On information and sufficiency, Annals of Mathe-

matical Statistics 22 (1951) 79–86.

[6] S. Kullback, Information theory and statistics, John Wiley and Sons, NY,450

1959.

[7] J. McCarthy, M. L. Minsky, N. Rochester, C. E. Shannon, A proposal for

the Dartmouth summer research project on artificial intelligence. August

31, 1955, AI magazine 27 (4) (2006) 12–14.

[8] J. F. Lemmer, S. W. Barth, Efficient minimum information updating for455

bayesian inferencing in expert systems, in: Proceedings of the AAAI con-

ference, AAAI, 1982, pp. 424–427.

[9] P. Cheeseman, A method of computing generalized bayesian probability

values for expert systems, in: Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Vol. 1 of IJCAI’83, Morgan Kaufmann460

Publishers Inc., 1983, pp. 198–202.

[10] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.

[11] N. J. Nilsson, Probabilistic logic, Artif. Intell. 28 (1) (1986) 71–88. doi:

10.1016/0004-3702(86)90031-7.

[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-465

sible Inference, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1988.

25



[13] M. Goldszmidt, J. Pearl, P. Morris, A maximum entropy approach to non-

monotonic reasoning, in: AAAI 1990, AAAI, 1990, pp. 646–652.
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[26] M. Mugur-Schächter, The general relativity of descriptions, Analyse de
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Séminaire sur les questionnaires, Publication Structures de l’Information,515
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