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WEAKLY INTERACTING OSCILLATORS
ON DENSE RANDOM GRAPHS

GIANMARCO BET, FABIO COPPINI, AND FRANCESCA R. NARDI

To our friend and colleague Carlo Casolo

Abstract. We consider a class of weakly interacting particle systems of mean-
field type. The interactions between the particles are encoded in a graph sequence,
i.e., two particles are interacting if and only if they are connected in the underlying
graph. We establish a Law of Large Numbers for the empirical measure of the
system that holds whenever the graph sequence is convergent in the sense of graph
limits theory. The limit is shown to be the solution to a non-linear Fokker-Planck
equation weighted by the (possibly random) graph limit. No regularity assump-
tions are made on the graphon limit so that our analysis allows for very general
graph sequences, such as exchangeable random graphs. For these, we also prove
a propagation of chaos result. Finally, we fully characterize the graph sequences
for which the associated empirical measure converges to the mean-field limit, i.e.,
to the solution of the classical McKean-Vlasov equation.
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1. Introduction, Organization and Set-up

In the last twenty years there has been a growing interest in complex networks
and inhomogeneous particle systems. The classical mean-field framework (see, e.g.,
[22, 25]) in which the particles are all connected with each other, has been extended
to include interactions described by general networks. In these more general models,
the interaction between two particles depends on the weight of the edge connecting
the two in an underlying network, see, e.g., [2, 24].

The first mathematically rigorous results appeared only recently [7, 15]. They
consider weakly interacting particle systems defined on certain graph sequences.
They show that, under suitable conditions on the degrees, the system converges to
the classical mean-field limit as the number of particles tends to infinity. However,
these works leave several relevant questions unanswered: is it possible to characterize
the graph sequences for which the system converges to the mean-field limit? How
sensitive are the dynamics to the degree inhomogeneity in the underlying graph?
How does the graph structure affect the long-time behavior? See also [13, 14, 19].

We address these questions by considering a system of weakly interacting oscil-
lators, i.e., functions taking values in the one-dimensional torus. The interactions
between the particles are encoded in a general random graph sequence. Our main
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object of study is the empirical measure associated to this system. We rely on the
recent graphon theory for the notion of graph convergence and graph limit, see [18].
Graphons are a generalization of dense graph sequences, and have proven to be use-
ful in a variety of contexts which nowadays include mean-field games as well, see
[9, 10] and references therein.

Our main result is a Law of Large Numbers for the empirical measure. More
precisely, if the underlying graph sequence converges to some (possibly random)
graphon, then we characterize the limit of the empirical measure as the solution to
a non-linear Fokker-Planck equation suitably weighted by the corresponding graph
limit. We do not impose any regularity condition on the graph sequence nor on the
limiting graphon. Thus, our result holds for very general graph sequences such as
exchangeable random graphs, see [16].

As a byproduct, we present a characterization of deterministic and random graph
sequences for which the behavior of the empirical measure is approximately mean-
field. Notably, we show that the map associating to each graphon the solution to
the corresponding Fokker-Planck equation is Hölder-continuous. The continuity is
obtained with respect to the cut-distance on the space of graphons and a classical
Wasserstein distance on the space of trajectories.

Weakly interacting particle systems on graph sequences converging to graphons
have already been considered in a series of works, both in the stochastic setting
[4, 19, 23] and the deterministic setting [11, 21]. However, all the models proposed
so far are based on labeled graphons and do not address the graph convergence
in the natural topology of graph limits theory. Existing proofs always work under
somewhat stringent regularity assumptions on the limiting graphon and they are not
able to deal with general graph sequences as we do. Moreover, to our knowledge, the
results presented here appear to be the first in the literature to tackle interacting
particle systems on random graphons.

Our work stems from the fact that the empirical measure of a particle system
is invariant under relabeling of the particles and thus its law should depend on an
unlabeled graphon. In fact, unlabeled graphons represent a building block of graph
limits theory and are formally obtained as certain equivalence classes of labeled
graphons. By taking independent and identically distributed initial conditions, we
are able to exploit the symmetry property of the system together with the key
ingredients of graphon theory, i.e., exchangeability and random sampling, and to
obtain a convergence result in the natural space of graph limits. We do this by
establishing existence, uniqueness and convergence results without any regularity
assumption on the graph structure. We also establish a propagation of chaos result,
and propose a non-linear process that describes the behavior of a tagged particle
sampled uniformly at random.

1.1. A look at the literature. Weakly interacting particle systems on graphs have
first been studied in [7, 15], where the convergence to the classical mean-field system
is shown under some homogeneity property of the degrees and under independence
of the initial conditions. The work [14] considers sequences of Erdős-Rényi random
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graphs and establishes a Law of Large Numbers and a Large Deviation Principle by
only assuming that the initial empirical measure converges weakly.

The works [4, 19, 23] deal with more general sequences of graphs and take into
account a few notions coming from graph limits theory. Namely, [23] establishes a
Large Deviation Principle for the empirical measure of weakly interacting particles
on W -random graphs, see (2.10) for the precise definition. The works [4, 19] present
Law of Large Numbers results and consider converging graph sequences in the space
of labeled graphons, although with respect to different metrics and including un-
bounded graphons.

For deterministic particle systems, Medvedev and coauthors consider the Ku-
ramoto model on various graph sequences arising from labeled graphons, we refer
to [11, 21] and references therein.

To the authors’ knowledge, the only work addressing the long-time behavior of
interacting particle systems on graphs is [13], where the Kuramoto model defined
on pseudo-random graphs is shown to behave as the mean-field limit on long time
scales. See Subsection 2.3 for more on pseudo-random graph sequences.

Recently mean-field game theoretical models defined on graphons have been pro-
posed, we refer to [9, 10] and references therein.

Most of the cited works consider both the dense regime (the number of edges is
roughly proportional to the square of the number n of vertices) as well as intermedi-
ate regimes between sparse and dense (the number of edges grows strictly faster than
n but not necessarily as fast as n2). Finally, although the results in [4, 11, 19, 21, 23]
allow for random graph sequences, it is always assumed that the limiting graphon
is deterministic.

1.2. Organization. We now present the set-up and notation used, as well as the
various distances between probability measures that we will consider.

In Section 2 we define the interacting particle system and the associated non-
linear process. Existence, uniqueness and stability results for the non-linear process
are presented right after, see Propositions 2.1 and 2.2. Our main result, Theorem
2.3, is given in Subsection 2.2. Exchangeable random graphs are then discussed
together with a propagation of chaos result; see Corollary 2.6 and Proposition 2.7
respectively. Subsection 2.3 is devoted to the comparison with the classical mean-
field behavior and to a few important consequences of Theorem 2.3; the discussion
is supported by two explanatory examples.

In Section 3 we focus on the non-linear process. In particular, we discuss its
relationship with other characterizations already known in the literature. The proofs
of Propositions 2.1 and 2.2 are given in Subsection 3.4.

Section 4 contains the proof of Theorem 2.3. Finally, in Appendix A we col-
lect the most important results on graphons from the literature and we derive a
characterization of convergence in probability for random graph sequences.

1.3. Setting and notations. We consider particle dynamics occurring on a finite
time interval, say [0, T ], which we fix once and for all. We work on the filtered
probability space (Ω,F , {Ft}t∈[0,T ], P ), where {F·} is a filtration satisfying the usual
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conditions. All Brownian motions that we consider later on are adapted to {Ft}t > 0

and are independent of the other random variables.
We use two different notations for expressing conditional probabilities: the one

referring to Brownian motions and initial conditions is denoted by P, its expectation
by E; the one referring to the randomness in the graph sequences, and/or in its limit
object, is denoted by P, its expectation by E. When not explicitly written, if a result
holds in P-probability, it means that it holds P-a.s., and viceversa.

The interval I := [0, 1] represents the space of (continuous) labels. The oscillators
are functions with values in the one-dimensional torus T := R/(2πZ), so that their
trajectories are random variables defined on the space of continuous functions with
values in T, i.e., on C([0, T ],T), endowed with the supremum norm.

For two probability measures µ̄, ν̄ ∈ P(C([0, T ],T)), we define their distance by

DT (µ̄, ν̄) := inf
m∈γ(µ̄,ν̄)

{∫
sup
t∈[0,T ]

|xt − yt|2m(dx, dy)

}1/2

, (1.1)

where γ(µ̄, ν̄) is the space of probability measures on C([0, T ],T)× C([0, T ],T) with
first marginal equal to µ̄ and second marginal equal to ν̄. This definition coincides
with the 2-Wasserstein distance between probability measures. The right-hand side
of (1.1) can be rewritten as

DT (µ̄, ν̄) = inf
X,Y

{
E

[
sup
t∈[0,T ]

|Xt − Yt|2
]

: L(X) = µ̄, L(Y ) = ν̄

}1/2

(1.2)

where the infimum is taken on all random variablesX and Y with values in C([0, T ],T)
and law L equal to µ̄ and ν̄ respectively. From (1.1) we obtain that for every
s ∈ [0, T ]

sup
f

∣∣∣∣∫
T
f(θ) µ̄s(dθ)−

∫
T
f(θ) ν̄s(dθ)

∣∣∣∣ 6 Ds(µ̄, ν̄), (1.3)

where the supremum is taken over all Lipschitz functions from T to R. Observe that
these definitions make sense also with T = 0 and C([0, T ],T) replaced by T.

For a brief overview of the theory of graphons and graph limits, we refer to
Appendix A. We follow the notation of [18], the notions of labeled and unlabeled
graphs are taken from [16], as well as the notion of convergence in probability for a
sequence of random graphs. Note that a sequence of graphs will always be considered
convergent in the sense of graph limits. We emphasize that what is usually referred to
in the literature as graphon is referred to here as labeled graphon, and the associated
equivalence class, i.e., an unlabeled graphon in the notation of [18], is simply referred
to as graphon. The various constants throughout the paper are always denoted by
C or C ′ and may vary from line to line. An explicit dependence on a parameter α
will be denoted by Cα.

2. The Models and Main Results

2.1. The models. We introduce our two main models: a weakly interacting particle
system (2.1) and a non-linear process (2.3).
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Weakly interacting oscillators on graphs. Let {ξ(n)}n∈N be a sequence of undirected,
labeled graphs. For n ∈ N, the adjacency matrix of ξ(n) is given by the n × n

symmetric matrix {ξ(n)
ij }i,j=1,...,n where ξ

(n)
ij = 1 whenever the vertices i and j are

connected and ξ
(n)
ij = 0 otherwise. Let {θi,n}i=1,...,n be the family of oscillators on

Tn that satisfy{
dθi,nt = F (θi,nt )dt+ 1

n

∑n
j=1 ξ

(n)
ij Γ(θi,nt , θj,nt )dt+ dBi

t, 0 < t < T,

θi,n0 = θi0, i ∈ {1, . . . , n},
(2.1)

where F and Γ are bounded, uniformly Lipschitz functions and {Bi}i∈N a sequence
of independent and identically distributed (IID) Brownian motions on T. The initial
conditions {θi0}i∈N are IID random variables sampled from some probability distribu-
tion µ̄0 ∈ P(T) which is fixed once for all. Many interesting examples of interacting
oscillators fit this framework, such as the Kuramoto model, the plane rotator model
and other generalizations, see, e.g., [15, §1.2], [3] and also Subsection 2.3. We are
interested in studying the empirical measure associated to (2.1). This is defined as
the (random) probability measure on T such that

µnt :=
1

n

n∑
j=1

δθj,nt
, (2.2)

for every t ∈ [0, T ].

The non-linear process. The results of this subsection are proven in Section 3, to-
gether with the comparison to other existing formulations in the literature. The
graphon framework is briefly recalled in Appendix A.

Fix a graphon W ∈ W̃0 and a uniform random variable U on I. Consider the
solution θ = {θt}t∈[0,T ] to the following system{

θt = θ0 +
∫ t

0
F (θs)ds+

∫ t
0

∫
I
W (U, y)

∫
T Γ(θs, θ)µ

y
s(dθ)dy ds+Bt,

µyt = L(θt|U = y), for y ∈ I, t ∈ [0, T ],
(2.3)

where L(θ0) = µ̄0 and B is a Brownian motion independent of the previous sequence
{Bi}i∈N. We take U to be independent of all the randomness in the system and, in
particular, of the initial condition θ0.

The next proposition establishes the existence and the uniqueness of the solution
to equation (2.3). In Section 3, we prove that equation (2.3) is well-posed with
respect to W , i.e., the law of θ does not depend on the representative of W in the
space of labeled graphons W0, see Remark 3.4.

Proposition 2.1. For every uniform random variable U on I independent from
all other randomness, there exists a unique solution to (2.3). If µ̄ ∈ C([0, T ],P(T))
denotes its law and µx the law of θ conditioned on U = x, then µ̄ solves the following
non-linear Fokker-Planck equation in the weak sense

∂tµ̄t(θ) =
1

2
∂2
θ µ̄t(θ)−∂θ [µ̄t(θ)F (θ)]−∂θ

[∫
I×I

W (x, y)µxt (θ)

∫
T

Γ(θ, θ̃)µyt (dθ̃)dy dx

]
,

(2.4)
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with initial condition µ̄0 ∈ P(T).

Recall that δ� defines a metric in the space of graphons W̃0, see (A.8). We have
the following Hölder continuity result for µ̄ with respect to W .

Proposition 2.2. Assume that Γ ∈ C1+ε(T2) for some ε > 0. There exists a positive
constant C such that, if µ̄W and µ̄V denote the laws of the solutions to equation (2.3)
associated with graphons W and V respectively, then

DT (µ̄W , µ̄V ) 6 C δ�(W,V )1/2. (2.5)

The proof is postponed to Section 3.4. Note that taking the p-Wasserstein distance
in (1.1) for p > 1 leads to a Hölder exponent as large as 1/p. Propositions 2.1 and
2.2 imply that the following mapping is continuous:

Ψ : (W̃0, δ�)→ (C([0, T ],P(T)), DT )

W 7→ µ̄W ,
(2.6)

where µ̄W is the law of θ solving equation (2.3) with graphon W . In particular, to

every random variable W in W̃0 corresponds a random variable µ̄W with values in
C([0, T ],P(T)), i.e., for almost every ω ∈ Ω, µ̄W (ω) = µ̄W (ω).

2.2. Convergence of empirical measures. We are now able to present our main
result. Afterwards, we present an application to exchangeable random graphs and
a propagation of chaos result.

Theorem 2.3. Let {ξ(n)}n∈N be a sequence of random graphs. Assume that there

exists a random variable W in W̃0 to which ξ(n) converges in P-probability, or equiv-
alently such that

lim
n→∞

E
[
δ�
(
ξ(n),W

)]
= 0. (2.7)

If the initial conditions {θi0}i∈N are independent of {ξ(n)}n∈N, then

µn −→ µ̄, in P× P-probability, as n→∞, (2.8)

where the convergence is in P(C([0, T ],T))) and µ̄ is a random variable depending
only on the randomness of W , i.e., for almost every ω ∈ Ω, µ̄(ω) solves equation
(2.4) starting from µ̄0, with graphon W (ω).

Condition (2.7) extends the convergence of graph sequences to the convergence

in probability in W̃0. In particular, Theorem 2.3 also holds in case the graphs are
deterministic or take values in [0, 1] rather than {0, 1}. The equivalence between
condition (2.7) and the convergence in probability for random graph sequences is
proven in Lemma A.2. One may wonder if the convergence of µn holds under
weaker conditions on the initial data. We conjecture that our results still holds if
the independence assumption is replaced with exchangeability of the initial data.
However, the exchangeability property seems to be necessary to be able to deal with
unlabeled graphons; we refer to Section 3 for more on this aspect.

Looking at the proof of Theorem 2.3, we remark that, if the limiting graphon W
is deterministic, the initial conditions {θi0}i∈N can depend on the graph sequence
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{ξ(n)}n∈N. In other words, Theorem 2.5 also holds if {θi0}i∈N is independent of
the randomness in W but not necessary on the whole sequence {ξ(n)}n∈N. The
relationship between the randomness left in W and the randomness in ξ(n) is further
discussed in Subsection 2.3.

Applications to exchangeable graphs. Recall that an exchangeable random graph
ξ = {ξij}i,j∈N (see [18]) is a infinite array of binary random variables, such that

P (ξij = eij, 1 6 i, j 6 n) = P
(
ξij = eσ(i)σ(j), 1 6 i, j 6 n

)
(2.9)

for all n ∈ N, all permutations σ on n elements and all eij ∈ {0, 1}. This definition
coincides with the definition of jointly exchangeable binary random variables, see
[16].

Remark 2.4. Any finite deterministic graph ξ leads to an exchangeable random
graph by performing a uniform random sampling on its associated graphon Wξ, see
(A.6) and [18, §10].

More generally, for W ∈ W̃0 one may construct an exchangeable random graph
ξW , usually called W -random graph, defined for i and j in N by

ξWij = W (Ui, Uj), (2.10)

where {Ui}i∈N is a sequence of IID uniform random variables on I. The next theorem
shows that the converse statement is also true: every exchangeable random graph can
be obtained in this way, provided that W is random.

The characterization of exchangeable random graphs is a consequence of the works
of Hoover, Aldous and Kallenberg; see [16] and references therein. We recall their
main result here.

Theorem 2.5 ([16, Theorem 5.3] and [18, Theorem 11.52]). Let ξ = {ξij}i,j∈N be
an exchangeable random graph. Then, ξ is a W -random graph for some random

W ∈ W̃0. Moreover, let ξ(n) := {ξij}i,j=1,...,n for every n ∈ N. It holds that

ξ(n) −→ W P-a.s. in W̃0, (2.11)

as n→∞.

We are now ready to state the main corollary of Theorem 2.3, which deals with
exchangeable random graphs.

Corollary 2.6. Let ξ = {ξij}i,j∈N be an exchangeable random graph and let W be
the limit of ξ(n) := {ξij}i,j=1,...,n in the sense of Theorem 2.5. Assume that the initial
conditions {θi0}i∈N are independent of {ξ(n)}n∈N, then

µn −→ µ̄, in P× P-probability, as n→∞, (2.12)

where µ̄ is the solution to (2.4) starting from µ̄0 with graphon W .
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Propagation of Chaos. Whenever ξ = {ξ(n)}n∈N is a sequence of exchangeable graphs1,
the particles {θi,n}i=1,...,n are exchangeable as well and, in particular, their joint dis-
tribution is symmetric, i.e., invariant under permutation of the labels. A classical
result by Sznitman [25, Proposition 2.2] is that the Law of Large Numbers for the
empirical measure of a symmetric joint distribution of particles is equivalent to the
propagation of chaos property. From equation (2.8), we can thus deduce a propaga-
tion of chaos statement for the particle system (2.1). This is illustrated in the next
proposition.

Proposition 2.7. If ξ = {ξ(n)}n∈N is a sequence of exchangeable graphs, then for
every k ∈ N,

lim
n→∞

L(θ1,n, . . . , θk,n) =
k∏
i=1

L(θ) =
k∏
i=1

µ̄. (2.13)

We omit the proof of Proposition 2.7.

2.3. Mean-field behavior and two explanatory examples. Theorem 2.3 allows
for a better understanding of the relationship between random graph sequences and
the behavior of the empirical measure. More precisely:

(1) It highlights the difference between the randomness present in the graph ξ(n)

for every n ∈ N and the randomness left in the limit W ;
(2) It presents a new class of random Fokker-Planck equations as possible limit

descriptions for the empirical measure µn.

As a byproduct, Theorem 2.3 yields a precise characterization of the graph sequences
for which the empirical measure converges to the mean-field limit. Let us recall what
we mean by mean-field limit and first discuss this last issue; we then address (1)
and (2) with the help of two examples.

Consider system (2.1) on a sequence of complete graphs, i.e., ξ
(n)
ij ≡ 1 for every

i, j and n. It is well known [22, 25] that the empirical measure µn converges to the
mean-field limit ρ ∈ C([0, T ],P(T)), defined as the unique solution to the following
McKean-Vlasov equation:

∂tρt(θ) =
1

2
∂2
θρt(θ)− ∂θ [ρt(θ)F (θ)]− p ∂θ

[
ρt(θ)

∫
T

Γ(θ, θ̃) ρt(dθ̃)

]
, (2.14)

with initial condition µ̄0 and p = 1. Existence and uniqueness for the solution to
(2.14) hold under our assumptions on F, Γ and µ̄0, see e.g., [22, 25].

Suppose that the graph sequence is converging to a deterministic limit; we discuss
the case of a random limit in the next example. Theorem 2.3 implies that for
every sequence {ξ(n)}n∈N which converges to some flat graphon W ≡ p ∈ [0, 1],
the empirical measure µn satisfies equation (2.14) with corresponding p. Since the
convergence of ξ(n) to a non-constant graphon gives rise to equation (2.4), which
is – at least formally – different from (2.14), we conclude that the limit of µn is
mean-field if and only if the sequence ξ(n) converges to a constant graphon. The

1i.e. for each n ∈ N the random variables {ξ(n)ij }i,j=1,...,n are exchangeable. Observe that ξ is

not necessarily an exchangeable random graph as in (2.9).
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graphs with such asymptotic behavior are known in the literature as pseudo-random
graphs, see [3, 12] and [18, §11.8.1].

We now address the issues (1) and (2) with two explanatory examples. The
mean-field comparison when the graph limit is random is discussed after the first
example.

Example I: W -random graphs. Fix p ∈ (0, 1) and let g be a random variable on (0, 1)
with mean

√
p and distribution function given by Fg. Let {gi}i∈N be a sequence of

IID copies of g. Conditionally on {gi}i∈N, ξ
(n)
ij is defined as

ξ
(n)
ij ∼ Ber(gigj), independently for each 1 6 i < j 6 n. (2.15)

The graph ξ(n) is the dense analogue of the inhomogeneous random graph, also
known as rank-1 model, see e.g., [6, 8]. In this model, gi corresponds to the weight
associated with particle i and, loosely speaking, the closer gi is to 1, the more
connections particle i forms. We expect that assigning different distributions to g
leads to different behaviors for the empirical measure (2.2).

The construction made in (2.15) yields a binary array {ξ(n)
ij }i,j=1,...,n of exchange-

able random variables. In particular, they have the same expected value E[ξ
(n)
ij ] = p,

for every i 6= j. We are interested in comparing the empirical measure of the sys-
tem (2.1) defined on the graph (2.15) to the empirical measure of the corresponding

annealed system that is obtained from (2.1) by replacing ξ
(n)
ij with their expected

values. More precisely, the annealed system is defined as the solution to

dθi,nt = F (θi,nt )dt+
p

n

n∑
j=1

Γ(θi,nt , θj,nt )dt+ dBi
t, (2.16)

for which the asymptotic behavior is known to be the mean-field limit (2.14).
Perhaps surprisingly, the behavior of system (2.1) on the graph sequence (2.15) is

suitably described in the limit by (2.16) only when g is deterministic and g =
√
p.

Recall the definition of W -random graph given in (2.10): we see that ξ(n) is a Wg-
random graph with

Wg(x, y) = F−1
g (x)F−1

g (y), for x, y ∈ I, (2.17)

where F−1
g is the pseudo inverse of Fg. In particular, the P-a.s. limit of ξ(n) is given

by Wg and thus the limit of µn by the solution to equation (2.4) with W = Wg.
Theorem 2.3 and Proposition 2.2 imply that the empirical measure of the system
associated to ξ(n) is arbitrarily close to the mean-field limit of the annealed system
(2.16) if and only if Wg is arbitrarily close to the constant graphon p in the cut-
distance, i.e., if and only if Var[g] � 1. In this case, {ξ(n)}n∈N is close to an
Erdős-Rényi graph sequence, for which the mean-field behavior is already known,
see [14].

Moreover, observe that by choosing a suitable deterministic sequence of the weights
{gi}i∈[n], e.g., gi = F−1

g (i/n) for i ∈ [n], would lead to a random graph ξ(n) which is
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not exchangeable. In particular, E[ξ
(n)
ij ] is not constant and changes for every i and

j. Nonetheless, the sequence ξ(n) still converges2 to the same limit Wg.
This example illustrates how the randomness related to the exchangeability in the

sequence ξ(n) is lost in the limit of µn, as it is lost in the graph limit Wg. In this
sense, adding exchangeability to system (2.1) does not yield any averaging property
on the empirical measure µn. Moreover, adding the extra randomness through
Bernoulli random variables in (2.15) does not alter this fact. In other words, taking

ξ
(n)
ij = gigj ∈ [0, 1] yields yet again the same limit for µn. �

Until now, we have focused on deterministic limits for the sequence ξ(n). Observe
that a characterization of the exchangeable random graphs with deterministic limits
is given in [16]; see also [18, §11.5]. We now consider the case where the limit W
is random, and we address the relationship between the resulting system and the
mean-field limit ρ given in (2.14). One might be led to conjecture that it is possible
to recover the mean-field behavior by, e.g., averaging the limit dynamics with respect
to the randomness in W . In the next example, we formulate this remark in a rigorous
way. We show that this is in general not possible, although it may lead to a new
class of asymptotic behaviors which are interesting on their own, as pointed out in
bullet point (2) above.

Example II: random mean-field behavior. Consider the growing preferential attach-
ment graph ξpa constructed iteratively as follows; see also [18, Example 11.44]. Begin
with a single node and, assuming that at the n-th step there are already n nodes,
create a new node with label n+ 1 and connect it to each node i ∈ {1, . . . , n} with
probability (dn(i) + 1)/(n+ 1) where dn(i) is the degree of node i at step n and each
connection is made independently of the others. Denote the corresponding random

graph by ξ
(n+1)
pa .

Roughly speaking, the behavior of ξpa depends crucially on the first steps of
the construction and it stabilizes to a homogeneous structure as n grows. This is
illustrated in the next proposition.

Proposition 2.8 ([18, Proposition 11.45]). With probability 1, the sequence {ξ(n)
pa }n∈N

converges to a random constant graphon.

Consider a particle system defined on the graph sequence {ξ(n)
pa }n∈N. The empirical

measure converges to the solution of equation (2.14) with a random p. In other
words, µn converges to a random mean-field limit. Integrating (2.14) with respect
to this randomness and denoting E[ρt] by ρ̄t for every t ∈ [0, T ], we obtain that
ρ̄ ∈ C([0, T ],P(T)) satisfies

∂tρ̄t(θ) =
1

2
∂2
θ ρ̄t(θ)− ∂θ [ρ̄t(θ)F (θ)]− ∂θ

[
E
[
p ρt(θ)

∫
T

Γ(θ, θ̃)ρt(dθ̃)
]]
, (2.18)

for t ∈ [0, T ]. Note that (2.18) is not written in closed form because of the third
term on the right-hand side which is not linear in ρ and p. In this sense, ρ̄ does not

2P-a.s. in the realization of the Bernoulli random variables and possibly at the cost of requiring
some regularity on Wg, see [18, §11.4].
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formally satisfies the mean-field limit, i.e., it is not a solution to (2.14) with some
deterministic p ∈ [0, 1].

To have an intuitive understanding of what ρ̄ may look like, consider the stochastic

Kuramoto model without natural frequencies [5, 13] defined on the sequence ξ
(n)
pa .

The model is defined as the solution to

dθi,nt =
K

n

n∑
j=1

ξ
(n)
ij sin(θj,nt − θ

i,n
t )dt+ dBi

t, (2.19)

for i = 1, . . . , n and t ∈ [0, T ]. It corresponds to (2.1) with the choices F ≡ 0 and
Γ(θ, ψ) = −K sin(θ−ψ). An application of Theorem 2.3 and Proposition 2.8 implies
that the empirical measure of (2.19) converges to the solution of

∂tρt(θ) =
1

2
∂2
θρt(θ) + pK∂θ[ρt(θ)(sin ∗ρt)(θ)], (2.20)

where ∗ stands for the convolution operator. It is well-known that the system
(2.20) undergoes a phase transition as the coupling strength pK crosses the critical
threshold pK = 1. Hence, the phase transition for this specific model occurs at
a random critical threshold. Depending on the sampled value of p, one obtains
stable synchronous solutions in the supercritical regime (pK > 1), or uniformly
distributed oscillators on T (0 6 pK < 1). The solution to equation (2.20) can be
written down explicitly (see again [5, 13]) and, integrating over the randomness of p,
gives a superposition of synchronous and asynchronous states which, in general, is
not a mean-field solution, i.e., it does not solve (2.20) for some fixed p ∈ [0, 1]. �

3. The non-linear process

We introduce a non-linear process (3.10) which has already been considered in
the literature [4, 11, 19, 20, 23] as the natural candidate in case the particles in
(2.1) are not exchangeable and their labels are fixed from the initial condition. This
process is useful for studying the evolution of a tagged particle with a specific profile
of connections, as stressed in [19].

Contrary to our setting, some regularity in the – now labeled – graphon is usually
assumed to show the convergence of the empirical measure (2.2). We will exploit
(3.10) to better understand (2.3) and to establish existence and uniqueness.

Before introducing (3.10), we define some other tools for dealing with empirical
measures and graphons. Notably, we introduce an equivalence relation between
probability measures on I × T inspired by graph limits theory, see (3.6). This will
allow us to prove Proposition 2.2, where we establish that the empirical measure is
Hölder continuous with respect to the underlying graphon.

3.1. Distances between probability measures. LetMT be the space of proba-
bility measures on I×C([0, T ],T) with first marginal equal to the Lebesgue measure
λ on I, i.e.,

MT := {µ ∈ P(I × C([0, T ],T)) : p1 ◦ µ = λ} , (3.1)
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where p1 is the projection map associated to the first coordinate. For µ ∈ MT the
following decomposition holds

µ(dx, dθ) = µx(dθ)λ(dx), x ∈ I, (3.2)

where µx ∈ P(C([0, T ],T)) for almost every x ∈ I. From now on, we denote the
Lebesgue measure λ(dx) on I simply by dx. For µ, ν ∈ MT , define their distance
by

dT (µ, ν) :=

(∫
I

D2
T (µx, νx)dx

)1/2

. (3.3)

Remark 3.1. Observe that the previous definitions make sense also with T = 0 and
C([0, T ],T) replaced by T. In particular, M0 is the space of probability measures on
I × T with first marginal equal to the Lebesgue measure λ on I, i.e.

M0 = {µ0 ∈ P(I × T) : p1 ◦ µ0 = λ} , (3.4)

and

d0(µ0, ν0) =

(∫
I

D2
0(µx0 , ν

x
0 ) dx

)1/2

, for µ0, ν0 ∈M0. (3.5)

Inspired by the graphon framework, one can define the following relation of equiv-
alence on MT (the case T = 0 is analogous): for µ, ν ∈MT

µ ∼ ν iff there exists ϕ ∈ SI such that µx = νϕ(x), x-a.s.. (3.6)

Endow the quotient space MT/ ∼ with the induced distance given by

d̃T (µ, ν) := inf
ϕ∈SI

dT (µ, νϕ), (3.7)

where we have used the notation νϕ = {νϕ(x)}x∈I . Observe that if µ ∼ ν, then
µ̄ =

∫
I
µxdx =

∫
I
νϕ(x)dx =

∫
I
νxdx = ν̄. In particular, for every ϕ ∈ SI

D2
T (µ̄, ν̄) = D2

T (µ̄, ν̄ϕ) 6
∫
I

D2
T (µx, νϕ(x))dx = d2

T (µ, νϕ). (3.8)

By taking the infimum with respect to ϕ ∈ SI , we obtain

DT (µ̄, ν̄) 6 d̃T (µ, ν). (3.9)

3.2. The non-linear process with fixed labels. Fix a labeled graphon W ∈ W0

together with an initial condition µ0 ∈ M0. Consider the process θ = {θx}x∈I that
solves the system{

θxt = θx0 +
∫ t

0
F (θxs )ds+

∫ t
0

∫
I
W (x, y)

∫
T Γ(θxs , θ)µ

y
s(dθ)dy ds+Bx

t ,

µxt = L(θxt ), for x ∈ I, t ∈ [0, T ],
(3.10)

where {θx0}x∈I is a random vector such that L(θx0) = µx0 for x ∈ I and {Bx}x∈I a
sequence of IID Brownian motions independent of {θx0}x∈I . The following proposi-
tion shows existence and uniqueness for the solution of (3.10). The proof follows a
classical argument by Sznitman [25] and is postponed to Section 3.3.
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Proposition 3.2. There exists a unique solution θ = {θx}x∈I to (3.10). The law
νx ∈ C([0, T ],P(T)) of θx for x ∈ I satisfies the following non-linear Fokker-Planck
equation in the weak sense

∂tµ
x
t (θ) =

1

2
∂2
θµ

x
t (θ)− ∂θ [µxt (θ)F (θ)]− ∂θ

[
µxt (θ)

∫
I

W (x, y)

∫
T

Γ(θ, θ′)µyt (dθ
′)dy

]
(3.11)

with initial condition µx0 ∈ P(T).

The process {θx}x∈I is indexed by the space of labels I. For two different labels
x and y in I, the behavior of particles θx and θy may vary depending on their
connection profile encoded in W and the two marginals µx and µy may vary as well.
Similar results in different settings have already been shown in [4, 9, 19, 20, 23].

It is interesting to know that the law µ = {µx}x∈I ∈ MT is continuous with
respect to the cut-norm (or equivalently in d�-distance) inW0, as already remarked
in [4, Theorem 2.1] for much more general systems than the ones we consider here.
Exploiting the compactness of T and some extra regularity of Γ, we are able to prove
that the map W 7→ µW is Hölder-continuous, as shown in the next proposition.

Proposition 3.3. Suppose that Γ ∈ C1+ε(T2) for some ε > 0. There exists a positive
constant C such that, if µW and µV denote the laws of the solutions to (3.10) with
W ∈ W0 and V ∈ W0 respectively, then

dT (µW , µV ) 6 C ‖W − V ‖1/2
� . (3.12)

The proof is again postponed to Subsection 3.3. As for Proposition 2.2, endowing
the space of trajectories with with the p-Wasserstein metric for p > 1 yields a Hölder
exponent as large as 1/p.

Relationship with the non-linear process (2.3). Consider a probability distribution
µ0 ∈ M0 such that

∫
I
µx0 dx = µ̄0. The solution to (2.4) is given by µ̄ =

∫
I
µx dx,

where µx is the law of θx solving (3.10) with initial condition µx0 and labeled graphon
W . In other words, θ has the same law of θU solution to (3.10), where U is a uniform
random variable in I independent of the other randomness in the system. As the
following remark shows, the law µ̄ of θ does not depend neither on the representative
W , nor on µ0.

Remark 3.4. Let ϕ ∈ SI , i.e., ϕ is an invertible measure preserving map from
I to itself, and ν = {νx}x∈I the law of {θϕ(x)}x∈I solving (3.10). By a change of
variables, θϕ(x) solves

θ
ϕ(x)
t = θ

ϕ(x)
0 +

∫ t

0

F (θϕ(x)
s )ds+

∫ t

0

∫
I

W (ϕ(x), ϕ(y))

∫
T

Γ(θϕ(x)
s , θ)µϕ(y)

s (dθ)dy ds+B
ϕ(x)
t

(3.13)
and can be rewritten with V = Wϕ and ψx = θϕ(x) as

ψxt = θ
ϕ(x)
0 +

∫ t

0

F (ψxs )ds+

∫ t

0

∫
I

V (x, y)

∫
T

Γ(ψxs , θ)ν
y
s (dθ)dy ds+B

ϕ(x)
t , (3.14)

which has the same law as (3.10) with labeled graphon V and initial conditions
{θϕ(x)}x∈I .
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Observe that the laws ν and µ associated to (3.14) and (3.10) respectively, differ
only in the labeling of the vertices but their distance in MT is not zero due to the
initial conditions and the fact that ‖W − V ‖� = ‖W −Wϕ‖� is, in general, different
from zero. However, if one looks at µ̄ =

∫
I
µx dx and ν̄ =

∫
I
νx dx, they coincide as

probability measures in the sense that DT (µ̄, ν̄) = 0. In particular, the law of the
solution to equation (2.3) is also equivalent to ψU , where ψx solves (3.14), and U is
uniformly distributed on I.

3.3. Proofs for the non-linear process (3.10) with fixed labels.

Proof of Proposition 3.2. The proof follows a classical argument given in [25, Lemma
1.3]. Consider ν ∈MT and {θx,ν}x∈I solving

θx,νt = θx0 +

∫ t

0

F (θx,νs ) ds+

∫ t

0

∫
I

W (x, y)

∫
T

Γ(θx,νs , θ)νys (dθ) dy ds+Bx
t , (3.15)

where the initial conditions and the Brownian motions are the same of (3.10). Since
F and Γ are bounded Lipschitz functions, there exists a unique solution to (3.15),
which we denote by Φ(ν) ∈MT . Thus, the map

Φ : (MT , dT )→ (MT , dT )

ν → Φ(ν)
(3.16)

is well defined. A solution to (3.10) is a fixed point of Φ and any fixed point of Φ is
a solution to (3.10).

For µ, ν ∈ MT , consider the processes θx,µ and θx,ν , with x ∈ I. We estimate
their distance as

|θx,µt − θ
x,ν
t |

2 6 C

∫ t

0

|F (θx,µs )− F (θx,νs )|2 ds

+ C

∫ t

0

∣∣∣∣∫
I

W (x, y)

(∫
T

Γ(θx,µs , θ)µys(dθ)−
∫
T

Γ(θx,νs , θ)νys (dθ)

)
dy

∣∣∣∣2 ds

Adding and subtracting in the second integral the quantity Γ(θx,µs , θ)νys (dθ) and
using that F and Γ are Lipschitz-continuous functions and that F, Γ and W are
bounded, we get

6 C

∫ t

0

|θx,µs − θx,νs |
2 ds+ C

∫ t

0

∫
I

∣∣∣∣∫
T

Γ(θx,µs , θ) [µys − νys ] (dθ)

∣∣∣∣2 dy ds, (3.17)

From (1.3) we obtain∣∣∣∣∫
T

Γ(θx,µs , θ) (µys − νys ) (dθ)

∣∣∣∣ 6 Ds(µ
y, νy) (3.18)

from which, using (3.3), we deduce

|θx,µt − θ
x,ν
t |

2 6 C

∫ t

0

|θx,µs − θx,νs |
2 ds+ C

∫ t

0

d2
s(µ, ν) ds. (3.19)
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The definition of DT (1.2) and an application of Gronwall’s lemma lead to

d2
T (Φ(µ),Φ(ν)) 6

∫
I

E

[
sup
t∈[0,T ]

|θx,µt − θ
x,ν
t |

2

]
dx 6 C

∫ T

0

d2
s(µ, ν) ds. (3.20)

From the last relation we obtain the uniqueness of solutions to (3.10).
We prove that a solution exists by iterating (3.20). Indeed, for k > 1 and µ ∈MT ,

one gets

d2
T (Φk+1(µ),Φk(µ)) 6 CkT

k

k!

∫ T

0

d2
t (Φ(µ), µ) dt. (3.21)

In particular, {Φk(µ)}k∈N is a Cauchy sequence for k large enough, and its limit
is the fixed point of Φ. Note that dt(Φ(µ), µ) < ∞ since we are working on the
compact space T.

For the second part of Proposition 3.2, apply Itô’s formula to f(θxt ) with f ∈ C∞0
to get

f(θxt ) = f(θx0) +
1

2

∫ t

0

∂2
θf(θxs ) ds+

∫ t

0

∂θf(θxs )F (θxs ) ds

+

∫ t

0

∂θf(θxs )

[∫
I

W (x, y)

∫
T

Γ(θxs , θ)µ
y
s(dθ)dy

]
ds+

∫ t

0

∂θf(θxs ) dBx
s .

(3.22)

Integrating with respect to P yields the weak formulation of (3.11). �

Next we move to the proof of Proposition 3.3.

Proof of Proposition 3.3. Let {θx,W}x∈I and {θx,V }x∈I be the two non-linear pro-
cesses associated to W and V respectively. We compare the two solutions: as done
in the proof of Proposition 3.2, by adding and subtracting in the integrals the term
W (x, y)Γ(θx,Vr , θ)(µy,Wr − µy,Vr ) we get∣∣θx,Ws − θx,Vs

∣∣2 6 C

∫ s

0

∣∣F (θx,Wr )− F (θx,Vr )
∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

W (x, y)

∫
T
(Γ(θx,Wr , θ)− Γ(θx,Vr , θ))µy,Wr (dθ) dy

∣∣∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

W (x, y)

∫
T

Γ(θx,Vr , θ)(µy,Wr − µy,Vr )(dθ) dy

∣∣∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

(W (x, y)− V (x, y))

∫
T

Γ(θx,Vr , θ)µy,Vr (dθ) dy

∣∣∣∣2 dr.

(3.23)

Using that F and Γ are Lipschitz-continuous functions and that F, Γ and W are
bounded, we get∣∣θx,Ws − θx,Vs

∣∣2 6 C

∫ s

0

∣∣θx,Wr − θx,Vr
∣∣2 dr + C

∫ s

0

d2
r(µ

W , µV ) dr

+

∫ s

0

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vr (dθ)

)
dy

∣∣∣∣2 dr. (3.24)
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After taking the supremum over s ∈ [0, t], the expectation E and integrating with
respect to x ∈ I, we are able to apply Gronwall’s lemma as in (3.20) to get

d2
t (µ

W , µV ) 6
∫
I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θx,Vs
∣∣2] dx 6 C

(∫ t

0

d2
s(µ

W , µV ) ds+G
)
, (3.25)

where G is given by

G =

∫ t

0

E

[∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vs (dθ)

)
dy

∣∣∣∣2 dx

]
ds. (3.26)

Applying Gronwall’s inequality to (3.25) yields

d2
t (µ

W , µV ) 6 CG. (3.27)

The proof is concluded provided that G 6 C ′ ‖W − V ‖�, for some constant C ′ > 0.
Observe that Γ can be written in Fourier series, i.e.

Γ(θ, ψ) =
∑
k,l∈Z

Γkl e
ikθeilψ, θ, ψ ∈ T, (3.28)

where Γkl =
∫
T2 Γ(θ, ψ)ei(kθ+lψ)dθdψ. Since Γ ∈ C1+ε, classical results on the asymp-

totic of Fourier series [17, pp. 24-26] imply that

CΓ :=
∑
k,l∈Z

(kl)1+ε |Γkl|2 <∞. (3.29)

Plugging this expression into (3.26), we obtain that∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vs (dθ)

)
dy

∣∣∣∣2 dx

=

∫
I

∣∣∣∣∣∑
kl

Γkl e
ikθx,Vs

∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣∣
2

dx.

(3.30)

Multiplying and dividing by (kl)(1+ε)/2 one is left with

6
∫
I

∣∣∣∣∣∑
kl

(
(kl)(1+ε)/2Γkl e

ikθx,Vs

)
(

(kl)−(1+ε)/2

∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

) ∣∣∣∣∣
2

dx.

6 CΓ

∑
kl

(kl)−1−ε
∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣2 dx

(3.31)

where in the second step we have applied Cauchy-Schwartz inequality and (3.29).
Using that W and V are bounded, as well as the fact that∣∣∣∣∫

I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣ 6 1, (3.32)
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we conclude

G 6 C sup
‖a‖∞,‖b‖∞ 6 1

∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y)) (a(y) + ib(y)) dy

∣∣∣∣ dx
6 C ‖W − V ‖∞→1 .

(3.33)

Since the norm ‖ · ‖∞→1 is equivalent to the cut-norm (A.4), the proof is concluded.
�

3.4. Proofs for the non-linear process (2.3).

Proof of Proposition 2.1. The first part follows directly from Proposition 3.2 and
Remark 3.4. The proof of (2.4) is similar to the proof of (3.11), but note that we
are now integrating with respect to the randomness in U as well. �

Proof of Proposition 2.2. Let θU,W and θU,V be the two solutions to (2.3) associated
to W and V respectively, coupled by taking the same uniform random variable U .
Let µx,W and µx,V represent the laws of θU,W and θU,V conditioned on U = x, for
x ∈ I.

Consider ϕ ∈ SI an invertible measure preserving map. Recall that θϕ(U),V also
satisfies equation (2.3) with V ϕ, see Remark 3.4. We compare the trajectories θU,W

and θϕ(U),V .
Consider the difference between the equations satisfied by θU,W and θϕ(U),V , add

and subtract the term W (U, y)Γ(θ
ϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r ) to obtain that

∣∣θU,Ws − θϕ(U),V
s

∣∣2 6 C

∫ s

0

∣∣F (θU,Wr )− F (θϕ(U),V
r )

∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

W (U, y)

∫
T

(
Γ(θϕ(U),W

r , θ)− Γ(θϕ(U),V
r , θ)

)
µϕ(y),W
r (dθ) dy

∣∣∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

W (U, y)

∫
T

Γ(θϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r )(dθ) dy

∣∣∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

(W (U, y)− V ϕ(U, y))

∫
T

Γ(θϕ(U),V
r , θ)µϕ(y),V

r (dθ) dy

∣∣∣∣2 dr.

(3.34)

The first two integrals on the r.h.s. are bounded by C
∫ s

0

∣∣∣θU,Wr − θϕ(U),V
r

∣∣∣2 dr, using

that F and Γ are Lipschitz-continuous. While the third integral in the r.h.s. can be
estimated using (1.3) and the fact that 0 6 W 6 1. Thus we get∣∣∣∣∫

I

W (U, y)

∫
T

Γ(θϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r )(dθ) dy

∣∣∣∣2
6
∫
I

D2
r(µ

y,W , µϕ(y),V ) dy = d2
r

(
µW , (µV )ϕ

)
,

(3.35)

where we have used the notation (µV )ϕ for {µϕ(y),V }y∈I .
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Taking the supremum over s ∈ [0, t] and the expectation with respect to the
Brownian motions, the initial conditions and the random variable U , we obtain∫

I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θϕ(x),V
s

∣∣2] dx 6 C

∫ t

0

∫
I

E

[
sup
r∈[0,s]

∣∣θx,Wr − θϕ(x),V
r

∣∣2] dx ds

+ C

∫ t

0

d2
s

(
µW , (µV )ϕ

)
ds+ CG,

(3.36)

where G is given by

G =

∫ t

0

E

[∫
I

∣∣∣∣∫
I

(W (x, y)− V ϕ(x, y))

∫
T

Γ(θϕ(x),V
s , θ)µϕ(y),V

s (dθ)dy

∣∣∣∣2 dx

]
ds.

(3.37)
In the proof of Proposition 3.3 we proved the following estimates:

d2
t

(
µW , (µV )ϕ

)
6
∫
I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θϕ(x),V
s

∣∣2] dx,

G 6 C ′ ‖W − V ϕ‖� , for some C ′ > 0.

(3.38)

Applying these bounds to (3.36) and using Gronwall’s inequality twice as in the
previous proof, yields

d2
t

(
µW , (µV )ϕ

)
6 C ‖W − V ϕ‖� . (3.39)

By taking the infimum with respect to ϕ ∈ SI and recalling the definition of the
cut-distance (A.8) together with (3.9), we obtain

Dt(µ̄
W , µ̄V ) 6 d̃t

(
µW , µV

)
6 C δ�(W,V )1/2. (3.40)

The proof is concluded. �

4. Proof of Theorem 2.3

In order to prove Theorem 2.3, we couple the system (2.1) to a sequence of iden-
tically distributed copies of the non-linear process θ, which is obtained by sampling
{Ui}i∈N IID uniform random variables and choosing the same initial conditions and
Brownian motions of (2.1).

For every i ∈ N, denote these copies by θi = θ(Ui). In particular, θi is defined as
the solution for t ∈ [0, T ] to

θit = θi0 +

∫ t

0

F (θis)ds+

∫ t

0

∫
I

W (Ui, y)

∫
T

Γ(θis, θ)µ
y
s(dθ)dy ds+Bi

t. (4.1)

Observe that {θi}i∈N is an exchangeable sequence and, in particular, that the vari-
ables θi are independent random variables when conditioned on the randomness of
W .

Before the proof of Theorem 2.3, we give a trajectorial estimate.
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Lemma 4.1. Under the hypothesis of Theorem 2.3, it holds that

lim
n→∞

E× E

[
1

n

n∑
i=1

sup
t∈[0,T ]

∣∣θi,nt − θit∣∣2
]

= 0. (4.2)

Proof. As done before, we compare the trajectories θi,n and θi, by studying the
equation satisfied by |θi,ns − θis|

2
, recall (2.1) and (4.1). Add and subtract in the

integrals the term
(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r) so as to get

∣∣θi,ns − θis∣∣2 6 C

∫ s

0

∣∣F (θi,nr )− F (θir)
∣∣2 dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

ξ
(n)
ij

(
Γ(θi,nr , θj,nr )− Γ(θir, θ

j
r)
)∣∣∣∣∣

2

dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r)

∣∣∣∣∣
2

dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

W (Ui, Uj)Γ(θir, θ
j
r)−

∫
I

W (Ii, y)

∫
T

Γ(θir, θ)µ
y
r(dθ) dy

∣∣∣∣∣
2

dr.

(4.3)

We now use the Lipschitz property of Γ and F , sum over i and take the supremum
over s ∈ [0, t], together with the expectation E × E, which we just write E for
simplicity,

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θi,ns − θis∣∣2
]
6 C

∫ t

0

E

[
1

n

n∑
i=1

sup
q∈[0,r]

∣∣θi,nq − θiq∣∣2
]

dr

+ C

∫ t

0

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r)

∣∣∣∣∣
2
 dr

+ C

∫ t

0

1

n

n∑
i=1

E

∣∣∣∣∣ 1n
n∑
j=1

W (Ui, Uj)Γ(θir, θ
j
r)−

∫
I

W (Ui, y)

∫
T

Γ(θir, θ)µ
y
r(dθ) dy

∣∣∣∣∣
2
 dr.

(4.4)

Observe that the last term is bounded by a constant divided by n since by taking
the conditional expectation with respect to θj and U j, one obtains

E
[
W (Ui, Uj)Γ(θis, θ

j
s)
]

=

∫
I

W (Ui, y)

∫
T

Γ(θis, θ)µ
y
s(dθ) dy (4.5)

and, conditionally on W , the random variables {θi}i∈N are IID.
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Turning to the second term, we will prove that

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θis, θ

j
s)

∣∣∣∣∣
2
 6 C E

[
δ�(ξ(n),W (n))

]
+ o(1),

(4.6)
where W (n) := {W (Ui, Uj)}i,j=1,...,n is a W -random graph with n vertices, see (2.10).
This, together with a Gronwall argument implies that

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θi,nt − θit∣∣2
]
6 C E

[
δ�(ξ(n),W (n))

]
+ o(1) (4.7)

and the claim follows by taking the limit for n which tends to infinity and the fact
that W (n) converges P-a.s. to W , recall Theorem 2.5.

Turning to (4.6), we use an argument similar to (3.26)–(3.29). Recall that since
Γ ∈ C1+ε, it admits a Fourier series (3.28) with coefficients Γkl such that∑

k,l∈Z

(kl)1+ε|Γkl|2 <∞.

Plugging its Fourier expression in the left-hand side of (4.6), multiplying and divid-
ing by (kl)(1+ε)/2, we get

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θis, θ

j
s)

∣∣∣∣∣
2


= E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)∑
k,l

Γkle
iθiskeiθ

j
sl

∣∣∣∣∣
2


6 CE

∑
k,l

(kl)−1−ε 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
eiθ

i
skeiθ

j
sl

∣∣∣∣∣
2
 ,

(4.8)

where we have used Cauchy-Schwartz inequality as in the proof of Proposition 2.2.

Observe that
∑

kl(kl)
−1−ε is convergent and that

∣∣∣eiθisk∣∣∣ 6 1 for all k and s: we can

thus bound P-a.s. the previous term by

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
sitj

∣∣∣∣∣
]
. (4.9)

Recall that W (n) = {W (Ui, Uj)}i,j=1,...,n is a W -random graph with n vertices. Since
the particles {θi}i∈N are exchangeable, every computation done so far holds no mat-
ter the order of {θi}i=1,...,n and, in particular, of {U i}i=1,...,n. In particular, the last
inequality holds for every relabeling of W (n).
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From the definition of δ̂� (A.7), one can thus take the labeling of {Ui}i=1,...,n for
every n ∈ N, such that

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
sitj

∣∣∣∣∣
]

= E
[
δ̂�(ξ(n),W (n))

]
. (4.10)

Using the asymptotic equivalence of δ̂� with δ�, see Remark A.1, the claim is proved
and the proof is concluded. �

Proof of Theorem 2.3. The equivalence between the convergence in P-probability of
ξ(n) and equation (2.11) is proven in Lemma A.2. We turn to the proof of the
convergence of µn.

It is well known that the bounded Lipschitz distance, recall (1.3), metricizes the
weak convergence and defines a distance between probability measures. In particu-
lar, in order to show that µn converges in P× P-probability to µ̄ in P(C([0, T ],R)),
it is enough to prove that

lim
n→∞

E× E

[∫
f(θ)µn(dθ)−

∫
f(θ)µ̄(dθ)

]
= 0, (4.11)

for every f bounded and Lipschitz function with values in C([0, T ],R).
Using the fact that µ̄ is the law of {θi}i∈N (recall (4.1)), it is enough to show that

lim
n→∞

1

n

n∑
j=1

E× E
[∣∣f(θj,n)− f(θj)

∣∣] = 0. (4.12)

This is implied by the fact that f is Lipschitz and by Jensen’s inequality. Indeed,

1

n

n∑
j=1

E× E
[∣∣f(θj,n)− f(θj)

∣∣] 6 E× E

[
1

n

n∑
j=1

sup
t∈[0,T ]

∣∣θj,nt − θjt ∣∣2
]1/2

, (4.13)

which goes to zero as n→∞ by Lemma 4.1. �

Appendix A. Graph convergence and random graphons

A.1. Distance between finite graphs. We denote [n] := {1, . . . , n} for n ∈ N.
Let ξ be a labeled graph on n vertices. With an abuse of notation, we let ξ denote
its adjacency matrix as well, i.e., ξ = {ξij}i,j∈[n]. We consider simple undirected
graphs so that ξij = ξji and ξii = 0 for all 1 6 i 6 j 6 n.

Let A = {Aij}i,j∈[n] be a n× n real matrix. The cut-norm of A is defined as

‖A‖� :=
1

n2
max
S,T⊂[n]

∣∣∣∣∣ ∑
i∈S,j∈T

Aij

∣∣∣∣∣ . (A.1)

It is well-known that this norm is equivalent to the `∞ → `1 norm [1]

‖A‖∞→1 := sup
si,tj∈{±1}

n∑
i,j=1

Aijsitj. (A.2)
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For two labeled graphs ξ and ξ′ on the same set of vertices, we define the distance
d� as

d� (ξ, ξ′) := ‖ξ − ξ′‖� . (A.3)

A.2. Labeled and unlabeled graphons. Recall that I = [0, 1] and letW := {W :
I2 → R bounded symmetric and measurable} be the space of kernels, we tacitly
consider two kernels to be equal if and only if the subset of I2 where they differ has
Lebesgue measure 0. A labeled graphon is a kernel W such that 0 6 W 6 1. Let
W0 denote the space of labeled graphons. The cut-norm of W ∈ W is defined as

‖W‖� := max
S,T⊂I

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ (A.4)

where the maximum is taken over all measurable subsets S and T of I. It is well
known that ‖W‖� is equivalent to the norm of W seen as an operator from L∞(I)→
L1(I) [18, Theorem 8.11]. This is defined as

‖W‖∞→1 := sup
‖g‖∞ 6 1

‖Wg‖1 , (A.5)

where (Wg)(x) :=
∫
I
W (x, y)g(y)dy for x ∈ I and g ∈ L∞(I).

The metric induced by ‖·‖�, or equivalently by ‖·‖∞→1, in the space of labeled
graphonsW0 is again denoted by d� (·, ·). Definitions (A.1) and (A.4) are consistent
in the sense that to each labeled graph ξ is associated a labeled graphon Wξ ∈ W0

such that ‖ξ‖� = ‖Wξ‖�. The labeled graphon Wξ is usually defined a.e. as

Wξ(x, y) =
n∑

i,j=1

ξij 1[ i−1
n
, i
n

)×[ j−1
n

j
n

)(x, y), for x, y ∈ I. (A.6)

Note that Wξ depends on the labeling of ξ. Indeed, different labelings of ξ yield
graphs which have large d�-distance in general. This motivates the definition of the
so-called cut-distance. For two labeled graphs ξ, ξ′ with the same number of nodes,
the cut-distance is defined as

δ̂�(ξ, ξ′) := min
ξ̂′

d�(ξ, ξ̂′), (A.7)

where the minimum ranges over all labelings of ξ′. The cut-distance is also defined
for graphons as follows. For two labeled graphons W,V ∈ W0, their cut-distance is

δ�(W,V ) := min
ϕ∈SI

d� (W,V ϕ) , (A.8)

where the minimum ranges over SI the space of invertible measure preserving maps
from I into itself and where V ϕ(x, y) := V (ϕ(x), ϕ(y)) for x, y ∈ I.

Remark A.1. There are at least two ways to compare the graphs ξ, ξ′ as unlabeled
objects: either by directly computing their distance δ̂� or by computing the distance
δ� between Wξ and Wξ′. These turn out to be equivalent as the number of vertices
tends to infinity [18, Theorem 9.29]. Formally, for every two graphs ξ, ξ′ on n
vertices, it holds that

δ�(Wξ,Wξ′) 6 δ̂�(ξ, ξ′) 6 δ�(Wξ,Wξ′) +
17√
log n

. (A.9)
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We always write δ�(ξ, ξ′) := δ�(Wξ,Wξ′).

Contrary to d�, the cut-distance δ� is a pseudometric on W0 since the distance
between two different labeled graphons can be zero. This leads to the definition of

the unlabeled graphon W̃ associated to W . For a labeled graphon W , W̃ is defined
as the equivalence class of W including all V ∈ W0 such that δ�(W,V ) = 0. For
notation’s sake, we drop both the superscript and the adjective unlabeled when the

context is clear. The quotient space obtained in such a way is denoted by W̃0 and
we refer to it as the space of graphons. A celebrated result of graph limits theory is

that (W̃0, δ�) is a compact metric space [18, Theorem 9.23].
We are not going into the details of graph convergence for which we refer to

the exhaustive reference [18]. We only recall that a sequence of graphs {ξ(n)}n∈N
converges to the graphon W ∈ W̃0 if and only if δ�(Wξ(n) ,W ) → 0 as n → ∞ [18,
Theorem 11.22]). We refer to the following subsection for a characterization of the
convergence in probability.

A.3. Convergence in probability. The characterization of the convergence in
distribution for a sequence of graphs has been originally given in [16]. We give here

a useful notion of convergence in W̃0 by means of the cut-distance δ�, which is
equivalent to the convergence in probability for graph sequences.

Lemma A.2. Assume that {ξ(n)}n∈N is a sequence of random graphs and W a

random graphon in W̃0. Then, ξ(n) converges in P-probability to W if and only if
(2.7) holds, i.e., if and only if

lim
n→∞

E
[
δ�
(
ξ(n),W

)]
= 0.

Proof. Recall that (W̃0, δ�) is a compact metric space, so that the convergence of
ξ(n) in probability is equivalent to

∀ε > 0, lim
n→∞

P
(
δ�(ξ(n),W ) > ε

)
= 0. (A.10)

Observe that the sequence of positive real random variables {δ�(ξ(n),W )}n∈N is
uniformly bounded by 1. Equation (A.10) is then equivalent to the convergence in
L1, i.e., equivalent to (2.7). �
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