
HAL Id: hal-02869865
https://hal.science/hal-02869865v1

Preprint submitted on 16 Jun 2020 (v1), last revised 29 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversibility and composition of rewriting in hierarchies
Russ Harmer, Eugenia Oshurko

To cite this version:
Russ Harmer, Eugenia Oshurko. Reversibility and composition of rewriting in hierarchies. 2020.
�hal-02869865v1�

https://hal.science/hal-02869865v1
https://hal.archives-ouvertes.fr


Reversibility and composition of rewriting in
hierarchies

Russ Harmer[0000−0002−0817−1029] and Eugenia Oshurko[0000−0003−1218−8170]

Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342 LYON Cedex 07, France
{russell.harmer,ievgeniia.oshurko}@ens-lyon.fr

Abstract. In this paper we study how SqPO rewriting of individual ob-
jects and hierarchies of objects can be reversed and how the composition
of rewrites can be constructed. We introduce the notion of a rule hierar-
chy, study how such rule hierarchies can be applied to object hierarchies
and analyse the conditions under which this application is reversible.
We then present a theory for constructing the composition of consecu-
tive hierarchy rewrites. We further illustrate how the reversibility and
composition of rewriting can be used to design an audit trail for both in-
dividual graphs and graph hierarchies. This provides us a compact way
to maintain the history of updates of an object including its multiple
versions. The main application of the designed framework is an audit of
updates to knowledge represented with hierarchies of graphs. The pro-
totype system for transformations in hierarchies of simple graphs with
attributes is implemented as a part of the ReGraph Python library.

1 Introduction

In this work we present a mathematical framework for building an audit trail—
a traceable history of sesqui-pushout (SqPO) rewrites [3] operating on individual
objects and hierarchies of objects from appropriately structured categories. A
transparent audit trail provides insight into the history of object transformations
and allows us to revert to an arbitrary point in this history. The latter feature
is extremely useful, when, for example, trying to fix an erroneous transforma-
tion. Moreover, such an audit trail provides means for efficient accommodation
of multiple versions of the same object arising, for example, as the result of
inconsistent transformations.

An audit trail system with the desired capabilities heavily relies on: (1) the
existence of an efficient semantic representation of object transformations (or
deltas), which frees us from the necessity to store the state of the object at each
point of its transformation history; (2) the reversibility of transformations, which
guarantees that any sequence of tranformations can be ‘undone’; (3) the existence
of sound means for composing a pair of successive transformations, which allows
us to efficiently store and switch between different versions of the same object.
In this work we formulate the three above-mentioned ingredients with respect
to both individual objects (Section 2) and hierarchies of objects (Section 3), and



discuss how these ingredients can be used to construct an efficient audit trail
(Section 4).

The main application of interest to us is an audit trail system for the knowl-
edge representation (KR) framework based on hierarchies of graphs presented in
[7]. We would like to use this system to record the history of predominantly small
localized updates of a large knowledge corpus represented with graphs and graph
hierarchies, where storing the corpus at each point in the history is not feasible.
Moreover, we would like to design means for maintaining multiple versions of
the corpus, crucial when accommodating different versions of knowledge that,
for example, correspond to different view-points of knowledge curators or some
intrinsic knowledge conflicts (e.g. contradicting experimental results, alternative
hypotheses). The main use cases of audit trails for KRs based on hierarchies of
graphs include version control for updates in schema-aware graph databases pre-
sented in [2] and updates to the knowledge corpora provided by the bio-curation
framework KAMI [6].

Related work

While the reversibility of SqPO rewriting is a well-studied problem [4], the com-
position of consecutive (and not necessarily sequentially independent) SqPO
rewrites is a far less studied subject. The construction of such composition was
described for the double pushout (DPO) approach (see D-concurrent production
in [5]), the SqPO approach, where rules are linear [1] and where the right-hand
side of the first applied rule is exactly the left-hand side of the second rule [9].
In this work we present such a construction for two consecutive applications of
general SqPO rules, where the first rewriting is required to be reversible. This
construction is inspired by [5] and adapted to SqPO rewriting. For the composi-
tion to be well-defined we require the underlying category to be adhesive [8]. The
notion of a rule hierarchy and the questions of the reversibility and composition
of hierarchy rewrites represent a novel direction that generalizes SqPO rewriting
of individual objects to hierarchies of objects [7].

Finally, the main application of interest to us, a transformation audit trail,
is closely related to the version control systems (VCSs) used in software devel-
opment. While such systems typically provide control over different versions of
software source code, our audit trail provides such control for different versions
of a graph or a graph hierarchy. Similarly to VCSs, the transformation audit
trail avoids maintaining the state of an object at the time of every transforma-
tion by keeping only its current state together with a compact representation of
a history of transformations. Moreover, by using a mechanism similar to delta
compression in VCSs, such audit trails allow the maintaining of multiple versions
of the same object and switching between these versions.

2 Preliminaries

In this section we briefly present some useful notions that serve as preliminaries
for the rest of this paper and allow us to constuct the desired audit trail for SqPO



rewiriting of individual objects. We introduce SqPO rewriting, its reversible
version and add the third audit trail ingredient by presenting in Section 2.2 how
the composition of two consecutive SqPO rewrites can be constructed when the
first rewrite is reversible. Finally, we conclude this section by presenting the
principal KR model of interest, a hierarchy of objects.

2.1 SqPO rewriting

L P R

G G− G+

(a)m

r−

m−

r+

(b) m+

g− g+

(1)

SqPO rewriting is an approach for abstract
deterministic rewriting in any category with
pushouts (POs) and (final) pullback comple-
ments (PBCs) over monos [3]. SqPO rewriting
allows us to perform the operations of addi-
tion, deletion, cloning and merging of elements, where by element we mean any
concrete constituent of an object in a category of interest (such as nodes and
edges in categories of graphs). Rewriting of an object G is defined by a rule
r : L←r−−P −r+→R and its instance given by a mono m : L� G. Application
of r is performed in two phases as in Diagram 1: (a) an object G− is constructed
as the final PBC of r− and m and (b) the final result of rewriting G+ is con-
structed as the PO of m− and r+. An arbitrary rewrite of an object in a category
of interest can be decoupled into two phases: the restrictive rewrite (Diagram 1a)
performing deletion and cloning of elements and the expansive rewrite (Diagram
1b) performing merging and addition of elements.

Transformations of individual objects through SqPO rewriting can be effi-
ciently represented with corresponding rewriting rules and their instances. How-
ever, such rewriting may introduce some side-effects, i.e. graph transformations
not explicitly specified by the underlying rules and instances. The nature of these
side-effects depends on the category in which we are working. For example, in
both simple and non-simple graphs, some edges not matched by the left-hand
side of the rule can be removed as a side-effect of a node removal. Due to such
side-effects, having applied a rewriting rule to an object, we can no longer restore
this object by simply looking at the applied rule and its instance. The reversible
variant of SqPO rewriting that does not introduce side-effects was presented in
[4]. It corresponds to the scenario where the SqPO rewriting diagram can be
read both forwards and backwards. More formally:

Definition 1. An SqPO rewriting corresponding to the application of a rule r :
L←r−−P −r+→R through a matching m : L� G as in Diagram 1 is reversible,
if the square (a) is also a PO and the square (b) is also a PBC, i.e. P�m−→
G−−g+→G+ is the final PBC of r+ and m+. We call r−1 : R←r+−P −r−→L
the reverse of r.

2.2 Composition of SqPO rewriting

Let r1 : L1 ← P1 → R1 be a rewriting rule applied to an object G1 through
an instance m1 : L1 � G1 and let G2 be the result of application of this rule



(corresponding to Diagram 2). Let r2 : L2 ← P2 → R2 be a rule applied to the
resulting object G2 through an instance m2 : L2 � G2 (as in Diagram 3).

L1 P1 R1

G1 G−1 G2

m1 m−1

r−1 r+1

m+
1

g−1 g+1

(2)

L2 P2 R2

G2 G−2 G3

m2 m−2

r−2 r+2

m+
2

g−2 g+2

(3)

L P R

G1 G	1 G3

m m−

r+ r−

m+

g− g+

(4)

Given these two consecutive rule ap-
plications, we would like to find a rule
L←r−−P −r+→R and an instance m : L �
G1 that, when applied to G1, directly pro-
duces the object G3, i.e. such that Diagram
4 is an SqPO diagram. Apart from being well-structured for SqPO rewriting,
construction of such a composed rule will require from the category in which we
are working to to be adhesive [8].

Let us first proceed by constructing the pullback (PB) R1←x�D�y→L2

from m+
1 and m2. Note that, because PBs preserve monos, arrows x and y are

monos. We will call the span given by this PB the overlap of R1 and L2 given
their matching inside G2, and we will denote it with o. Intuitively D indicates
whether the two rule applications are sequentially independent, i.e. the two rules
operate on disjoint parts of G2 [4]. When D is non-empty, the first rule can
produce elements that are ‘consumed’ by the second rule, i.e. for the second rule
to be applied the first one should have been applied.

D

R1 L2

H

G2

x y

rH1

m+
1

m2

lH2

mH

(5)

The PO R1�l
H
1→H←lH2�L2 from x and y

as in Diagram 5 constructs the object H that
can be seen as the union of two patterns R1

and L2 given their overlap. By the universal
property (UP) of POs, there exists a unique
homomorphism mH : H → G2 that renders
the diagram commutative.

This homomorphism gives us the PO factorization of the PB of m+
1 and m2.

Because m+
1 and m2 are monos, by adhesivity, mH is also a mono (see Theorem

5.1. in [8]). Using the object H we now construct two objects PH1 and PH2 given
by the final PBC P1�p

H
1→PH1 −h+

1→H to r+
1 and rH1 and P2�p

H
2→ PH2 −h−2→H

to r−2 and lH2 as in Diagrams 6 and 7.

P1 R1

PH1 H

r+1

pH1 rH1

h+
1

(6)

L2 P2

H PH2

lH2

r−2

pH2

h−2

(7)

For the first PBC to be ‘meaningful’, we need to make an important assump-
tion that the application of r1 is reversible. Having made this assumption, the
object PH1 can be interpreted as the result of reverting the rewrite specified by
r+
1 on H. On the other hand, the second PBC simply applies the rewrite spec-



ified by the arrow r−2 to H. It is easy to demonstrate that, by the UP of final
PBCs, there exist unique arrows mH

1 : PH1 → G−1 and mH
2 : PH2 → G−2 that

render Diagrams 8 and 9 commutative. Moreover, mH
1 and mH

2 are monos.

P1

PH1 P1 R1

G−1 G2

r+1

IdP1pH1

mH◦h+
1mH1

r+1

m+
1

m−1

g+1

(8)

P2

L2 P2 PH2

G2 G−2

r−2

IdP2 pH2

m2

r−2

mH◦h−2 mH2

m−2

g−2

(9)

To understand how the non-reversibility of the first rule prevents us from
finding a ‘meaningful’ PH1 consider the following example.

Example 1. Let P1 → R1 in Figure 1a represent an expansive phase of the first
rewrite applied to G1 (as in the right-most square in Diagram 2). It is easy to
verify that this rewrite is not reversible, i.e. we cannot restore G−1 by applying r+

1

through m+
1 (the depicted square does not form a PBC). Let L2 in Figure 1b be

the left-hand side of the second rule, applied to the resulting object G2, then this
figure corresponds to Diagram 5, where H represents a union of R1 and L2 given
their overlap. Reverting the rewrite specified by r+

1 on H gives us the object PH1
depicted in Figure 1c, which splits the merged circle and triangle. This splitting
reconnects the black square to both circle and triangle which prevents us from
constructing a match PH1 � G−1 necessary to obtain the desired composition.

P1 R1

G−
1 G2

r+1

m+
1

(a)

D

R1 L2

H

G2

(b)

P1 R1

G−
1 G2

HPH
1

r+1

×

(c)

Fig. 1: Composition with an irreversible rule.

Next, let us construct two POs: L1�l
H
1→ L←h−1 −PH1 from r−1 and pH1 and

R2�r
H
2→ R←h+

2−PH2 from r+
2 and pH2 . The first PO reverts the rewrite of PH1

specified by r−1 , and the second performs the rewrite of PH2 using r+
2 and pH2 .

The constructed object L represents the result of reversing the transformation
of the pattern PH1 specified by r−1 and the instance pH1 , precisely because the
application of r1 is reversible. By the UP of these POs we can construct unique
matches m : L→ G1 and m+ : R→ G3.



Finally, to construct the rule composition, we find the PB PH1 ←p′−P −p′′→PH2
from h+

1 and h−2 . The resulting rule corresponds to the span
r : L←h−1 ◦p′−P −h+

2 ◦p′′→R. We will refer to it as the composed rule given the
overlap o and write r = ⊗(r1, o, r2).

Theorem 1 (Synthesis). In adhesive categories, if rewriting given by r1 is
reversible, application of the rule r given by ⊗(r1, o, r2) with the instance m :
L� G1 produces the object G3, i.e. Diagram 4 with r− = h−1 ◦p′ and r+ = h+

2 ◦p′′
is an SqPO diagram.

Proposition 1. In adhesive categories, the composition of two reversible rewrites
is a reversible rewrite.

2.3 Hierarchies and SqPO rewriting in hierarchies

A hierarchy of objects in a category C is a directed acyclic graph (DAG) whose
nodes are objects and whose edges are arrows from C such that all paths be-
tween each pair of objects are equal [7]. We refer to the latter condition as the
commutativity condition. In the rest of this paper we assume that we are work-
ing in a fixed category C that has an appropriate structure for SqPO rewriting.
For the commutativity of a hierarchy to be maintained, an SqPO rewrite of an
object situated inside the hierarchy may require updates to other objects and
arrows called propagation.

The main model of interest to us operates on hierarchies of (simple) graphs
and uses both hierarchy objects and arrows to represent knowledge. Hierar-
chies provide a powerful formalism for representation and update of fragmented
knowledge on different interrelated abstraction levels. In this model, an edge of a
hierarchy associated to an arrow h : G→ T is often interpreted as typing, i.e. the
graph T defines the kinds of nodes and edges that can exist in G. In this context,
the commutativity condition guarantees that the representation of knowledge on
different abstraction levels is consistent. The propagation framework presented
in [7] allows us to transform individual graphs inside a hierarchy and perform the
co-evolution of its different layers, which guarantees the consistency of knowledge
at all times.

When the knowledge represented in a hierarchy is frequently updated by
potentially different curators, it is often desirable to maintain the history of
updates and be able to store multiple versions of knowledge at the same time.
The design of a mathematical system providing such features, thus, constitutes
the principal motivation for this work, and this system relies on the existence
of a compact representation of object transformations. The semantics of SqPO
rewriting allows us to efficiently represent object transformations using rules.
To be able to build and study such a representation for transformations in hi-
erarchies let us briefly formulate the semantics of rewriting and propagation in
hierarchies (formal details can be found in [7]).

Rewriting an individual object situated at a node of a hierarchy affects the
objects associated at its ancestor and the descendant nodes, while the rest of



the objects stay unchanged. The restrictive phase is propagated backwards to
all the objects typed by the target of rewriting. For instance, let G be an object
corresponding to an ancestor of an object T in a hierarchy with an associated
arrow h : G → T . A restrictive rewrite performing deletion and cloning of
elements in T induces propagation to instances of these elements in G. The
expansive phase is propagated forward to all the objects typing the target. For
instance, for h : G → T as before, an expansive rewrite performing addition
and merging of elements in G induces propagation to T affecting the types of
these elements. The commutativity of the updated hierarchy is guaranteed by
the composability conditions imposed on the performed propagations.

3 Rule hierarchies

In this section we formulate the notion of a rule hierarchy that serves us as
a compact representation of coupled transformations of objects in a hierarchy.
We describe how a rule hierarchy can be applied to the corresponding hierarchy
of objects through specified instances and study the side-effects introduced by
the application of a rule hierarchy. Such side-effects, apart from the side-effects
introduced by SqPO rewriting on objects, may include some implicit changes to
the homomorphisms in the hierarchy. Thus, we formulate the conditions under
which a given application of a rule hierarchy is reversible. Finally, we present how
consecutive rewrites of a hierarchy can be composed. In this section we consider
SqPO rewriting rules operating on objects from C. Such rules are spans formed
by objects and arrows from C.

Definition 2. A rule homomorphism f from r1 : L1←r−1 − P1−r+1→R1 to r2 :
L2←r−2 − P2−r+2→R2 is given by three arrows λ : L1 → L2, π : P1 → P2 and
ρ : R1 → R2 from C such that λ ◦ r−1 = r−2 ◦ π and r+

2 ◦ π = ρ ◦ r+
1 .

Using rules as objects and rule homomorphisms as arrows, we obtain the
category of rules Rule[C] over the category C.

Definition 3. A rule hierarchy is a hierarchy of objects in the category of rules.

Let H be a hierarchy of objects in C and R be a hierarchy of rules operating
on objects in C both defined over the same DAG G = (V,E ⊆ V × V ). We
refer to such G as the skeleton of H and R. For the sake of simplicity, in the
rest of this section we will assume that we are working on a fixed pair (H,R)
defined over the same skeleton. As a short-hand, for every node v ∈ V we will
denote the object associated to v in H with Gv and the rule associated to v in
R with rv : Lv←r−v −Pv−r+v→Rv. For every edge (s, t) ∈ E we will denote the
associated homomorphism in H as h(s,t) and the arrows constituting the rule
homomorphism in R as λ(s,t), π(s,t) and ρ(s,t).

Definition 4. An instance of R in H is given by a function I : V → Monos(C)
that associates every node of the skeleton to an instance of the corresponding rule
from R in the corresponding object from H, i.e. I(v) : Lv � Gv for all v ∈ V .
For every node v ∈ V we will denote the instance I(v) as mv.



Definition 5. R is applicable to H through an instance I, if for any pair of
nodes s, t ∈ V such that (s, t) ∈ E:

– h(s,t) ◦ ms = mt ◦ λ(s,t), i.e. their in-
stances commute;

– if G−s and G−t are the results of the re-
strictive phase of rewriting given by the
final PBC of r−s and ms, and the fi-
nal PBC of r−t and mt respectively, then
there exists a unique h−(s,t) : G−s → G−t
that renders Diagram 10 commutative.

Ls Ps

Gs G−s

Lt Pt

Gt G−t

ms

r−s

m−s π(s,t)

h(s,t)

s−

h−
(s,t)

λ(s,t)

mt

r−t

m−t

t−

(10)

Remark 1. Observe that, if the left face in Diagram 10 is a PB, R is always
applicable to H as the unique arrow h−(s,t) exists by the UP of final PBCs.

To rewrite H using the rule hierarchy R, applicable through an instance
I, for every node of the skeleton we simply apply the associated rule to the
associated object through the instance specified by I. To restore the arrows of
H, for every edge (s, t) ∈ E, we use the applicability condition and the UP of
POs as follows. Let the back and the front faces of the cube in Diagram 11 be two
SqPO diagrams corresponding to the above-mentioned rewriting of the objects
Gs and Gt respectively. First of all, by the applicability of R given I, there exists
a unique arrow h−(s,t) such that h(s,t)◦s− = t−◦h−(s,t) and h−(s,t)◦m−s = m−t ◦π(s,t).

This enables us to use the UP of the PO G+
s and show that there exists a unique

arrow h+
(s,t) that renders Diagram 11 commutative.

Ls Ps Rs

Gs G−s G+
s

Lt Pt Rt

Gt G−t G+
t

ms

r−s

m−s

r+s

ρ(s,t)m+
s

h(s,t)

s−

h−
(s,t)

s+

h+
(s,t)

λ(s,t)

mt

π(s,t)

r−t

m−t

r+t
m+
t

t− t+

(11)

Therefore, the introduced notion of a rule hierarchy can be used as a com-
pact representation of coupled updates in hierarchies of objects. Rules describe
tranformations of hierarchy objects and rule homomorphisms allow us to restore
homomoprhisms between them. The commutativity condition imposed on the
rule homomorphisms in a hierarchy guarantees that their application results in
a valid hierarchy of objects.

3.1 Expressing rewriting and propagation in hierarchies

In this subsection we will briefly discuss how the transformations of objects
and arrows in a hierarchy H induced by a rewrite of an object G with a rule



r : L←r−−P −r+→R through m : L� G can be represented as a rule hierarchy
and its instance. Recall that, upon rewriting of an object in a hierarchy, the
objects associated to ancestors and descendants of the origin of rewriting are
updated according to the framework of backward and forward propagation [7],
while the rest of the objects stay unaffected. We would like to construct a rule
hierarchy that is defined over the skeleton of H and, therefore, contains rules
for both affected and unaffected objects. For the sake of conciseness, here we
will focus only on non-trivial updates to objects, i.e. on the construction of a
rule subhierarchy corresponding to the objects updated as the result of back-
ward or forward propagation. Moreover, we will omit the technical details of the
constructions involved, but rather give a high-level idea behind them.

LH PH PH

H H−

L P R

G G− G+

m̂

r̂−

m̂−

IdPH

r+◦ĥ−

h

h−

ĥ

m
r−

m−
r+

ĥ−

m+

g− g+

(12)

Backward propagation rules. Let H
be an object corresponding to an an-
cestor of an object G in a hierarchy
with an associated arrow h : H →
G. Backward propagation of r− to
H can be expressed as a rule r̂ :
LH←r̂−−PH−IdPH→PH with an in-
stance m̂ : LH � H that, when ap-
plied to H, results into an object H−

homomorphic to the result of the orig-
inal rewriting of G in a way that makes Diagram 12 commutes. Such a rule, called
the lifting of r−, is constructed given a specification for backward propagation
(i.e. a rule factorization and a clean-up arrow [7]), and contains only restric-
tive updates (given by deletion and cloning). Informally, such specification indi-
cates which changes to G should be propagated to H and how the updated H
can be ‘retyped’ by the updated G. Such typing is obtained as a composition
g+ ◦ h− in the diagram. Together with the propagation rule we obtain the ar-
rows ĥ : LH → L and ĥ− : PH → P defining the rule homomorphism given by
(ĥ, ĥ−, r+ ◦ ĥ−) as in the diagram. Therefore, the backward propagation frame-
work allows us to extract a rule representing the specified propagation for every
ancestor of the rewritten object together with a homomorphisms to the original
rule r. Moreover, under appropriate conditions (see backward composability in
[7]), we can construct the homomorphisms between backward propagation rules
required by the skeleton of the hierarchy.

L P R

G G− G+

PT PT RT

T T+

mĥ

r−

m−

r+

m+

g−

h◦g−

g+

h+

ĥ−

IdPT

m̂−

r̂+

m̂+

ĥ+

t+

(13)

Forward propagation rules. Let T be
an object corresponding to a descen-
dant of an object G in a given hier-
archy with an associated homomor-
phism h : G → T . Forward propa-
gation of r+ to T can be expressed
as a rule r̂ : PT ← PT → RT with an
instance m̂− : PT � T that, when ap-
plied to T , results into an object T+



to which the result of the original rewriting of G is homomorphic in a way
renders Diagram 13 commutative. Such a rule, called the projection of r+, is
constructed given a specification for forward propagation (i.e. a rule factoriza-
tion and a clean-up arrow [7]), and contains only expansive updates (given by
addition and merging). Informally, such specification indicates which changes to
G should be propagated to T and how the updated G can be ‘retyped’ by the up-
dated T . Together with the propagation rule we obtain three arrows ĥ : L→ PT ,
ĥ− : P → PT and ĥ+ : R → RT defining the rule homomorphism given by
(ĥ, ĥ−, ĥ+). Therefore, the forward propagation framework allows us to excerpt a
rule representing the specified propagation for every descendant of the rewritten
object together with homomorphisms from the original rule r. Moreover, under
appropriate conditions (see forward composability in [7]), we can construct the
homomorphisms between forward propagation rules required by the skeleton of
the hierarchy.

Example 2. Consider the hierarchy H depicted in Figure 2. Let G be the target
of rewriting with the rule highlighted in the gray area: this rule clones the circle
into two semi-circles and merges one of these circles with the square node. Let
the rules delimited with dashed arrows be the objects of the rule hierarchy
representing respective rewriting and propagation. The rule LH ← PH → RH is
a backward propagation rule that specifies how the cloning in G is propagated
to different instances of the circle. The rule LT ← PT → RT is a forward
propagation rule that describes the merging of the nodes typing the semi-circle
and the square in G. Finally, the hierarchy H′ on the right represents the result
of the rule hierarchy application.

LH PH RHH

L P RG

LT PT RTT

Original H Result H′Constructed rule hierarchy R

H ′

G′

T ′

Fig. 2: Example of rewriting in a hierarchy represented with a rule hierarchy.

3.2 Reversible rewriting in hierarchies

In this subsection we study the side-effects introduced by the application of a
rule hierarchy. These side-effects may induce some implicit changes to the homo-
morphisms representing hierarchy edges, which may prevent us from restoring
the original hierarchy by simply looking at the applied rule hierarchy. In gen-
eral, such side-effects make the rewriting produced by reversing the original rule
hierarchy not applicable. Let us first consider the following example.

Example 3. Let G→ T in Figure 3a be two homomorphic objects and let PG →
RG and PT → RT specify expansive phases of rules applied to these objects. G



has two instances of the white circle and the rule PG → RG merges one of them
with an instance of the black circle. The rule PT → RT merges the white and
the black circle. The unique arrow G+ → T+ is given by the UP of the PO that
gives G+. As a side-effect, the first instance of the white circle is also typed by
the merged node in T+. As a consequence, we ‘forget’ that it was an instance of
the white circle in T . In Figure 3b we reverse the rules and apply them to the
results G+ and T+: the merged node in T+ is cloned into two circle nodes and
one instance of the merged node in G+ is cloned. As the result, we recover the
object G, but we are not able to type it by T , which happens precisely because
we ‘forgot’ how the circle denoted with gray was typed in T .

PG RG

G G+

RT

T T+

PT

(a) Application of the original rules

PGRG

GG+

RT

TT+

×
PT

(b) Application of the reversed rules

Fig. 3: Example of side-effects affecting hierarchy homomorphisms

Definition 6. The reverse R−1 of R is the rule hierarchy whose nodes corre-
spond to the rules r−1

v for all v ∈ V , and whose edges correspond to the rule
homomorphisms (ρ(s,t), π(s,t), λ(s,t)) for all edges (s, t) ∈ E.

Definition 7. Rewriting of H with R, applicable through an instance I, is re-
versible, if rewriting of every individual object is reversible and the reverse R−1

is applicable, i.e. for any pair of nodes s, t ∈ V such that (s, t) ∈ E corresponding
to objects and rules as in Diagram 11, if G−s is given as the final PBC of r+

s and
m+
s and G−t as the final PBC of r+

t and m+
t , there exists a unique homomorphism

h−(s,t) : G−s → G−t that makes the right cube in Diagram 11 commute.

Even though the latter definition imposes rather abstract requirements, in-
tuitive sufficient conditions can be formulated as follows. If for every hierarchy
edge the left-most face in Diagram 11 is a PB, the rewriting is reversible (the
proof is outside the scope of this paper). Informally, this guarantees that all the
instances of the elements selected by mt are also selected by ms.

3.3 Composition of rewriting in hierarchies

To study composition of consecutive rewriting in a hierarchy, we will focus on
a simple hierarchy with two nodes and one edge, corresponding to objects G1,
T1 and a homomorphism h1 : G1 → T1. Composition of rewriting in general



hierarchies can be trivially obtained by applying the presented technique to
every pair of hierarchy nodes connected with an edge.

Let H be a hierarchy corresponding to two homomorphic objects G1−h1→T1

and letR1 be a rule hierarchy corresponding to rules pG : LG1 ←p−G−PG1 −p+G→RG1
and pT : LT1 ←p−T−PT1 −p+T→RT1 , whose homomorphism fp : pG → pT is given
by arrows λ1, π1 and ρ1 as in Diagram 14. Let G2−h2→T2 correspond to the
result of the application of R1 through the instances mG and mT (we assume
that R1 is applicable given mG and mT ). Let R2 be another rule hierarchy
given by a homomorphic pair of rules qG : LG2 ←q−G−PG2 −q+G→RG2 and qT :
LT2 ←q−T−PT2 −q+T→RT2 as in Diagram 15. Their homomorphism fq : qG → qT is
given by arrows λ2, π2 and ρ2. Let G3−h3→T3 be the result of the application
of R2 through the instances nG and nT as in the diagram (similarly, we assume
that R2 is applicable given the instances).

LG1 PG1 RG1

G1 G−1 G2

LT1 PT1 RT1

T1 T−1 T2

mG m−G

p−G p+G

ρ1m+
G

h1 h−1

g−1

g+1

h2

λ1

mT

π1

m−T

p−T

p+T

m+
T

t−1 t+1

(14)

LG2 PG2 RG2

G2 G−2 G3

LT2 PT2 RT2

T2 T−2 T3

nG n−G

q−G q+G

ρ2n+
G

h2 h−2

g−2

g+2

h3

λ2

nT

π2

n−T

q−T

q+T

n+
T

t−2 t+2

(15)

LX PX RX

X1 X	1 X3

lX

r−X r+X

l−X l+X

h−X h+
X

(16)

We can compose these pairs of rewrites
using the constructions presented in Sub-
section 2.2. Namely, if the rules pG and
pT are reversible, we can find a pair of
rules rG : LG←r−G−PG−r+G→RG and rT :
LT←r−T−PT −r+T→RT , together with a pair of instances lG : LG � G1 and
lT : LT � T1, such that, applying rG to G1 and rT to T1 through lG and lT
respectively (as in Diagram 16, where X stands for G or T ), we directly obtain
G3 and T3 from Diagram 15.

DG

RG1 DT LG2

RT1 LT2

T2

d
xG yG

ρ1
xT yT

λ2

m+
T

nT

(17)

To be able to construct a rule homomorphism
f : rG → rT , we need to make an assumption
that rewriting specified by R1 given mG and mT

is reversible, i.e. for G−1 being the final PCB to
p+
G and m+

G, and T−1 to p+
T and m+

T , there always
exists a unique arrow h−1 that renders the right-
most cube in Diagram 14 commutative. Let DG,
xG, yG, DT , xT and yT from Diagram 17 be the
two overlaps of respectively RG1 with LG2 and RT1
with LT2 , constructed as described in Subsection
2.2 and denoted with oG and oT . By the UP of PBs, there exists a unique arrow



d : DG → DT using which we can construct a hierarchy of such overlaps defined
over the same skeleton as H, and together with arrows xG, yG, xT and yT , such
a hierarchy gives us the hierarchy overlap O.

Lemma 1. If the rewriting of H given by R1 through mG and mT is reversible,
then, given the hierarchy overlap O, there exist a unique rule homomorphism
f : rG → rT .

Therefore, we can construct the rule hierarchyR corresponding to rG−f→rT .
We will refer to it as the composed rule hierarchy given the hierarchy overlap O
and write R = ⊗(R1,O,R2).

Theorem 2. In adhesive categories, if rewriting given by R1 is reversible, R is
applicable given lG and lT , and its application results into G3−h3→T3.

Proposition 2. In adhesive categories, the composition of two reversible hier-
archy rewrites is a reversible rewrite.

4 Transformation audit trail

In this section we describe how reversibility and composition of rewriting can
be used to construct the audit trail for transformations of individual objects
and hierarchies of objects. The proposed framework is implemented as a part of
the ReGraph1 Python library for building hierarchical knowledge representations
based on simple graphs with attributes.

4.1 Audit trail for object transformations

Li P i Ri

Gi−1 Ḡi−1 Gi

mi

r−i

m−i

r+i

m+
i

ḡ−i ḡ+i

(18)

Let G0 be the starting object whose history of
transformations we would like to maintain and
let 〈ri : Li←r−i −P i−r+i→Ri | i ∈ [1 . . . n]〉 be
a sequence of rules consecutively applied to
G0 through the instances mi : Li � Gi−1,
resulting in a sequence of objects 〈Gi | i ∈ [1 . . . n]〉 with m+

i : Ri � Gi for
1 ≤ i ≤ n, i.e. such that for every 1 ≤ i ≤ n, Diagram 18 is a SqPO diagram. To
be able to build a sound audit trail, we additionally require such a sequence of
rewrites to be reversible.

Definition 8. The audit trail for the object Gn consists of the sequence of rules
〈ri | i ∈ [1 . . . n]〉 and the right-hand side instances m+

i : Ri � Gi for 1 ≤ i ≤ n.

Figure 4 shows an example of an audit trail: grey circles represent the states
of a potentially large graph whose history of transformations we record.

Rollback. Using such an audit trail we can rollback to any point in the history of
transformations corresponding to some intermediate object Gi for 0 ≤ i ≤ n− 1
by applying the sequence rules 〈r−1

j | j ∈ [n . . . i + 1]〉 with the corresponding

instances m+
j : Rj � Gj for j ∈ [n . . . i+ 1].

1 https://github.com/Kappa-Dev/ReGraph



audit trail

L1 P1 R1 L2 P2 R2

G0 G1 G2

m+
1 m+

2

Fig. 4: Audit trail: the elements stored by the system are highlighted with solid
lines.

Maintain diverged versions. To maintain multiple versions of an object in the
audit trail, we use a technique known from VCSs as delta compression, i.e. only
the current version of the object is stored, while the other versions are encoded in
a delta, a representation of the ‘difference’ between the versions. Let v1 and v2 be
two versions of the starting object G0 with v1 being the current version. Initial
delta ∆ from v1 to v2 is set to the identity rule (the rule that does not perform
any transformations) ∅←Id∅−∅−Id∅→∅ and the instance u : ∅ � G0, where ∅
stands for the initial object in C and u is the unique arrow from the initial object
to G0. Every rewrite of the current version of the object induces an update of
the delta that consists in the composition of the previous delta and the reverse of
the applied rule (recall that we assume that every rewriting in the audit trail is
reversible). As before, let v1 be the current version corresponding to some object
G (e.g. obtained by transforming of G0) and let r∆ : L∆←r−∆−P∆−r+∆→R∆
and m∆ : L∆ � G be respectively the rule and the instance given by ∆. Let
r : L←r−−P −r+→R be a rule applied to G through the instance m : L � G
and G′ be the result of application of r given m. To update the delta, we compute
the composition ⊗(r−1, o, r∆) with o being a span L←x�D−y→L∆ obtained as
a PB from m and m∆. The new delta is, thus, set to the rule and the instance
given by the composition ⊗(r−1, o, r∆) (see an example in Figure 5).

Original delta

r∆ :

D

R∆ P∆ L∆

L P R

version v2 version v1

m∆

Updated delta

r′∆ :
R′

∆ P ′
∆ L′

∆

version v2 updated v1

m′
∆

Fig. 5: Update of a delta representing different versions of an object.

Switch versions. Switching between different versions of the object can be done
by simply applying the rule through the instance given by the delta. Namely,
if v1 is the current version corresponding to an object G with the delta to v2

given by ∆ = (r∆,m∆), switching to v2 is performed by applying r∆ to G
through the instance m∆. If G′ is the result of the above-mentioned rewriting
and m+

∆ : R∆ � G′ is its right-hand side instance, then v2 becomes the current
version of the object and the new delta ∆ is set to (r−1

∆ ,m+
∆).



4.2 Audit trail for hierarchy transformations

Let H0 be the starting hierarchy of objects, defined over a skeleton G = (V,E),
whose history of transformations we would like to maintain. Let 〈Ri | i ∈
[1 . . . n]〉 be a sequence of rule hierarchies consecutively applied to H0 through
the instances Ii, resulting in a sequence of hierarchies 〈Hi | i ∈ [1 . . . n]〉 with
the right-hand side instances given by I+

i for 1 ≤ i ≤ n, i.e. for every v ∈ V ,
I+
i (v) : Riv � Giv. As in the case of individual objects, to be able to build an

audit trail, we require all the rewrites to be reversible.

Definition 9. The audit trail for Hn consists of the sequence of rule hierarchies
〈Ri | i ∈ [1 . . . n]〉 and the right-hand side instances I+

i for 1 ≤ i ≤ n.

Rollback. Using the audit trail we can rollback to any point in the history of
transformations corresponding to some intermediate hierarchy Hi for 0 ≤ i ≤
n− 1. This can be done by applying the rule hierarchies 〈R−1

j | j ∈ [n . . . i+ 1]〉
with the corresponding instances I+

j , where I+
j (v) : Rjv � Gjv for every v ∈ V

and j ∈ [n . . . i+ 1].

Maintain diverged versions. To be able to accommodate multiple versions of a
hierarchy, we use delta compression. Let v1 and v2 be two versions of the starting
hierarchy H0 with v1 being the current version. Initial delta ∆ from v1 to v2 is
set to the identity rule hierarchy with the rule ∅←Id∅−∅−Id∅→∅ at every node
v ∈ V . We set the instance I(v) for every v ∈ V to be the unique homomorphism
uv : ∅ � G0

v. Every rewrite of the current version of the hierarchy induces an
update of the delta that consists in the composition of the previous delta and the
reverse of the applied rule hierarchy. Let v1 be the current version corresponding

Ds

Ls Dt L∆s

Lt L∆t

Gt

xs ys

λ(s,t) xt

yt
λ∆(s,t)

mt m∆t

(19)

to some hierarchy H (e.g. obtained as the
result of transformation of H0). Let R∆
and I∆ be respectively the rule hierarchy
and the instance given by ∆, where r∆v :
L∆v ←r−v,∆−P∆v −r+v,∆→R∆v and m∆

v : L∆v �
Gv are the rule and the instance correspond-
ing to a node v ∈ V . Let R be a rule hierarchy
applied to H through the instance I and H′
be the result of the corresponding rewriting. The new delta is given by the rule
hierarchy and the instance obtained as the composition ⊗(R−1,O,R∆) with O
being the hierarchy overlap computed by finding the overlaps between Lv and
L∆v for every node v ∈ V and the homomorphism Ds → Dt between overlaps
given by the UP of PBs as in Diagram 19 for every edge (s, t) ∈ E.

Switch versions. Switching between different versions of the hierarchy is per-
formed by applying the rule hierarchy though the instance given by the delta. If
v1 is the current version corresponding to a hierarchy H with the delta given by
∆ = (R∆, I∆), switching to v2 is performed by applying R∆ to H through I∆.
For H′ being the result of rewriting and I+

∆ being its right-hand side instance
(where for every v ∈ V , I+

∆(v) : R∆v � G′v), v2 becomes the current version of
the object and the new delta ∆ is set to (R−1

∆ , I+
∆).



5 Conclusions

In this paper we have described how the reversibility and composition of SqPO
rewriting can be used to design an audit trail framework for individual objects
and hierarchies of objects.

In particular, we have presented the construction that allows composing
consecutive SqPO rewrites, where the first rewrite is reversible. We have also
presented the notion of a rule hierarchy that generalizes SqPO rewriting to hi-
erarchies of objects and allows for an efficient representation of rewriting and
propagation in such hierarchies previously presented in [7]. We have studied the
conditions under which an arbitrary rule hierarchy can be applied to the corre-
sponding hierarchy of objects and described the conditions for such application
to be reversible. We then briefly discussed the construction that can be used to
compose consecutive applications of two rule hierarchies. Finally, we have de-
scribed how an audit trail for individual objects and hierarchies of objects can
be defined. Such an audit trail allows maintaining the history of transformations
and provides means for reverting sequences of such transformations. Moreover,
it enables accommodation of multiple versions of the same object diverged as
the result of conflicting rewrites.

As a future work, we would like to study how an arbitrary transformation
from a sequence of rewrites can be undone for individual objects and hierarchies
of objects. This question is directly related to the theory of causality for SqPO
rewriting and requires a generalization for such rewriting in hierarchies.

References

1. Behr, N.: Sesqui-pushout rewriting: Concurrency, associativity and rule algebra
framework. arXiv preprint arXiv:1904.08357 (2019)

2. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema val-
idation and evolution for graph databases. arXiv preprint arXiv:1902.06427 (2019)

3. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Graph Transformations, pp. 30–45. Springer (2006)

4. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting. In: International Conference on Graph Transformation. pp. 161–176.
Springer (2014)

5. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concur-
rency in high-level replacement systems. Mathematical Structures in Computer Sci-
ence 1(3), 361–404 (1991)

6. Harmer, R., Le Cornec, Y.S., Légaré, S., Oshurko, E.: Bio-curation for cellular sig-
nalling: the kami project. IEEE/ACM transactions on computational biology and
bioinformatics 16(5), 1562–1573 (2019)

7. Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies
of graphs. In: International Conference on Graph Transformation. pp. 141–158.
Springer (2019)

8. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO-Theoretical
Informatics and Applications 39(3), 511–545 (2005)

9. Löwe, M.: Polymorphic sesqui-pushout graph rewriting. In: International Conference
on Graph Transformation. pp. 3–18. Springer (2015)


