
Supervised learning for Human Action
Recognition from multiple Kinects

Wang Hao, East China Normal University (ECNU), Chine
Christel Dartigues, Université Côte d'Azur,  UMR CNRS 7271 I3S, Nice

Michel.Riveill, Université Côte d'Azur,  UMR CNRS 7271 I3S & Equipe Inria MAASAI, Nice

1 Abstract

The research of Human Action Recognition (HAR) has made a lot of progress in
recent years, and the research based on RGB images is the most extensive. How-
ever, there are two main shortcomings: the recognition accuracy is insufficient,
and the time consumption of the algorithm is too large. In order to improve
these issues our project attempts to optimize the algorithm based on the ran-
dom forest algorithm by extracting the features of the human body 3D, trying
to obtain more accurate human behavior recognition results, and can calculate
the prediction results at a lower time cost. In this study, we used the 3D spa-
tial coordinate data of multiple Kinect sensors to overcome these problems and
make full use of each data feature. Then, we use the data obtained from multiple
Kinects to get more accurate recognition results through post processing.

2 Introduction

Human Action Recognition (HAR) is an active research topic in Computer Vi-
sion and a very popular and useful task in various fields. It especially plays an
important role in people’s daily life. Human fall detection systems are very often
needed for many people in today’s aging population including the elderly and
people with special needs such as the disabled, as fall is the main cause of injury-
related death for elderly people [1, 2]. Automatic detection of human fall is then
a key issue in health management systems. At the same time, HAR is also used
in smart home, security video surveillance security and Tele-immersion System.
Different approaches are used to build human fall detection systems, including
wearable based devices, non-wearable sensors, and vision-based system. Wear-
able based devices such as accelerometers and gyroscopes are highly preferred
by engineers and doctors [3, 4, 5]. However, methods based on those equipment
have some shortcomings due to the lack of understanding of context and the
ability to extract information features [6]. Wearable devices often generate too
many false alarms, and wearable devices can also cause inconvenience to peo-
ple’s lives, resulting in a reduced willingness for elderly equipment. There are
also sensor devices that do not need to be worn, installed in a room environment
such as floor vibration sensors. These non-wearable devices eliminate the trouble
of wearing, but it is still difficult to satisfy people on accuracy. Therefore, the
scheme based on visual devices such as cameras has become an applicable choice
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because it can acquire more human motion information and has a wide range
of detection. For these reasons, vision-based devices have higher accuracy in the
daily behavior classification of the human body. In the past, there were many
works based on vision-based devices for human action recognition. But due to
the influence of variations of people, illumination and viewpoint, activity phase
and occlusions, there will still be more false positives [7, 8, 9, 10].

The emergence of Microsoft Kinect has opened up new opportunities for solv-
ing these problems. The Kinect sensor combines a special infrared light source
to capture depth information. Meanwhile, Kinect’s SDK can generate human
skeleton data. RGB data can provide important features of the human body’s
appearance, but also has a larger range of acquisition. However, the calculation
of RGB data features always requires a lot of time, which is not well adapted
to the needs of daily life. To avoid this problem, we mainly use Skeleton data
and depth data, as it helps to more accurately identify human actions. Skele-
ton data is mainly composed of scalar vectors, and the calculation speed is thus
very fast. Kinect sensors are also limited by the measurement angle and distance
range, and they are also affected by noise: people may exceed the monitoring
range when falling, resulting in unsatisfactory action recognition. In order to
solve this problem, many studies consider multiple multiple Kinect to capture
human action from different angles and distances. We can then integrate the
data obtained for the final prediction results.The prediction is done thanks to a
learning algorithm. In our research, we developed a successful approach based
on Random Forest [11].

We will first discuss about existing HAR works and we will present the learn-
ing algorithm on which we based our research (Random Forest). Secondly, we
will present our methodology and we will present in a third part the dataset we
choose and our experiments.

3 Related Work

3.1 RGB-Based work

The academic community has rich research on human action recognition. We
mentioned solutions mainly for wearable devices, non-wearable environmental
sensors, and vision-based devices. We mainly discuss human body recognition
based on visual information of RGB cameras or Kinect cameras to obtain accu-
rate contour and depth information of the human body. Among all the existing
methods, extracting features using RGB image data is the most popular ap-
proach. The RGB camera is inexpensive, and it has also spawned many datasets
based on RGB images. Most of the methods based on RGB image detection of
human action first need to detect the human body area, draw a border of the
human body contour and then extract the behavior characteristics of the human
body in the border. The work in [7] proposed to use variations in silhouette
area that are obtained from only one camera. They use a simple background
separation method to acquire the silhouette and find that the proposed feature
is view-invariant. And the work in [8] used Support Vector Machine (SVM)
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for classification. The foreground human silhouette is extracted via background
modeling and tracked throughout the video sequence. The human body is repre-
sented with ellipse fitting. Then, the shape deformation quantified from the fitted
silhouettes is used as the features to distinguish different postures of the human.
Finally, they classify different postures via a multi-class SVM and a context-free
grammar-based method. The work in [12] tried to estimate 3D human pose from
a sequence of monocular images. This paper presents a Recurrent 3D Pose Se-
quence Machine(RPSM) to automatically learn the image-dependent structural
constraint and sequence-dependent temporal context by using a multi-stage se-
quential refinement. And get better results on Human3.6m [13] and HumanEva-I
dataset [14].

Joao Carreira, Andrew Zisserman used deep Convolutional Networks (Con-
vNets) in 2014 to identify human action in the video [9]. They attempted to cap-
ture the complementary information on appearance from static frames and mo-
tion between frames. A dual-stream ConvNet architecture with spatial and tem-
poral networks was proposed. Under the wired training data, ConvNet trained
on multi-frame dense optical flow can achieve excellent performance: 88% accu-
racy was obtained on UCF-101 dataset [10] and 59.4% accuracy on HMDB-51
dataset [15]. They did further work [16] based on this. The original model was
upgraded, and the 3D convolutional neural network can be constructed by com-
puting features from both spatial and temporal dimensions. The training was
re-trained on the new training set Kinetics Human Action Video dataset. The
result achieved 97.9% accuracy on UCF-101 dataset and 80.2% on the HMDB-51
dataset. The use of convolutional neural networks requires high hardware(GPU)
and extended training time. It needs to adjust parameters to get the best model.
The prediction accuracy may not be guaranteed after replacing new dataset.

3.2 Skeleton-based work

With the advent of the Kinect camera, the efficient RGB-D sensor provides a new
direction for human action recognition. In addition to RGB graphics, the Kinect
camera provides depth and skeleton information independent of lighting condi-
tions. In [17], the author used the depth pattern to extract human body image
boundaries. Then they calculated the curvature dimension spatial characteristics
of the human contour and applied the extreme learning machine to classify the
different actions. The work in [18] used the hierarchical recurrent neural network
(RNN) to perform motion recognition on 3D skeleton data. They divided the hu-
man skeleton into five parts according to the human physical structure and then
separately feed them to five RNN subnets. They get excellent performance, but
this method encounters overfitting problems. In [19], the authors chose a set of
key-pose-motifs for each action class. They classified a sequence by matching it
to the motifs of each class and selecting the class that maximizes the matching
score. The work in [20] used an angular representation of the skeleton joints to
describe each pose. They used those descriptors to identify key poses through a
multi-class SVM. The gesture is then labeled from the key pose sequence with
a decision forest.
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For the fall detection problem, there are more specific options to choose. Two
fall detection algorithms are proposed in [21] . One determines whether a drop
has occurred by a single frame. The second uses time-series data to distinguish
falls and slowly lay down on the floor. In [22] , they tried to explore secondary
features (angle and distance), focusing on the correlation between joints and the
boundary of this correlation. The authors mainly focused on the angle of the
joints on the legs, and the distance from the floor to several important joint
points. The algorithm is simple, but the prediction results are unstable due to
the quality of joint tracking. Author of [23] considered that Kinect could not
track all joints correctly. They defined and computed three features (distance,
angle, velocity) on only several vital joints. Then they used SVM to analyzed
ten specific actions with good results.

Trying to combine RGB data with skeleton data is also an effective method.
There is a novel method in [24] which uses skeleton data to obtain the 3D
bounding box of the human body. It then measures the velocity based on the
contraction or expansion of the width, height, and depth of the 3D bounding box.
The authors of [25] creatively installed the camera on the ceiling. The human
head-to-ceiling distance is an important feature that combines the application
of the accelerometer with the K-Nearest-Neighbour (KNN) classifier for identifi-
cation. The work in [26] used a tri-axial accelerometer to indicate the potential
fall as well as to indicate whether the person is in motion. If the measured ac-
celeration is higher than an assumed threshold value, the algorithm extracts the
skeleton, calculates the features and then executes the SVM-based Classifier to
authenticate the fall alarm. A similar work in [27] is also using KNN, where an
accelerometer is used to indicate a potential fall, and the Kinect sensor is used
to authenticate an eventual fall alert. Only the depth image captured during the
possible fall is processed.

It is also quite skillful to know how to combine the information obtained
by multiple cameras. Earlier fusion and late fusion are mentioned. The work in
[28] tried to use a new cross-view action representation. They propose a method
effectively express the geometry, appearance, and motion variations across mul-
tiple viewpoints with a hierarchical compositional model. They used 3D skeleton
data acquired from Kinect to train, Northwestern-UCLA Multiview Action3D
Dataset and dataset MSR-DailyActivity3D Dataset [29]. Then they tested the
model with unknown 2D video. They succeeded to use the cross-view to improve
the accuracy and robustness of action recognition.

We mainly focus on the work in [30] using the combination of RGB and
skeleton data. They installed seven Kinects with different angles in the room.
They used the skeleton data to obtain the vertical velocity and the height of the
human body from the ground. If the Kinect tracking fails and does not generate
enough skeleton data, the features are extracted from the continuous RGB data.
The human action recognition is performed based on the SVM classifier. Finally,
the results of the seven Kinect data processing are combined. This method also
achieved an accuracy of 91.5%, but we can observe two main problems: pro-
cessing RGB images still require a lot of calculations and skeleton data are not
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used enough. In many cases, the use of RGB images tends to cause users’ con-
cerns about privacy issues. All those studies show that using skeleton instead
of purely RGB data is a good solution. Combining the skeleton with another
classifier such as the Random Forest also shows interesting results [11] on the
MSR-DailyActivity3D Dataset. In this study the vector representing a moment
in the flow of the data is composed of all the coordinate of the joints of the
skeleton and all the distances and angles between the joints. Several consecutive
moments are combined in one vector in order to fully describe an action. Thanks
to all those works and especially the last one, we choose in this study to consider
Random Forest as main classifier for our work.

4 Technical overview

In this section, we describe the basic concepts and characteristics of Microsoft
Kinect camera and explain the skeleton data generated by this equipment. We
then explain the principle of the Random Forests and explai why they are suit-
able for our human behavior recognition task.

4.1 Microsoft Kinect

Kinect is a motion-sensing input device by Microsoft for the Xbox360 video game
console and Windows PCs. Kinect with full skeleton mode can track a person’s
actions and generate 20 joints as the skeleton data [31]. Each joint include the
value of (x,y,z) in 3-dimensional space. Figure 1 shows the 20 joints of the human
body. Our work uses the data generated by full skeleton mode.

Fig. 1. 20 joints generated by Kinect

The skeleton data obtained from Kinect is 20 key joints of the body. Each
joint is a 3- dimensional vector. The data volume of 20 joints is not enough to
support the requirements of training data for machine learning algorithms. We
refer to the method in [26] to calculate angles, distances, and other information
through different joints. In this way, more human body motion features can be
extracted, and the amount of data is greatly enriched, which is very helpful for
the classification algorithm.
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4.2 Random Forest

Random Forest have been first formally introduced in [32]. In this paper, Leo
Breiman define a Random Forest as a multi-classifier composed of a set a deci-
sion trees.The method defined by Breiman is called Forest-RI (Random Forest
- Random Input) and is still a very popular approach.

In our work, we use the R-package Random Forest v4.6-14 to implement the
Random Forest. This package implements Breiman’s Random Forest algorithm
(based on Breiman and Cutler’s original Fortran code) for classification and
regression.

5 Methodology

In this section, we present our approach of classification of HAR from a multi-
Kinect dataset with Random Forest. We first describe the vector created from
the raw dataset. We then describe our innovative approach based on two im-
portant points: the cutting of the skeleton into five significant subparts and the
development of a hierarchical Random Forest algorithm. We will end this part
by describing how we managed the multi-views data.

5.1 Feature vector

Since we only use 3D skeleton data, we first consider 20 joints (characterized by
(x, y, z) coordinates) in a three-dimensional vector. This vector doesn’t contain
enough data to fully classify different actions. Similarly to the work done in
[11], we have augmented our feature vector by compute and add all possible
distances/angles between all possible pair/triplet of joints. This process ended
to a feature vector of 3610 values: 3420 angle values followed by 190 distance
values.

Fig. 2. Distance and Angle of skeleton joints

As shown in Figure 2, a distance data can be generated between any two
joints, and three angle vectors can be calculated between any three joints. This
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feature vector will be represented as FV in this paper. Each frame can generate
one-row FV like Figure 3.

Fig. 3. Feature Vector of Angles and Distances

At the same time, the action of the human body is a dynamic process; we
need to acquire the temporal features of an action at the same time. For each
frame with time index t, we extract the pairwise relative position features by
taking the difference between the position of joint at time t and that of others
frame with time index t+1:

Diff2t = FV t+1 − FV t (1)

This new feature Diff2t provides some temporal information by varying
the angle and distance between two consecutive frames. But calculating the
difference between two adjacent frames is not robust. We need to rich temporal
information. In the work of [33, 34], there is a Spatial Pyramid approach. We set a
10-frame sliding window, and calculate the difference between different number of
frames, 2,5 and 10 frames. Then we get the Diff5t Diff5M t Diff10t represent
the action movements in 5 and 10 frames.

Diff5t = FV t+4 −
i=t+3∑
i=t

FV i (2)

Diff5M t = FV t+8 −
i=t+7∑
i=t+4

FV i (3)

Diff10t = FV t+9 −
i=t+8∑
i=t

FV i (4)

In a 10-frame sliding window, the differences between each pair of consecutive
poses will be sum up into two Diff5 feature vectors, one from t to t+4 and another
one from t+5 to t+9. In order to preserve the coverage we had with the Diff2
feature vector and the overlapping sliding window. We also define a Middle Diff5
feature vector by calculating the middle 5 position and averaging the Diff2 at
these positions [11]. The Figure 4 shows the consistency of each Diff feature
vector.
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Fig. 4. Sliding Window and Definition of Diff2,Diff5,Diff5M,Diff10 Feature Vector

Using 10 frames we can obtain 9 Diff2, 2Diff5, 2Diff5M and 1 Diff10 features.
At last, we can get 46930 values for every 10 frames. We will use this FV-46930
as the input of the Random Forest. The acquisition rate of CMDFALL is 20 Hz.
Therefore, the Kinect camera will capture 20 frames in one second. We set 10
frames as the sliding window, which is reasonable because most fall action in the
dataset are completed in 0.5 seconds.

5.2 Decompose whole body data into subparts

Training a Random Forest with whole-body data points does not necessarily yield
good results because some human actions do not lead to whole-body movements.
Moreover, this leads to very long computation time. In order to reduce prepro-
cessing time and learning time we decompose the human body into five distinct
subparts: left arm, right arm, left leg, right leg and the upper of the body. On our
server machine (2 Processors Intel Xeon X5675 at 3,06GHz and 24GB RAM),
calculating the feature vectors (distances and angles) by whole body (20 joints)
from more than 400 files will take more than 24 hours. In subpart mode, it only
consumes few minutes.

For each subpart of the body, a Random Forest is build. Each subpart con-
tains 4 joints, and we also calculate the distances and angles. The 4 joints could
generate a feature vector with 6 distance values and 12 angle values. For each
subpart-Random Forest, we calculate a prediction score and normalize the five
obtained scores to get a percentage of the prediction. Further, we connect the
prediction percentage generated by each subpart-Random Forest with the dis-
tances/angles vector to form a new feature vector (FV-190) with 190 values.
Then we use the FV-190 to build a new Random Forest. The new feature vector
is shown in Figure 5.

Figure 6 shows the entire process of Hierarchical Random Forests. At first, we
decompose the human body into five subparts. Secondly we use partial skeleton
data to build five subpart-Random Forests and obtain five prediction scores.
We then compose the new feature vector by concatenating the prediction scores
obtained in the preceding step and the distances/angles feature of each subpart.
A new Random Forest is finally built thanks to this new vector to obtain the
final decision result.
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Fig. 5. New feature vector with 190 values

Fig. 6. Process of hierarchical random forest

5.3 Multi-views skeleton data

For this study we restricted ourselves to 3 Kinect cameras installed from 3 dif-
ferent angles: skeleton data of the same action are recorded by 3 Kinect cameras
at the same time. We can easily generalized to more than 3 Kinects. Integrating
the 3 views skeleton data can help us to improve the precision of action recogni-
tion. We provide three strategies and validated the predictions of these different
strategies through experiments.

Strategy 1: Merge 3 Kinect vectors into 1 vector and build 1 RF
In our first strategy, we consider the feature vectors generated by each Kinect

and we merge those 3 vectors into one. We then get a bigger feature vector with
140790 values. In this way each input sample is characterized by more features.
We use all the obtained vectors for our dataset and use them to build a single
Random Forest.

Strategy 2: Merge 3 Kinect vectors in 3 vectors and build 1 RF In this strat-
egy, also called early fusion strategy, we start with the three feature vectors
generated each Kinect and we use all of them to build only one dataset. This
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dataset is then used to build a single Random Forest. In this way, multi-views
only able to add the training samples.

Strategy 3: Consider 3 Kinect vectors and build 3 RFs The last strategy, also
called late fusion strategy, consists in building a dataset for each Kinect specific
vector. Each dataset is then used to build a Random Forest and the decisions of
each RF are then combined.

6 Experiment

We test different steps of our algorithm on the CMDFALL dataset and we com-
pared our result to state-of-art methods in [30].

6.1 Dataset & Setup

We use CMDFALL as the data set for our experimentation to test our approach.
Calculating the distance and angle of the skeleton and calculating the difference
between consecutive frames requires a lot of calculations. We thus perform oper-
ations on a server. The hardware configuration is: Dell PowerEdge R710 Rack, 2
Processors Intel Xeon X5675 at 3,06GHz, 6 Cores, 12MB cache memory, 24GB
RAM DDR3-1333MHz, 2 hard disks Hot Plug 600GB SAS 6Gbit/s 15000tr/min
with RAID 0 for performance. At our data scale, building the Random Forest
does not need high hardware requirements. Building a Random Forest on the
subparts of the skeleton takes about a few minutes, and it takes about one to
two hours to build a Random Forest of the whole body skeletons.

6.2 Whole body skeleton

We test the whole-body mode at first. We use the 20 joints skeleton data to
build the model and fuse the data from the three cameras in the different ways
corresponding to our three strategies.

Strategy 1: Merge 3 Kinect vectors in 3 vectors and build 1 RF In the first
method, we merged the data acquired by the three Kinects into a single vector.
Each Kinect’s data for each frame generates a vector of 46,930 values that are
combined into a vector of 140,790 values. 5 and 10 are used as parameters of the
sliding window, respectively. Since the calculation time is too long, we do not
calculate the number of sliding windows smaller than 5. At the same time, we
used different number of trees for the forest: 500, 1000 and 1500. The specific
results are shown in Table 1.

tree number 500 1000 1500 2000

Sliding window 10 37.43% 36.05% 33.84% 39.49%
Sliding window 5 29.43% 28.14% 27.98% 27.30%

Table 1. Class error rate of 3 Views in one row
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Result in Table 2 shows there are not obvious improvement for class classi-
fication accuracy. But precision of detection the fall action improves a lot. Only
for fall action class, the precision is about 90

tree number 500 1000 1500 2000

Sliding window 10 35.23% 32.65% 31.06% 35.88%
Sliding window 5 29.58% 27.65% 27.78% 25.58%

Table 2. Merged Class error rate of 3 Views in one row

Strategy 2: Merge 3 Kinect vectors in 3 vectors and build 1 RF In the second
method, we treat all the views side by side. Three batch of skeleton data from
different Kinects will be used as input samples together. Similarly, we get the
following results in Table 3. There is no obvious improvement in the results, even
worse. According to the analysis of the classification results, the same actions
from different views are not easily classified into same class. Explain that the
feature values of the actions captured by different views obtained by our method
have large differences. We believe that there should be better means to obtain
more relevant feature from different views.

tree number 500 1000 1500 2000

Sliding window 10 40.52% 39.10% 39.83% 38.78%
Sliding window 5 38.26% 36.99% 37.54% 25.58%

Table 3. Class error rate of 3 Views in 3 rows

Strategy 3: Consider 3 Kinect vectors and build 3 RFs In the third method,
we build three independent Random Forests using data from different Kinects.
After the test data input, we add the predicted scores of the three Random
Forest outputs, and the highest score is the final result. The final classification
results are shown in the Table 4. The superposition of their respective prediction
results from 3 independent Random Forests, did not significantly improve the
precision rate. According to the detailed classification results, in some cases, the
3 Random Forests will be wrong in predicting the same class.

tree number 500 1000 1500 2000

Sliding window 10 34.13% 32.28% 37.64% 36.43%
Sliding window 5 28.23% 27.64% 26.12% 28.04%

Table 4. Class error rate of 3 Views defining 3 Random Forests
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6.3 Subpart body & Hierarchical Random Forest

Using whole body skeleton data does not get ideal result. In order to achieve
higher accuracy, we try to break down the human body into 5 parts, to build
the five sub-Random Forests separately and to integrate the prediction results
and combine them to build a new Random Forest (Hierarchical Random Forest).
We tested each with a sliding window of 10. Number of trees in random forest
is 500. We randomly choose X% samples as training set and (1-X) % as testing
set. Using training set to define the Hierarchical Random Forest and input the
testing set to the global Random Forest to get the prediction result. The results
are much better than for the whole body. The result is shown in Table 5. We set
X as 80, 60 and 40. Kinect3, Kinect4 and Kinect5 means the data is captured
by the Kinect cameras 3, 4 and 5.

Training Percent 80% 60% 40%

Kinect3 99.10% 97.08% 95.40%
Kinect4 99.55% 97.60% 97.40%
Kinect5 99.10% 96.81% 95.82%

Table 5. Classification precision of Hierarchical random forest

When using 80% dataset as training set, we could get precision over 99%
in individual view. And our method is simpler and faster in computing, using
only skeleton data. It consumes about 5 minutes to calculating feature vector
(distances and angles) from 418 files, each files. Building random forest will take
less than 5 minutes.

7 Conclusion

This paper proposes a new human action detection method that uses only three-
dimensional skeleton data. Without the using RGB images or motion velocity
information collected by other wearable sensors such as accelerometer and gyro-
scopes. Using only skeleton data can reduce the amount of computation, while
also avoiding the troubles of wearing devices. We constructed a Hierarchical
Random Forest with five subparts of the whole body skeleton decomposition.
Subpart mode effectively reduce the time consumption of traditional algorithms
and Hierarchical Random Forest greatly improve the precision of classification.
We get the most static features by calculating all possible angles and distances
between each joint. The temporal characteristics are extracted by calculating
the difference directly between adjacent frames. We tested our approach on the
CMDFALL data set and the results are satisfactory for the whole body but they
are better with the subparts combined with the Hierarchical Random Forest,
with an average classification precision 98.5% on CMDFALL.
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