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Towards in situ Backlash Estimation of Continuum Robots using an
Endoscopic Camera

Thibault Poignonec, Philippe Zanne, Benoı̂t Rosa and Florent Nageotte

Abstract— Accurate control of continuum robots requires
handling non-linear behaviors between actuators and distal
effectors. In this paper, we develop a method for estimating the
non-linearities of tendon-driven degrees of freedom of flexible
endoscopic systems by using a distal endoscopic camera and
encoders at the proximal side. The proposed approach separates
the non-linearities in two parts, namely a pure non uniform
backlash and a non-linear function. The backlash is estimated
without relying on any model, while the non-linear function
is obtained by a pose estimation process. Experiments realized
on a robotic flexible endoscopy platform (STRAS) show the
validity of the approach for estimating in situ the quasi-static
behavior of the robot and for compensating the non-linearities
of the motion transmission.

I. INTRODUCTION

Continuum robots are composed of flexible, slender me-
chanical structures which, when actuated, can take con-
tinuous curvatures. This property makes them suitable for
minimally invasive surgery, where access to clinical targets
requires using small diameter instruments [1]. Several sys-
tems have been designed for surgical endoscopy, where an
endoscopic camera provides visual feedback of the instru-
ments [2], [3] (Fig. 1). Accurate control of such continuum
robots requires handling complex non-linearities, especially
in tendon-driven systems. Several approaches have been
used to model these non-linearities [4], [5] and compensate
them [6], [7], by relying on a distal measurement. Such
measurements can be obtained with embedded sensors [8],
[9], which are however not easy to integrate in small diam-
eter instruments. Alternative solutions [10], [11] learn non-
linearities offline, assuming that the behavior of the robot
does not change during subsequent use. This assumption can
be broken by the modification of the shape of the shaft of
the endoscope as shown in [12]. Moreover, the relation also
changes over time, even for a same endoscope shape (Fig. 2).
This advocates for an in situ estimation of the non-linearities.

Non-linear behaviors originate mainly from complex phe-
nomenons between the motors actuation and the resulting
motion at the distal tip of the continuum robot. For esti-
mating non-linearities in situ, at least a sensor measuring
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Fig. 1. Example view of the considered systems. Here c is the configuration
variable representing bending of a bending section of the robot

the position of the tip and one measuring the proximal
position are needed. It is desirable, in endoscopy, to use the
camera, which is readily available at the distal part of the
endoscope, because integrating sensors in the small diameters
instruments is still a practical problem.

The method developed by Reilink et al. [13] allows esti-
mating and compensating backlash by using the endoscopic
camera. Corrected motor positions are reconstructed from
the images by relying on a model of the continuum robot,
which is equivalent to an implicit robot pose estimation.
As shown in [14], such models are inaccurate in realistic
conditions, due to the uncertain position of the instrument in
the endoscope channel, which impacts the eye-to-hand regis-
tration. Moreover, the approach only allows for compensating
uniform backlash. As shown in Fig. 2, the characteristics
of cable driven instruments actually present complex non-
linearities. Baek et al. [15] recently proposed compensating
hysteresis by fusing image and kinematics information for
bending angle estimation and have shown robustness to
image occlusions and guide shape variations. The method
however relies on the offline training of neural networks
and therefore cannot be directly applied in-situ for new
instruments.

In this work we propose to estimate the backlash by
using the embedded camera at the tip of the endoscope,
which looks at a moving continuum robot (see Fig. 1).
We show that the problem of estimating the global non-
linear behavior of the bending DOF of the instrument can
be split in two sub-problems : estimating a pure backlash,
whose width can depend on the configuration of the robot,
and then estimating the remaining function. We show that
the pure backlash can be estimated from image movement
detection, without measuring the pose of the robot. This is



an interesting feature, as pose estimation from monocular
camera in in vivo environments is a complex problem. In
cases where the pose can be estimated, it is then possible
to estimate the remaining function while keeping the initial
pure backlash estimate.

The paper is organized as follows. Section II presents
the model used in the development of the method. Section
III and IV respectively describe the proposed approach for
pure backlash and remaining function estimation. Section V
presents the validation of the method and results obtained
both for predicting the behavior of the robot and compen-
sating the non-linearities. A discussion concludes the paper.

II. MODELING OF ROBOT BEHAVIORS

In this work we consider a cable driven continuum
robot observed by an endoscopic camera in an eye-to-
hand configuration. This configuration is common in many
medical robotic devices developed for endoluminal surgery
[2], [16]–[18] or single port laparoscopic surgery [3], [19].
Such devices are usually equipped with sensors at the proxi-
mal side only (i.e. encoders mounted onto the drive system).
This minimal setup, where no additional sensor –except the
endoscopic camera– is available at the distal side, is the case
considered in this study (see Fig. 1).

The state of the continuum robot can be represented in
different spaces:
• in the actuator space, where it is described by a vector

of motor positions q
• in the configuration space, where a vector of configu-

ration variables c describes the geometric arrangement
of the robot

• in the task space, for instance by the position baseP3D
and orientation baseRe f f of the continuum robot effector
with respect to the base frame

• in the image space, by the perspective projection of
points of the continuum robot body, for instance Q, the
projection of P3D.

For each space, the parameters to be used and their number
required for representing the robot depend on its design.

In this work, we assume that the relation between the
configuration space and the task space is known, i.e. one
can compute the position/orientation of the robot end effector
given a set of configuration variables. This can be done for
instance by relying on a geometric model of the robot (for
instance a constant curvature model [20]). It is written as:
P3D = g(c),g : Rn→ R3.

On the contrary, the link between the actuator space and
the configuration space c = f(q) is only coarsely known. In
the considered systems, it is usual that conventional kine-
matic models do not account for complex behaviors in the
motion transmission. This is especially true for robots with
flexible shafts and for the tendon-driven DOFs. Some of the
observed behaviors are shown in figure 2. A coarse function
denoted fcoarse is assumed to be available, for instance a
simple kinematic model assuming perfect transmission. The
core of this work is to estimate the actual relation between
actuator space and configuration space.
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Fig. 2. Non-linear behaviors measured on a tendon driven DOF of a
continuum robot, between proximal actuator and distal configuration. The
different colors correspond to different dates of measurement between in
vivo experiments. Strong variations can be observed.

The transformation between the task space and the im-
age space is also only coarsely known. The camera is
assumed calibrated and a nominal eye-to-hand transform
camt̄base,

camR̄base is available, which allows estimating
Q ∼ Q̂ = h(P3D). However, as shown in [14], the hand-
eye calibration in endoscopic systems includes uncertainties
linked to the necessary mechanical play for translating and
rotating instruments in the working channel.

A. Modeling of the quasi-static non-linearities

We consider one tendon-driven degree of freedom of the
continuum robot. The non-linearity in the behavior of this
DOF can be represented by the hysteresis shape relating q
(one element of q) to the obtained configuration variable c
(one element of c), usually a bending angle. As shown in
figure 2 the hysteresis can have a complex shape. In our
approach we propose to decompose this global non-linearity
in two parts, as shown in figure 3:

1) A backlash, which appears at a change of direction
of the actuator. This is responsible for the hysteresis shape
of the characteristic curve. In the following we call this part
”pure backlash”. The approach proposed in [13] considered
a constant backlash. There is, however, no reason to consider
the backlash constant a priori. Therefore our method identi-
fies the relation between the actuator position and the width
of the backlash and express it as a function B(q) (see section
III). This modeling implies that the backlash is symmetric,
i.e. for a given distal configuration the absence of motion
happens on the same motor range, whatever the direction of
the motor motion.

2) A function fremain(q), generally non-linear, which
links the actuator position to the configuration variable value
once pure backlash has been removed or compensated. In
the following we call this function the remaining function.
This function can also be viewed as the central line of
the hysteresis curve. It should be noted that it is generally
different from the envelope functions of the hysteresis (see
for instance figure 6).
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Fig. 4. General scheme used for non-linearities estimation. The upper part
of the block-scheme (blocks 1 to 3) concerns estimation of pure backlash
while the lower part (blocks 4,5) processes the remaining function. They
are combined to provide the complete estimate (block 6).

Representing complex hysteresis shapes by combining a
backlash operator and a function, as shown in figure 3, has
for instance been proposed in [21]. However, identifying the
two parts separately is a novel approach. It is of interest
here because the two parts can be obtained from different
information as will be shown in the following. The next
sections present the proposed method in details. The general
scheme is depicted in figure 4.

III. PURE BACKLASH ESTIMATION

A. Estimation of the backlash at a given motor position

Pure backlash can be characterized by the absence of end-
effector motion after a change of direction of the actuator at
the proximal side. The backlash width is then simply the
range of motor motion which does not create distal motion.
The proposed approach therefore consists in detecting the
appearance of motion after a change of motor direction. The
absence of motion and the appearance of motion are events
which are directly visible in the image and which do not
require a 3D pose estimation process.

The process for backlash estimation is as follows (Fig. 5):
• The position of the effector is tracked in the image
• An actuator direction change (change of sign(q̇)) is re-

quested at time t1 and the corresponding motor position
q1 is recorded

• When a movement is detected in the image at time t2,
the corresponding position q2 is recorded

The backlash width can be considered as a function of the
distal configuration c. However, c is not directly accessible
with the considered setup and its estimation would require
a pose estimation process. Therefore, it is more convenient
to describe the backlash width as a function of an actuator
position, which is readily available. We have chosen to
express the backlash width as a function of the mean actuator
position in the backlash zone qmean = q1+q2

2 . The value
of width is then given by B(qmean) = |q2−q1| and it can
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Fig. 5. Pure backlash estimation scheme. Left: actuator motions for a
requested change of direction, and the detected motion in the image in
function of time. Top-right: corresponding evolution in the configuration vs
actuator space. Bottom-right: The measured backlash width provides a point
in the backlash width function.

represent backlash for both direction changes (positive to
negative velocity and negative to positive velocity). Actually,
since different sources of information are used to obtain
t1 and t2 a correction is needed to temporally align image
measurements and motor measurements. This is especially
important when using low frame rate image acquisition
systems, which also introduce delays. We then use

B(qmean) =
∣∣q(t2− tdelay)−q1

∣∣ , (1)

where tdelay is the temporal delay introduced by the image
acquisition and processing pipeline. It is assumed here that
the motor positions are obtained at a high frame rate with
negligible delay as is usually the case.

This simple process is independent of any robot model or
3D position estimation process. It is therefore also indepen-
dent on the calibration parameters of the camera and of the
eye-to-hand transform camTbase.

B. Construction of the backlash width function

As the backlash width depends on q, the method presented
in section III-A must be performed at different actuators
positions, in order to estimate the function B(q) over a useful
range of actuators positions. For an in situ estimation prior
to use, typically after the medical robot insertion in the
body but before the actual surgical use, a pre-programmed
motor trajectory can be used to reconstruct the backlash
width function B. This trajectory can consist in several small
range back and forth motions superimposed on a ramp which
covers the full range of the useful motor positions. Using
this pre-programmed trajectory, one can estimate values of
B(q) over the desired range, but only at discrete intervals.
Using the backlash model for compensation (see section III-
C) requires however a continuous function for all motor
positions. We propose to interpolate and filter the obtained
values by using cubic B-splines, with N control points
homogeneously spread over the motor range. This choice was
made based on the observation that hystereses obtained with
external sensors in [10] exhibit an overall smooth variation
but with possible high local slopes.

Given the initial coarse model of the q→ c mapping c =
fcoarse(q) the direct complete model of the non-linearities can
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Fig. 6. Reconstructed hystereses, by combining a linear fcoarse function
with pure backlash (top) and by combining estimated fremain with backlash
(bottom).

be obtained by combining the backlash model and the fcoarse
function. The external envelope defined by functions f1 and
f2 can be obtained by a numerical reindexing of fcoarse:

f1,2(qo f f ) = fcoarse(q) with qo f f = q∓ B(q)
2

(2)

This is illustrated in figure 6 (top), where fcoarse is linear.
Note that because B generally depends on q, f1,2 are not
linear. The variable backlash model enforces a deformation
of the external envelope.

At a time index k the direct model can be numerically
simulated by (see [22]):

c[k] =


f2(q[k]) if q[k]> q[k−1] and c[k]≥ f2(q[k])

f1(q[k]) if q[k]< q[k−1] and c[k]≤ f1(q[k])

c[k−1] otherwise
(3)

C. Use for backlash compensation

The identified model can be used to compensate the back-
lash. Given a reference trajectory c∗(k) for the configuration
variable, the compensated reference motor trajectory can be
computed as :

q∗[k] =

 F1inv(c∗[k]) if c[k]∗ < c[k−1]∗

F2inv(c∗[k]) if c[k]∗ > c[k−1]∗

q∗[k−1] if c∗[k] = c∗[k−1]
(4)

where {
F1inv(c∗) = f̂−1

coarse(c
∗)− B( f̂−1

coarse(c
∗))

2

F2inv(c∗) = f̂−1
coarse(c

∗)+ B( f̂−1
coarse(c

∗))
2

(5)

f̂−1
coarse is the inverse function of fcoarse, which can be

obtained by a numerical inversion. Smoothing can also be
added to transitions to avoid actuator saturation [12].

This compensation can advantageously be used in a tele-
manipulation framework, for correcting the behavior of the

robot when a change of direction of the distal configuration
variable is required. It can thus avoid apparent delays in
executing the user’s reference trajectories.

IV. REMAINING FUNCTION RECONSTRUCTION

For automatic motions realization, as described in [10],
the compensation of backlash alone is not sufficient for
providing a good positioning accuracy. Indeed, fcoarse is
usually inaccurate, and therefore f1,2 are also. There are
for instance dead zones near the straight configuration, as
shown in figure 2 (green curve, between 0◦ and 10◦ for
instance), which are difficult to predict from models. This
means that even if backlash may be correctly compensated
when changes of direction are required, the link between
the rate of variation of c∗ and of q∗ can be incorrect. In
other words, the task space position can be inaccurate. For
improving accuracy, one can estimate the complete hysteresis
envelope, i.e. f1 and f2, from data. These functions link
the actuator positions to the configuration variable values as
long as no change of direction is applied. This information
can be obtained from the endoscopic camera only if the
configuration variable can be extracted from the image. This
in turn requires a geometric model of the continuum robot,
a model of the camera and of the eye-to-hand configuration.
Such techniques have been used to reconstruct three [23] or
six configuration variables [14]. In the considered case where
a single DOF has to be estimated, a marker at the tip of the
instrument coupled with a conventional geometric model (for
instance a constant curvature model) is sufficient. We propose
an approach similar to [23], but instead of reconstructing
a corrected motor position, we focus on the configuration
variable c. Given a model of the endoscopic camera and of
the eye-to-hand calibration, we have :

Q̂ = h(g(c)) (6)

We denote the interaction matrix (image jacobian) which
relates the variation of c to the variation of Q̂ by J :

dQ̂
dt

= J
dc
dt

with J =
∂h◦g

∂c
(7)

Given a position of the marker in the image Q, one can
estimate the optimal value of c by minimizing the cost
function L = ‖Q− Q̂‖2 by using an iterative optimization
process such as Levenberg-Marquardt:

ĉ j = ĉ j−1 +(JT J+λ (diag(JT J))−1JT (Q− Q̂) (8)

Note that this approach, as the ones used in [14], [23],
minimizes the error of a projection in the image. This scheme
can therefore succeed and provide very low projection errors
even when models are erroneous. In such cases, the obtained
values for the configuration variables will be inaccurate.

By applying this estimation process during the pro-
grammed motion of the instrument used for pure backlash
estimation as described in section III-B, one can reconstruct
the hysteresis characteristic curves (see Fig. 9). After this
step, the functions defining the external envelope of the
hysteresis could be used to compute the width of the backlash



in function of qmean as for instance in [10]. However, in this
case the pure backlash estimation obtained previously would
be overwritten. This is not desirable, because contrary to [10]
where accurate external sensors are used, the process used
here to estimate c is subject to modeling and measurements
errors. We therefore propose to keep the initial pure backlash
estimation, which was obtained independently of any pose
estimation, and to estimate the remaining function. For this
purpose the remaining function is estimated as the central
fiber of the characteristics, i.e. the horizontal median line of
the envelope. For extracting it, the characteristic is processed
as an image by applying morphological operations for filling
holes, extremal horizontal values detection and spline fitting.
This provides function fremain : q→ c, as shown in figure 9.

The complete obtained model can for instance be used for
an automatic positioning task as will be shown in section V.
Given a desired trajectory c∗[k] for the configuration variable,
the required actuator position can be obtained using eq. (4),
but replacing fcoarse with fremain{

F1inv(c∗) = f−1
remain(c

∗)+
B( f−1

remain(c
∗))

2

F2inv(c∗) = f−1
remain(c

∗)− B( f−1
remain(c

∗))
2

(9)

V. SIMULATION AND EXPERIMENTS VALIDATION

Several simulations and experiments were carried out to
show the validity of the approach and its possible interest.

A. Experimental setup

We consider the left instrument of the STRAS robotic
platform [18] (see Fig. 12). The instrument has three DOF :
translation, rotation and bending. The bending DOF, which
is actuated by antagonist cables is the main focus of the
experiments. The robot DOFs are controlled in position by
a real-time control PC (see [18] for details). Endoscopic
images are acquired at 25 Hz through a framegrabber. Image
processing codes are in C++ on a separate computer, which
sends high-level commands to the real-time control PC,
where inverse backlash models are implemented.

B. Simulation

The proposed approach is first studied in simulation of
the above-mentioned system, in order to show the interest
of our method in controlled conditions. We simulate the
robot using a perfect constant curvature model, with a
hysteresis of constant width 15o on the bending DOF. We
consider in addition that the instrument can slightly move
in its working channel (as shown in [14]). Therefore, we
introduce a ±1.5◦ error around the y axis on the hand-
eye registration matrix, the sign depending on the distal
motion direction. We then reconstruct the pure backlash and
remaining function as described in sections III-C and IV,
with bending velocities at 15◦/s. For comparison purposes,
we also reconstruct the hysteresis in a single step by directly
estimating the configuration variable (see section IV).

Figure 7 shows the obtained hysteresis cycles and the
estimated backlash in both cases. As could be foreseen
backlash reconstruction is impacted by the slight registration
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Fig. 7. Reconstructed hysteresis (top) and backlash width function (bottom)
as a function of q. The robot is simulated with a constant 15◦ backlash on
the bending joint, and a ±1.5◦ error on the hand-eye calibration. Green:
ground truth, Blue: Direct single-step estimation of the hysteresis using
pose estimation, Red: using the proposed approach.

error, even with a perfectly known constant curvature model.
Our proposed two-step approach accurately estimates the
backlash (mean error 0.7◦(4.7%), std. 0.09◦), while the
model-based estimation features large errors (mean error
6.6◦(44%), std. 0.51◦).

It has to be noted that this simulation example was cho-
sen on purpose to exhibit limitations of more conventional
approaches relying on pose estimation and configuration
variable reconstruction. However, it shows that avoiding pose
estimation can be useful in realistic cases.

C. Image measurements

The continuum robot end effector needs to be tracked
in the image. Since a single DOF is considered, it is
sufficient to track a single point. Since the focus of the
present work is not on the image processing aspects, we
used a simple colored marker attached at the tip of the
instrument, which can be efficiently tracked using simple
image processing techniques. More advanced marker-based
or marker-less methods [14], [15], [23]–[25] can be used
for in vivo settings.

D. Backlash estimation

The delay of the image acquisition chain has been es-
timated to 2 frames (i.e. tdelay = 80ms), with an uncer-
tainty ∆tdelay = 20ms (half period). Assuming a constant
velocity of the actuator v during backlash crossing, this
creates an estimation error ∆q = ‖∆tdeltav‖ on q(t2− tdelay).
It is therefore recommended to apply a low velocity for
backlash estimation. Practically, the velocity is set to 5%
of the maximum motor velocity, which corresponds approx-
imately to a maximum bending speed of 20◦/s at the distal
end.The corresponding uncertainty onto the actuator position
is 0.025mm of cable displacement. For separating motion
and absence of motion, the image position of the marker Q
is differentiated and a threshold T is applied. T was set to
0.2 pixels/frame after practically assessing that the noise for
still marker localization was less than 0.15 pixels.

Figure 8 shows the backlash estimation as a function of the
motor position. The continuous function has been obtained
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by B-spline fitting with N = 14 knots (8 central and 3 at
each extremity of the motor range). One clearly observes
the strong increase of the backlash near the center of the
motor range (straight configuration of the instrument). This
behavior was already observed in [10], [26]. This clearly
confirms the need of a variable backlash estimation method
(see section II-A).

E. Remaining function estimation

The remaining function was estimated using the same
input images and motor data as for the backlash width. The
typical actuator / configuration characteristics are shown in
figure 9. fremain is then extracted as described in section IV.

F. Assessment of prediction capability

For assessing the validity of the pure backlash and the re-
maining function estimation, a testing motion is used, which
consists in periodic trapezoidal back and forth motions
realized with the motor actuating bending superposed on a
linearly varying mean value (see Fig. 10 and accompanying
video). This trajectory includes many changes of directions,
in order to exhibit the effects of backlash. The position of the
instrument is tracked in the endoscopic image, and the actual
trajectory is compared with the modeling obtained with
fcoarse (pure kinematic model of the instrument [27]), with
fcoarse combined with backlash estimation only ( fcoarse +B)
and with the complete estimation ( fremain +B) (see Fig.11).
Results are presented in table I.

Model used Error (in pix.)
On Qx On Qy distance

fcoarse mean ± std 78±73 30±5 89±67
max. 309 39 309

fcoarse +B mean ± std 59±61 31±4 73±53
max. 289 36 289

fremain +B mean ± std 17±15 34±1 40±9
max. 78 40 85

TABLE I
COMPARISON OF PREDICTION ERRORS IN THE ENDOSCOPIC IMAGE

USING fcoarse , fcoarse +B AND fremain +B. THE ERRORS ARE SHOWN FOR

THE x AXIS (Qx), THE y AXIS (Qy) AND IN NORM (DISTANCE).

When using fcoarse only, the norm of the error in the image
shows large pseudo-periodic variations, with a mean distance
error of 89 pixels. This is mainly due to the prediction going
on either side of the actual position, because the absence
of movement at the distal tip at the change of direction is
not predicted. The combination of the backlash with fcoarse
allows to greatly decrease the amplitude of the squares
because, at each change of direction, the model predicts the
range of motor motion that does not create distal motion.
Zoom A on Fig. 10 shows that the appearance of motion
in the image at each cycle is well synchronized between
prediction and measurement. However, the prediction shows
larger amplitudes of motions than the measurement, and
the mean distance error only decrease to 73 pixels. This
arises from an incorrect prediction of the rate of variation
at the distal side. Namely, the rate is overestimated because
fcoarse does not correspond to the actual remaining function.
This is especially visible between 150s and 175s (see
zoom B) because the instrument comes close to the straight
configuration, where the actual rate of motion is very low
and the discrepancy with fcoarse particularly large. Note,
however, that the synchronization of motions remains good,
indicating that the backlash is well estimated. When using the
complete model with fremain, the velocity of distal movement
is better predicted, which allows an important reduction of
the prediction error to 40 pixels. In zoom B, the remaining
function only allows to slightly decrease the error on the
image position prediction. The remaining error can be due to
the transition movement between backlash and the envelope
function or to coupling effects.

It can be noted that the norm of the error never goes under
40 pixels. This comes from errors in the registration between
the endoscopic camera and the robot, which mainly affect
the vertical position (Qy) of the instrument in the image. In
the presented experiments, the motion of the instrument is
mainly along the horizontal axis of the image, so that the
error on Qy is almost constant (see table I). The prediction
error along the horizontal axis (Qx) is therefore significantly
reduced from 78 pixels to 17 pixels when using fremain +B.

G. Assessment of compensation capability

The inverse non-linear models have been implemented
onto the robotic system. For assessing the effect of com-
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Fig. 10. Pseudo-periodic trajectory used for testing prediction capability of
different models: fcoarse (black), fcoarse+B (green) and fremain+B (yellow).
Zooms A and B show that when backlash is modeled the appearance of
motion is well synchronized with the measurement.
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Fig. 11. Reprojection errors between the measured position of the effector
in the endoscopic image and the prediction of effector position provided by
fcoarse (black), fcoarse +B (green) and fremain +B (yellow).

pensation, a 2D trajectory (an ellipse) is defined in the task
space of the continuum robot. The configuration trajectory
(bending, rotation, translation) is computed using the inverse
geometric model of the instrument [27]. The obtained tra-
jectory is then performed in open-loop and observed by
an external camera parallel to the plane of the ellipse.
Figure 12 provides the qualitative results. The non-linearity
compensation allows to largely improve the accuracy of the
trajectory.

VI. DISCUSSION AND CONCLUSION

We have presented a method for estimating non-linearities
of cable-driven continuum robots, which uses an endoscopic
camera conventionally available in endoluminal digestive
surgery and which is thus suitable for in situ use. The method
has been shown valid for free moving continuum instruments
through laboratory experiments, both for predicting the robot
behavior and for compensating the non-linearities.

One originality of the approach is to separate hysteresis
estimation in two parts, and to estimate pure backlash
without relying on pose estimation. This is an interesting

+25 mm

8 mm

Endoscopic 
camera

Fig. 12. Open loop realization of a reference trajectory (yellow), by relying
on f−1

coarse (blue) and on the inverse model constructed from fremain +B (see
eq. 9) (green)

feature because pose estimation in in vivo environments is a
complex task [14]. Here, backlash is obtained from motor
measurements and image measurements only. Tracking a
single point on the instrument in the image is sufficient,
and there is no need to combine several image information
to estimate a pose or a configuration variable (as for in-
stance proposed in [13], [14], [23]) or to use data acquired
beforehand on the system as proposed in [15]. Moreover,
methods based on models need to handle singularities in
the process of 3D information reconstruction. Such singu-
larities can come from the kinematics of the continuum
robot (for instance, rotation is ill-defined around the straight
configuration of the instrument) or from the image jacobian
which links instrument tip motion to its apparent motion in
the image. There are solutions to avoid such singularities,
but a specific technique should be designed, which may be
difficult to implement in cases where the available models are
erroneous. Therefore, the proposed approach is well adapted
for estimating backlash in situ.

The method also allows to take into account non uniform
backlash, which is generally the case as shown in figures 2
and 8. When identified, pure backlash can be compensated,
which can improve user experience during teleoperation.
If pose estimation can be obtained, it is possible to es-
timate proximal to distal position relation. Interestingly,
the proposed approach allows complementing the backlash
model, without changing it. Therefore, if pose estimation
turns out erroneous because of modeling or measurement
errors, the backlash compensation won’t be affected. This is
an important improvement over the method in [13], where
complete hysteresis estimation relies on pose estimation.
Indeed, simulations show that slight errors on the camera /
robot registration can have a large impact on the estimation
of backlash when relying on configuration variable recon-
struction (see Fig. 7).

As seen in figures 10, 11 and 12, errors remain, which
have several identified sources:

1) As expected, the estimation of fremain depends on 3D
position estimation, which is subject to modeling errors (non
uniform curvature of the robot, for instance).



2) By separating pure backlash and remaining non-linear
function, it is assumed that the system directly switches
from the pure backlash to the envelope function of the
hysteresis. However, it can be observed in Fig. 2 that smooth
transitions can exist. These transitions cannot be directly
modeled with the proposed approach because they would
require reconstructing a rate of change of the configuration
variable.

3) It is also assumed that backlash is symmetric. Complex
coupling effects in the motion transmission of the instrument
could create non symmetric backlash. This could be one
source of the errors observed in Fig. 10, zoom B.

4) The proposed approach mainly deals with quasi static
non-linearities. With the given setup, which relies on en-
doscopic images, it won’t be possible to measure dynamic
effects such as stick-slip, because the acquisition framerate
is too low. In an extension of the work, it could be possible
to try decreasing the effects of such dynamic non-linearities,
for instance by designing acceleration trajectories that limit
their appearance.

It should however be noted that these difficulties also affect
other techniques for hysteresis compensation relying on the
use of endoscopic images, and as shown in section V the
obtained results are satisfactory.

The motions of the guide of the instruments (the endo-
scope) are also impacted by its own non-linearities. While
our work mainly aimed at improving the control of the
instruments, which is of higher importance during surgical
stages, it could also be useful to compensate non-linearities
of the guide during navigation stages. The proposed approach
requires to see the motions of the continuum robot in images
in an eye-to-hand configuration, and therefore cannot be
directly applied to the eye-in-hand configuration of the endo-
scope. The proposed approach could possibly be extended to
estimate motion / absence of motion in such a configuration,
for instance using motion-compensated SLAM algorithms
[28]. This is however out of the scope of the current article.

Non-linearity estimation, prediction and compensation
were realized for free motions of the robot. Contacts would
impact the validity of the method. Therefore, it is mainly
aimed at non contact tasks, such as optical coherence to-
mography biopsy or laser dissection. As a future work, we
aim at adapting the proposed method to make it ”on-line”, i.e.
working during the actual use of the system. A first approach
would be to generate very small motions, just larger than the
actual backlash, when instruments are not moved by the user.
Another approach would be to rely on the motions generated
by the user.
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