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Functional linear regression with truncated signatures

Adeline Fermaniana,∗

aSorbonne Université, CNRS, LPSM, Paris, France

Abstract

We place ourselves in a functional regression setting and propose a novel methodology for regressing a real output on
vector-valued functional covariates. This methodology is based on the notion of signature, which is a representation
of a function as an infinite series of its iterated integrals. The signature depends crucially on a truncation parameter
for which an estimator is provided, together with theoretical guarantees. An empirical study on both simulated and
real-world datasets shows that the resulting methodology is competitive with traditional functional linear models, in
particular when the functional covariates take their values in a high dimensional space.
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1. Introduction

In a classical regression setting, a real output Y is described by a finite number of predictors. A typical example
would be to model the price of a house as a linear function of several characteristics such as surface area, number
of rooms, location, and so on. These predictors are typically encoded as a vector in Rp, p ∈ N∗. However, some
applications do not fall within this setting. For example, in medicine, a classical task consists of predicting the state
of a patient (for example, ill or not) from the recording of several physiological variables over some time. The input
data is then a function of time and not a vector. Similarly, sound recognition or stock market prediction tasks both
consist of learning from time series, possibly multidimensional. Then, a natural idea is to extend the linear model to
this more general setting, where one wants to predict from a functional input, of the form X : [0, 1]→ Rd, d ≥ 1.

This casts our problem into the field of functional data analysis and more specifically within the framework of
functional linear regression [31, 39]. This rich domain has undergone considerable developments in recent decades,
as illustrated by the monographs of Ramsay and Silverman [40] and Ferraty and Vieu [13], and the review by Morris
[36]. One of the core principles of functional data analysis is to represent input functions on a set of basis functions,
for example, splines, wavelets, or the Fourier basis. Another approach also consists in extracting relevant handcrafted
features, depending on the field of application. For example, [4] and [42] provide overviews of learning methods
specific to speech and human action recognition, respectively.

In this article, we build on the work of Levin et al. [25] and explore a novel approach to linear functional regression,
called the signature linear model. Its main strength is that it is naturally adapted to vector-valued functions, which is
not the case with most of the methods previously mentioned. Its principle is to represent a function by its signature,
defined as an infinite series of its iterated integrals. Signatures date back from the 60s when Chen [9] showed that a
smooth path can be faithfully represented by its iterated integrals and it has been at the center of rough path theory in
the 90s [15, 30]. Rough path theory has seen extraordinary developments in recent times, and, in particular, has gained
attention from the machine learning community. Indeed, signatures combined with (deep) learning algorithms have
been successfully applied in various fields, such as characters recognition [23, 28, 44, 45], human action recognition
[26, 46], speech emotion recognition [43], medicine [2, 32, 34, 35], or finance [3]. We refer the reader to Chevyrev
and Kormilitzin [10] for an introduction to signatures in machine learning, and to Fermanian [12] for a more recent
overview.
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We stress again that the main advantage of the signature approach is that it can handle multidimensional input
functions, that is, functions X : [0, 1] → Rd where d ≥ 2, whereas traditional methods were designed for real-valued
functions. Many modern datasets come in this form with a large dimension d. Moreover, the signature method
requires little assumptions on the regularity of X and encodes nonlinear geometric information, that is, gives rise
to interpretable regression coefficients. Finally, it is theoretically grounded by good approximation properties: any
continuous function can be approximated arbitrarily well by a linear function of the truncated signature [22].

Since any continuous function of X can be approximated by a linear function on its truncated signature, the
estimation of a regression function boils down to the estimation of the coefficients in this scalar product. The truncation
order of the signature is therefore a crucial parameter as it controls the complexity of the model. Thus, in our quest
for a linear model on the signature, one of the main purposes of our article will be to estimate this parameter. With an
estimator of the truncation order at hand, the methodology is complete and the signature linear model can be applied
to both simulated and real-world data, demonstrating its good performance for practical applications.

To summarize, our document is organized as follows. First, in Section 2, we set the mathematical framework of
functional regression and recall the definition of the signature and its main properties. Then, in Section 3, we introduce
our model, called ‘signature linear model’, and define estimators of its parameters. Their rates of convergence are
given in Section 4. Finally, Section 5 is devoted to the practical implementation of the signature linear model. We
conclude by demonstrating its performance on both simulated and real-world datasets in Section 6.

For the sake of clarity, the proofs of the mathematical results are postponed to Section 8. The code is completely
reproducible and available at https://github.com/afermanian/signature-regression.

2. Mathematical framework

2.1. Functional linear regression
We place ourselves in a functional linear regression setting with scalar responses: we are given a dataset Dn =

{(X1,Y1), . . . , (Xn,Yn)}, where the pairs (Xi,Yi) are independent and identically distributed copies of a random couple
(X,Y), where X is a (random) function, X : [0, 1] → Rd, d ≥ 1, and Y a real random variable. Our goal is to
approximate the regression function f (X) = E[Y |X] by a parametrized linear function fθ and to build an estimator of
θ.

In the univariate case, that is when d = 1, the classical functional linear model [14, 21] writes

Y = α +

∫ 1

0
X(t)β(t)dt + ε, (1)

where α ∈ R, β : [0, 1] → R and ε is a random noise. The functional coefficients β and the functional covariates Xi

are then expanded on basis functions:

β(t) =

K∑
k=1

bkφk(t), Xi(t) =

K∑
k=1

cikφk(t), (2)

where φ1, . . . , φK are a set of real-valued basis functions (for example the monomials 1, t, t2, . . . , tK or the Fourier
basis). Equation (1) can then be rewritten in terms of the ciks and bks, which brings the problem back to the well-known
multivariate linear regression setting. Different approaches can then be used in terms of choice of basis functions and
regularization [see 40, Chapter 15]. Note that another common approach is functional principal components regression
[6, 7]. The idea is to perform a functional principal components analysis (fPCA) on X, which gives a representation
of X as a sum of K orthonormal principal components, and to use these as basis functions φks.

In both cases, the functional nature of the problem is dealt with by projecting the functions X on a smaller linear
space, spanned by basis functions. This basis expansion is not straightforward to extend to the vector-valued case, that
is when d > 1, the common approach being to expand each coordinate of X independently. This amounts to assuming
that there are no interactions between coordinates, which is a strong assumption and not an efficient representation
when the coordinates are highly correlated. Moreover, to our knowledge, the only theoretical results in the vector-
valued case are found in the domain of longitudinal data analysis [17, 37]. In this case, the different coordinates are
assumed to be repeated measurements of a quantity of interest on a patient and each coordinate is given a parametric
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model, in the same spirit as ANOVA models. These parametric models do not apply in the general case when the
coordinates may correspond to different quantities such as the evolution of different stocks or the x-y-z coordinates of
a pen trajectory.

The signature approach removes the need to make such assumptions: the focus moves from finding a functional
model for X to finding a basis for functions of X. In other words, instead of using a basis of functions, we use a
basis of functions of functions. In a regression setting, this shift of perspective is particularly adequate since the
object of interest is the regression function f (X) and not X itself. The whole approach is based on the signature
transformation, which takes as input a function X and outputs an infinite vector of coefficients known to characterize
X under some smoothness assumptions. In particular, there are no assumptions on the structure of dependence in the
different coordinates of X. In other words, the signature is naturally adapted to the vector-valued case.

Before we delve into the signature linear model, we gently introduce the notion of signature and review some of
its important properties.

2.2. The signature of a path
We give here a brief presentation of signatures but the reader is referred to Lyons et al. [30] or Friz and Victoir

[15] for a more involved mathematical treatment with proofs. To follow the vocabulary from rough path theory, we
will often call the functional covariate X : [0, 1]→ Rd a path. Our basic assumption is that X is of bounded variation,
i.e., it has finite length.

Definition 1. Let X : [0, 1]→ Rd, t 7→ (X1
t , . . . , X

d
t )>. The total variation of X is defined by

‖X‖TV = sup
I

∑
(t0,...,tk)∈I

‖Xti − Xti−1‖,

where the supremum is taken over all finite subdivisions of [0, 1], and ‖ · ‖ denotes the Euclidean norm on Rd. The set
of paths of bounded variation is then defined by

BV(Rd) =
{
X : [0, 1]→ Rd | ‖X‖TV < ∞

}
.

We recall that BV(Rd) endowed with the norm ‖X‖BV(Rd) = ‖X‖TV + supt∈[0,1] ‖Xt‖ is a Banach space. We stress
that the basis functions traditionnaly used in functional data analysis are of bounded variation. The assumption that
X ∈ BV(Rd) is therefore much less restrictive than assuming an expansion such as (2). This assumption allows to
define Riemann-Stieljes integrals along paths, which puts us in a position to define the signature.

Definition 2. Let X ∈ BV(Rd) and I = (i1, . . . , ik) ⊂ {1, . . . d}k, k ≥ 1, be a multi-index of length k. The signature
coefficient of X along the index I on [0, 1] is defined by

S I(X) =

∫
· · ·

∫
0≤u1<···<uk≤1

dXi1
u1
. . . dXik

uk
. (3)

S I(X) is then said to be a signature coefficient of order k.

The signature of X is the sequence containing all signature coefficients, i.e.,

S (X) =
(
1, S (1)(X), . . . , S (d)(X), S (1,1)(X), S (1,2)(X), . . . , S (i1,...,ik)(X), . . .

)
.

The signature of X truncated at order m, denoted by S m(X), is the sequence containing all signature coefficients of
order lower than or equal to m, that is

S m(X) =
(
1, S (1)(X), S (2)(X), . . . , S

length m︷     ︸︸     ︷
(d, . . . , d)(X)

)
.

Note that the assumption that X ∈ BV(Rd) may be relaxed: the signature may still be defined when the Riemann-
Stieljes integrals are not well-defined. For example, the signature of the Brownian motion may be defined via
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Xi

X j

S (i, j)(X)

S ( j,i)(X)

S (i)(X)

S ( j)(X)

Fig. 1: Geometric interpretation of the signature coefficients. The terms S (i)(X) and S ( j)(X) are the increments of the coordinates i and j respectively.
The terms S (i, j) and S ( j,i) correspond to the areas of the blue and orange regions respectively.

Stratonovitch integrals [24]. Integrating paths that are not of bounded variation is actually one of the motivations
behind the definition of the signature in rough path theory.

A crucial feature of the signature is that it encodes the geometric properties of the path, as shown in Fig. 1.
Indeed, coefficients of order 1 correspond to the increments of the path in each coordinate and the coefficients of order
2 correspond to areas outlined by the path. For higher orders of truncation, the signature contains information about
the joint evolution of tuples of coordinates. Moreover, it is clear from its definition as an integral that the signature is
independent of the time parametrization [15, Proposition 7.10] and that it is invariant by translation. Therefore, the
signature looks at functions as purely geometric objects, without any information about sampling frequency, speed,
or travel time, hence the terminology of ‘paths’.

Note that the definition can be extended to paths defined on any interval [s, t] ⊂ R by changing the integration
bounds in (3). Moreover, it is clear that there are dk signature coefficients of order k. The signature truncated at order
m is therefore a vector of dimension sd(m), where

sd(m) =

m∑
k=0

dk =
dm+1 − 1

d − 1
if d ≥ 2, sd(m) = m + 1 if d = 1.

Thus, provided d ≥ 2, the size of S m(X) increases exponentially with m and polynomially with d—some typical values
are presented in Table 1.

Table 1: Typical values of sd(m), the size of the signature of a path X ∈ BV(Rd) truncated at order m.

d = 2 d = 3 d = 6
m = 1 2 3 6
m = 2 6 12 42
m = 5 62 363 9330
m = 7 254 3279 335922

The set of coefficients of order k can be seen as an element of the kth tensor product of Rd with itself, denoted by
(Rd)⊗k. For example, the d coefficients of order 1 can be written as a vector, and the d2 coefficients of order 2 as a
matrix, i.e., 

S (1)(X)
...

S (d)(X)

 ∈ Rd,


S (1,1)(X) . . . S (1,d)(X)

...
. . .

...
S (d,1)(X) . . . S (d,d)(X)

 ∈ Rd×d ≈ (Rd)⊗2.

Similarly, coefficients of order 3 can be written as a tensor of order 3, and so on. Then, S (X) can be seen as an element
of the tensor algebra

R ⊕ Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · · .

Although not fundamental in the present paper, this structure of tensor algebra is the right space to understand prop-
erties of the signature [15, 30].
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Let us give two examples of paths and their signatures.

Example 1. Let X be a parametrized curve: for any t ∈ [0, 1], Xt = (t, f (t)), where f : R → R is a smooth function.
Then,

S (1)(X) =

∫ 1

0
dX1

t =

∫ 1

0
dt = 1, S (2)(X) =

∫ 1

0
dX2

t =

∫ 1

0
f ′(t)dt = f (1) − f (0),

where f ′ denotes the derivative of f . Similarly, the signature coefficient along (1, 2) is

S (1,2)(X) =

∫ 1

0

∫ t

0
dX1

udX2
t =

∫ 1

0

( ∫ t

0
du

)
f ′(t)dt =

∫ 1

0
t f ′(t)dt = f (1) −

∫ 1

0
f (t)dt.

Example 2. Let X be a d-dimensional linear path:

Xt =


X1

t
...

Xd
t

 =


a1 + b1t

...
ad + bdt

 .
Then, for any index I = (i1, . . . , ik) ⊂ {1, . . . , d}k, the signature coefficient along I is

S (i1,...,ik)(X) =

∫
· · ·

∫
0≤u1<···<uk≤1

dXi1
u1
· · · dXik

uk
=

∫
· · ·

∫
0≤u1<···<uk≤1

bi1 du1 · · · bik duk =
bi1 . . . bik

k!
. (4)

It is clear here that the signature is invariant by translation: S (X) depends only on the slope of X and not on the initial
position (a1, . . . , ad)> ∈ Rd.

We now recall a series of properties of the signature that motivate the definition of the signature linear model. The
first important property provides a criterion for the uniqueness of signatures.

Proposition 1. Assume that X ∈ BV(Rd) contains at least one monotone coordinate, then S (X) characterizes X up to
translations and reparametrizations.

This is a sufficient condition, a necessary one has been derived by Hambly and Lyons [19] and is based on the
construction of an equivalence relation between paths, called tree-like equivalence. For any path X ∈ BV(Rd), the
time-augmented path X̃t = (Xt, t)> ∈ BV(Rd+1) satisfies the assumption of Proposition 1, which ensures signature
uniqueness. Enriching the path with new dimensions is actually a classic part of the learning process when signatures
are used, and is discussed by Fermanian [12] and Morrill et al. [33]. We will always use this time-augmentation
transformation before computing signatures.

The next proposition states that the signature linearizes functions of X and is the core motivation of the signature
linear model. We refer the reader to Levin et al. [25], Theorem 3.1, for a proof in a similar setting.

Proposition 2. Let D ⊂ BV(Rd) be a compact set of paths that such that, for any X ∈ D, X0 = 0, and denote by
X̃ = (Xt, t)>t∈[0,1] the associated time-augmented path. Let f : D→ R be a continuous function. Then, for every ε > 0,
there exist m∗ ∈ N, β∗ ∈ Rsd(m∗), such that, for any X ∈ D,∣∣∣ f (X) − 〈β∗, S m∗ (X̃)〉

∣∣∣ ≤ ε,
where 〈·, ·〉 denotes the Euclidean scalar product on Rsd(m∗).

This proposition is a consequence of the Stone-Weierstrass theorem. The classical Weierstrass approximation
theorem states that every real-valued continuous function on a closed interval can be uniformly approximated by a
polynomial function. Linear forms on the signature can, therefore, be thought of as the equivalent of polynomial
functions for paths. The assumption that X0 = 0 is due to the fact that signatures are invariant by translation: no
information about the initial position of the path is contained in signatures.

Finally, the following bound on the norm of the truncated signature allows to control the rate of decay of signature
coefficients of high order—see Lyons [29, Lemma 5.1] for a proof.
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Proposition 3. Let X : [0, 1]→ Rd be a path in BV(Rd). Then, for any m ≥ 0,

‖S m(X)‖ ≤
m∑

k=0

‖X‖kTV

k!
≤ e‖X‖TV .

3. The signature linear model

3.1. Presentation of the model

We are now in a position to present the signature linear model. Recall that our goal is to model the relationship
between a real random variable Y ∈ R and a random input path X ∈ BV(Rd). Without loss of generality, we now
assume that d ≥ 2 and that X has been augmented with time—in other words, one coordinate of X is t 7→ t. Proposition
2 then motivates the following model which was first introduced in a slightly different form by [25]: we assume that
there exists m ∈ N, β∗m ∈ Rsd(m), such that

E [Y |X] =
〈
β∗m, S

m(X)
〉
, Var(Y |X) ≤ σ2 < ∞. (5)

We consider throughout the article the smallest m∗ ∈ N such that there exists β∗m∗ ∈ Rsd(m∗) satisfying

E [Y |X] =
〈
β∗m∗ , S

m∗ (X)
〉
.

In other words, we assume a regression model, where the regression function is a linear form on the signature. A few
comments are in order.

From an approximation point of view, this model is very general. Indeed, by Proposition 2, the only requirements
for model (5) to be valid are the continuity of the regression function f (X) = E[Y |X] and the fact that S (X) must
characterize the random path X. The latter is ensured by using a time augmentation, that is, considering X̃t = (Xt, t),
and by fixing the initial value, for example X0 = 0. Then, under the assumption that the data is in a compact set—
which will be guaranteed later on by assumption (HK)—, for any threshold ε > 0, there exist m∗ ∈ N and β∗m∗ ∈ Rsd(m∗)

such that ∣∣∣E[Y |X] − 〈β∗m∗ , S
m∗ (X)〉

∣∣∣ ≤ ε.
In other words, we know that (the first part of) model (5) is true up to an error of ε. A striking fact is that no assumption
that E[Y |X] is linear in X is needed, contrary to functional models of the form (1).

It is instructive to further compare this model to the functional model (1). Much fewer assumptions on X are
needed: it is only assumed to be of finite variation, whereas in (1) it has to have a finite basis expansion. Moreover,
our model is directly adapted to the vector-valued case. Finally, it depends directly on a finite vector β∗m∗ , whereas (1)
is written in terms of a function β, which must itself be written on basis functions. Note that the choice of basis needs
to be adapted to each particular application, whereas the signature linear model only depends on two parameters. In a
nutshell, it is a more general model with fewer hyperparameters.

It can be noticed that, since the first term of signatures is always equal to 1, this regression model contains an
intercept: when m∗ = 0, (5) is a constant model. There are two unknown quantities in model (5): m∗ and β∗m∗ . The
parameter m∗ is the truncation order of the signature of X and controls the model size, whereas β∗m∗ is the vector of
regression coefficients, whose size sd(m∗) depends on m∗.

The signature truncation order m∗ is a key quantity in this model and influences the rest of the study. Indeed, it
controls the number of coefficients and therefore the computational feasibility of the whole method. However, it is in
general little discussed in the literature and small values are picked arbitrarily, regardless of the model used on top of
signatures. For example, [28] consider values of m up to 2, [44] up to 3, Arribas et al. [2] and Lai et al. [23] up to 4,
[45] up to 5 , and [46] up to 8. Thus, one of our main objectives is to establish a rigorous procedure to estimate m∗,
and, to this end, we define a consistent estimator of m∗. As we will see later, a simple estimator of β∗m∗ , and therefore
of the regression function, is then also obtained.
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3.2. Estimating the truncation order

Let Dn = {(X1,Y1), . . . , (Xn,Yn)} be a set of i.i.d. observations drawn according to the law of (X,Y). We use the
approach of penalized empirical risk minimization. For the moment, let us fix a certain truncation order m ∈ N, and
let α > 0 denote a fixed positive number. Then, the ball in Rsd(m) of radius α centered at 0 is denoted by

Bm,α =
{
β ∈ Rsd(m) | ‖β‖ ≤ α

}
,

where ‖ · ‖ stands for the Euclidean norm, whatever the dimension. By a slight abuse of notation, the sequence
(Bm,α)m∈N can be seen as a nested sequence of balls, i.e., B0,α ⊂ B1,α ⊂ · · · ⊂ Bm,α ⊂ Bm+1,α ⊂ · · · . From now on, we
will only consider coefficients within these balls. Therefore, we assume that the true coefficient β∗m∗ lies within such a
ball, i.e., we make the assumption

(Hα) There exists α > 0 such that β∗m∗ ∈ Bm∗,α.

On the one hand, for a fixed truncation order m, the theoretical risk is defined by Rm(β) = E
(
Y −

〈
β, S m(X)

〉)2
. Then,

the minimal theoretical risk for a certain truncation order m, is defined by

L(m) = inf
β∈Bm,α

Rm(β) = Rm(β∗m),

where β∗m ∈ argmin β∈Bm,α
Rm(β) (note that the existence of β∗m is ensured by convexity of the problem). Since the sets

(Bm,α)m∈N are nested, L is a decreasing function of m. Its minimum is attained at m = m∗, and, provided m ≥ m∗, L(m)
is then constant and equal to

R(β∗m∗ ) = E
(
Y −

〈
β∗m∗ , S

m∗ (X)
〉)2

= E
(
Var(Y |X)

)
≤ σ2.

On the other hand, the empirical risk with signature truncated at order m is defined by R̂m,n(β) = 1
n
∑n

i=1
(
Yi −〈

β, S m(Xi)
〉)2
, where β ∈ Bm,α. The minimum of R̂m,n over Bm,α is denoted by L̂n(m) and defined as

L̂n(m) = min
β∈Bm,α

R̂m,n(β) = R̂m,n (̂βm),

where β̂m denotes a point in Bm,α where the minimum is attained. Note that β 7→ R̂m,n(β) is a convex function so
β̂m exists. We point out that minimizing R̂m,n over Bm,α is equivalent to performing a Ridge regression with a certain
regularization parameter which depends on α.

To summarize, for a fixed truncation order m, a Ridge regression gives the best parameter β̂m to model Y as a
linear form on the signature of X truncated at order m. Recall that our goal is to find a truncation order m̂ close to the
true one m∗. Since the (Bm,α)m∈N are nested, the sequence (L̂n(m))m∈N decreases with m. Indeed, increasing m makes
the set of parameters larger and therefore decreases the empirical risk. An estimator of m∗ can then be defined by a
trade-off between this decreasing empirical risk and an increasing function that penalizes the number of coefficients:

m̂ = min
(
argmin

m∈N

(
L̂n(m) + penn(m)

))
,

where m 7→ penn(m) is an increasing function of m that will be defined in Theorem 1. If the minimum is reached
by several values, we set m̂ to the smallest one. The procedure is illustrated in Fig. 2 for a toy dataset which will be
described in Section 5.2.

Now that we have an estimate of m∗, which is a key ingredient in establishing the whole process of the expected
signature method, and before presenting the whole procedure, we justify the estimator by some theoretical results.

4. Performance bounds

In this section, we show that it is possible to calibrate a penalization that ensures exponential convergence of m̂ to
m∗. In addition to (Hα), we need the following assumption:
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Fig. 2: The functions m 7→ L̂n(m) (blue solid curve), m 7→ penn(m) (orange dashed curve) and m 7→ L̂n(m) + penn(m) (green dotted curve) for a toy
dataset. In this case, the value of m̂ is m̂ = 3.

(HK) there exists KY > 0 and KX > 0 such that almost surely |Y | ≤ KY and ‖X‖TV ≤ KX .

The assumption (HK) says that the trajectories have a length uniformly bounded by KX and that the responses Y live in
a compact set. These assumptions are quite different from the ones in functional linear models of the form (1). Indeed,
concerning the regularity of X, they typically assume that X is in L2 and that its coefficients cik in the basis expansion
(2) decrease sufficiently fast. We therefore trade an assumption that the functions have a nice basis decomposition for
a compactness property, which seems a reasonable choice for practical applications. For example, any discrete-time
time-series model observed over a finite horizon, such as ARIMA, satisfies (HK). Any continuously differentiable
function with bounded derivative also satisfies (HK). Note also that (HK) does not depend strongly on the dimension
d, whereas the assumptions of functional linear models become very stringent in this case; they typically assume an
additive relationship between Y and the different coordinates of X. We shall also use the constant K, defined by

K = 2(KY + αeKX )eKX . (6)

The main result of the section is the following.

Theorem 1. Let Kpen > 0, 0 < ρ < 1
2 , and

penn(m) = Kpenn−ρ
√

sd(m). (7)

Let n0 be the smallest integer satisfying

(n0)ρ̃ ≥(432Kα
√
π + Kpen)

( 2
√

sd(m∗ + 1)
L(m∗ − 1) − σ2 +

√
2sd(m∗ + 1)

Kpen
√

dm∗+1

)
, (8)

where ρ̃ = min(ρ, 1
2 − ρ). Then, under the assumptions (Hα) and (HK), for any n ≥ n0,

P
(
m̂ , m∗

)
≤ C1 exp

(
−C2n1−2ρ

)
,

where the constants C1 and C2 are defined by

C1 = 74
∑
m>0

e−C3 sd(m) + 148m∗, C3 =
K2

pendm∗+1

128sd(m∗ + 1)(72K2α2 + K2
Y )
, (9)

and

C2 =
1

16(1152K2α2 + K2
Y )

min
( K2

pendm∗+1

8sd(m∗ + 1)
, L(m∗ − 1) − σ2

)
. (10)
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This theorem provides a non-asymptotic bound on the convergence of m̂. It implies the almost sure convergence
of m̂ to m∗. We can note that the penalty decreases slowly with n (more slowly than a square-root) and increases with
m exponentially, i.e., as dm/2. The penalty includes an arbitrary constant Kpen. Its value that minimizes n0 is

K∗pen =

√
(L(m∗ − 1) − σ2)432

√
παK

dm∗+1 ,

and, in practice, it is calibrated with the slope heuristics method of [5], described in Section 5. The proof of Theorem
1 is based on chaining tail inequalities that bound uniformly the tails of the risk. We refer the reader to Section 8 for
a detailed proof.

To give some insights into this estimator it is interesting to look at the behavior of the constants when different
quantities vary.

• If the dimension of the path d gets large, then dm∗+1 ∼ sd(m∗ + 1) and the constants C1 and C2 stay of the same
order (provided that the risk L(m∗ − 1) stays constant). Therefore, the quality of the bound does not change in
high dimensions. However, the constant n0 increases at the rate of O(dm∗/2ρ̃): we neeed exponentially more data
when d grows.

• If the true truncation parameter m∗ is large, that is, the regression function E[Y |X] depends on higher-order
terms of the signature, the same phenomenon is observed except that C1 increases linearly: C2 and C3 stay of
the same order, C1 ∼ 148m∗, and n0 increases at the rate of O(dm∗/2ρ̃). It is not surprising: when m∗ increases,
the size of the coefficient β∗m∗ increases and therefore more data are needed to estimate it.

• If α increases, n0 and C1 increase while C2 decreases. In other words, more data is needed and the quality of the
estimator deteriorates. Indeed, when α gets larger, the parameter spaces Bm,α gets larger for any m so estimation
is harder.

• The last quantity of interest is L(m∗ − 1) − σ2 ≤ L(m∗ − 1) − L(m∗), which measures the difference of risk
between a smaller model and the model truncated at m∗. By definition, it is a strictly positive quantity. When it
gets close to zero, it means that a model truncated at m∗ − 1 is almost as good as a model truncated at m∗. We
can see that when this difference decreases, n0 increases and C2 decreases: it is harder to find that a truncation
order of m∗ is better than m∗ − 1, therefore the estimator m̂ deteriorates.

With an estimator of m̂ at hand, one can simply choose to estimate β∗m∗ by β̂m̂, which gives an estimator of the
regression function in model (5). As a by-product of Theorem 1, we then get the following bound.

Corollary 1. Under the assumptions (Hα) and (HK), for any n ≥ n0,

E
(〈
β̂m̂, S m̂(X)

〉
−

〈
β∗m∗ , S

m∗ (X)
〉)2
≤

C5
√

n
+ C6e−C2n1−2ρ

,

where the constants C5 and C6 are defined by

C5 = 36Kα
√
π(m∗ + 1)

√
sd(m∗), C6 = 2664Kα

√
π

∑
m>m∗

√
sd(m)e−C3 sd(m) + 2α2eKX C1.

The proof is given in Section 8. This rate of convergence in O(n−1/2) is similar to the ones usually obtained for
functional linear models when d = 1, except that much less assumptions are needed on the path X. Indeed, the rates
obtained on the regression function usually depend on regularity assumptions on X and β in (1). For example, it can
depend on the Fourier coefficients of X [18], on the number of Lipschitz-continuous derivatives of β [8], or on the
periodicity of X [27]. We can note that when the true coefficient m∗ gets larger, prediction is more difficult and the
bound increases. This is also the case when K increases, which amounts to allowing larger values for Y and X.

We stress that in both Theorem 1 and Corollary 1, the constant α is assumed to be fixed. In practice, it is unknown
and is typically selected via cross-validation. Taking this into account in the theoretical analysis would be an interest-
ing extension for future work. We have now all the ingredients necessary to implement this signature linear model.
Before looking at its performance on real-world datasets, we present in the next section the complete methodology
from a computational point of view.
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5. Computational aspects

5.1. The signature linear model algorithm
The first step towards practical application is to be able to compute signatures efficiently. Typically, the input

data consists of arrays of sampled values of X. We choose to interpolate the sampled points linearly, and therefore
our problem reduces to computing signatures of piecewise linear paths. To this end, equation (4) gives the signature
of a linear path and Chen’s theorem [9], stated below, provides a formula to compute recursively the signature of a
concatenation of paths.

Let X : [s, t] → Rd and Y : [t, u] → Rd be two paths, 0 ≤ s < t < u ≤ 1. The concatenation of X and Y , denoted
by X ∗ Y , is defined as the path from [s, u] to Rd such that, for any v ∈ [s, u],

(X ∗ Y)v =

Xv, if v ∈ [s, t],
Xt + Yv − Yt, if v ∈ [t, u].

Proposition 4 (Chen). Let X : [s, t] → Rd and Y : [t, u] → Rd be two paths with bounded variation. Then, for any
multi-index (i1, . . . , ik) ⊂ {1, . . . , d}k,

S (i1,...,ik)(X ∗ Y) =

k∑
`=0

S (i1,...,i`)(X) · S (i`+1,...,ik)(Y). (11)

This proposition is an immediate consequence of the linearity property of integrals [30, Theorem 2.9]. Therefore,
to compute the signature of a piecewise linear path, it is sufficient to iterate the following two steps:

1. Compute with (4) the signature of a linear section of the path;
2. Concatenate it to the other pieces with Chen’s formula (11).

This procedure is implemented in the Python library iisignature [41]. Thus, for a sample consisting of p points
in Rd, if we consider the path formed by their linear interpolation, the computation of the path signature truncated at
level m takes O(pdm) operations. The complexity is therefore linear in the number of sampled points but exponential
in the truncation order m, which emphasizes once more the importance of the choice of m̂.

Algorithm 1: Pseudo-code for the signature linear model.
Data: {(x1,Y1), . . . , (xn,Yn)}
Result: Estimators m̂ and β̂m̂

1 Interpolate linearly the columns of xi so as to have a set of continuous piecewise linear paths Xi : [0, 1]→ Rd,
1 ≤ i ≤ n. Add a time dimension, i.e., consider the path X̃i : [0, 1]→ Rd+1, where X̃ j

i = X j
i for 1 ≤ j ≤ d,

and Xd+1
i,t = t, t ∈ [0, 1].

2 Select the Ridge regularization parameter λ by cross validation on the regression model with{
S 1(X̃1), . . . , S 1(X̃n)

}
as predictors.

3 for m = 1, . . . ,M do
4 Compute signatures truncated at level m:

{
S m(X̃1), . . . , S m(X̃n)

}
.

5 Fit a Ridge regression on the pairs
{
(S m(X̃1),Y1), . . . , (S m(X̃n,Yn)

}
. Compute its squared loss L̂n(m).

6 Compute the penalization penn(m) = Kpen

√
sd(m)
nρ .

7 Choose m̂ = argmin
0≤m≤M

(
L̂n(m) + penn(m)

)
.

8 Compute β̂m̂ by fitting a Ridge regression on
{
(S m̂(X̃1),Y1), . . . , (S m̂(X̃n,Yn)

}
: β̂m̂ = (S>S + λI)−1S>Y, where

S ∈ Rn×sd(m̂) is the matrix which rows are the signatures of the inputs S m̂(X̃i)>, I ∈ Rsd(m̂)×sd(m̂) is the identity
matrix, and Y = (Y1, . . . ,Yn)> ∈ Rd is the vector of responses.

In practice, we are given a dataset {(x1,Y1), . . . , (xn,Yn)}, where, for any 1 ≤ i ≤ n, Yi ∈ R and xi ∈ Rd×pi . The
columns of the matrix xi correspond to values of a process Xi in Rd sampled at pi different times. We fix M ∈ N such
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that, for any m ≥ M, the function m 7→ L̂n(m) + penn(m) is strictly increasing and apply the procedure described in
Algorithm 1.

Note that in the first step of Algorithm 1 there exist other choices for the embedding of the matrix xi into a
continuous path X̃i [12]. The parameter ρ is set to 0.4. The constant Kpen is calibrated with the so-called slope
heuristics method, first proposed by [5].

5.2. A toy example

This section is devoted to illustrating the different steps of Algorithm 1 and the convergence of the estimator m̂
with simulated data. We first simulate a dataset {(x1,Y1), . . . , (xn,Yn)} following the signature model (5).
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Fig. 3: One sample Xi from model (12) with d = 5.
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Fig. 4: Selection of Kpen with the slope heuristics method.

For any 1 ≤ i ≤ n, let Xi : [0, 1]→ Rd, Xi,t = (X1
i,t, . . . , X

d
i,t) be defined by

Xk
i,t = αk

i,1 + 10αk
i,2 sin

(2πt
αk

i,3

)
+ 10(t − αk

i,4)3, 1 ≤ k ≤ d, (12)

where the parameters αk
i,`, 1 ≤ ` ≤ 4 are sampled uniformly on [0, 1]. Let (t0, . . . , tp−1) be a regular partition of [0, 1]

of length p, the matrix of the path values
xi = (xk

i, j)1≤k≤d
1≤ j≤p

∈ Rd×p

is then a discretization of Xi on [0, 1]: xk
i, j = Xk

i,t j
. It will cause no confusion to use the same notation xi to denote the

matrix of values of Xi on the partition (t0, . . . , tp−1) and their piecewise linear interpolation. Fig. 3 shows one sample
xi with p = 100 and d = 5.

For any m∗ ∈ N, the output Yi is now defined as Yi = 〈β, S m∗ (xi)〉 + εi, where εi is a uniform random variable on
[−100, 100] and β is given by

β j =
1

1000
u j, 1 ≤ j ≤ sd(m∗),

where u j is sampled uniformly on [0, 1]. Then, m∗ is estimated with the procedure described in Algorithm 1 for
different sample sizes n. To select the constant Kpen, we use the dimension jump method, that is we plot m̂ as a
function of Kpen, find the value of Kpen that corresponds to the first big jump of m̂ and fix Kpen to be equal to twice this
value. For a recent account of the theory of slope heuristics, we refer the reader to the review by [1]. For example, for
m∗ = 5,d = 2, and n = 50, plotting m̂ against Kpen yields Fig. 4. In this case, Kpen is selected at 100.

We fix d = 2, m∗ = 5, and Kpen = 20. For different sample sizes n, we iterate Algorithm 1 twenty times. In Fig. 5,
a histogram of the values taken by m̂ is plotted against n. We can see that when n increases, the estimator converges
to the true value m∗ = 5. For n = 500 we always pick m̂ = 5 over the twenty iterations.
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Fig. 5: Histogram of m̂ as a function of n over 20 iterations. The functional predictors X are simulated following (12) and the response Y follows
the linear model on signatures with m∗ = 5. The hyperparameters are ρ = 0.4 and Kpen = 20.

6. Experimental results

Now that we have a complete procedure at hand, we demonstrate in this section its performance compared to
canonical approaches in functional data analysis. We show in particular that it performs better in high dimensions,
that is when d is large.

We compare our model to the functional linear model with basis functions presented in Section 2.1, to functional
principal component regression (fPCR), and to functional k-nearest neighbors regression. The first models are para-
metric linear models, while the k-nearest neighbors is nonlinear and nonparametric. Concerning the functional linear
model, we consider two choices for the basis φ1, . . . , φK , namely the B-Spline and Fourier basis [see 40]. Then, the
approach consists in projecting the function X : [0, 1]→ Rd onto the φis, coordinate by coordinate. The number K of
basis functions is selected via cross-validation (with a minimum of 4 and maximum of 14 for Fourier and B-Splines,
and a minimum of 1 and a maximum of 6 for the fPCR). For the fPCR, we first smooth the functional covariates with
7 B-Splines. The number of neighbors is selected by cross-validation with a minimum of 1 and a maximum of 9. This
procedure is implemented with the Python package scikit-fda [38]. In Subsections 6.1 and 6.2, since the focus is
on the performance of the signature linear model and to simplify the computations, we select m̂ via cross-validation.
For the real-world dataset of Subsection 6.3, it is estimated as described in the previous section.

6.1. Smooth paths
Our goal is to see the influence of the dimension d on the quality of the different models: the signature linear

model and the 3 linear functional models. To this end, we simulate some paths following model (12) and predict the
average value of the path at the next time step. More precisely, let (t0, t1, . . . , tp) be a partition of [0, 1] of length p + 1,
then we sample Xi following (12) and let

xi = (Xi,t0 | · · · |Xi,tp−1 ) ∈ Rd×p, Yi =
1
d

d∑
k=1

Xk
i,tp

+ εi,

where εi are i.i.d uniform random variables on [−1, 1]. We let d vary on a grid from 1 to 11, simulate some train and
test data, and assess the performance of the model with the mean squared error (MSE) on the test set. We iterate the
procedure 20 times, which gives, for each model (signature, Fourier, B-Spline, and fPCR), a boxplot of errors, shown
in Fig. 6.

It is clear that when d increases, the signature gets better relatively to the 4 other models. We can also note that
the B-Spline basis performs best in low dimensions, which is not surprising since the data has a 3rd order polynomial
term—see (12). However, even though the B-Spline basis is particularly well-adapted to the data, it is outperformed
by the signature linear model when the dimension becomes too large (starting from d = 7).
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Fig. 6: Test MSE for different regression models when the inputs follow (12) and Y is the mean response at the next time step.

6.2. Gaussian processes
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Fig. 7: One sample X from the Gaussian process model
(13) with d = 5
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Fig. 8: One sample from the Air Quality dataset.

We continue this simulation study with more complex paths: Gaussian processes. Let d ≥ 1, 1 ≤ i ≤ n, we define
the path Xi = (X1

i,t, . . . , X
d
i,t)t∈[0,1] by

Xk
i,t = αk

i t + ξk
i,t, 1 ≤ k ≤ d, t ∈ [0, 1], (13)

where αk
i is sampled uniformly in [−3, 3] and ξk

i is a Gaussian process with exponential covariance matrix (with
length-scale 1). The response is the norm of the trend slope: Yi = ‖αi‖ + εi, where εi is uniformly sampled on [−1, 1].
Fig. 7 shows a realization of Xi with d = 5.

We vary the dimension d on the same grid as before and iterate the whole procedure 20 times, which gives the
results in Fig. 9. We can see that for these more complicated paths, the signature is better than the 3 linear models
even for d = 1, but similar to the k-neighbors regression. The difference in performance with B-Spline and Fourier
basis increases a lot with d, wheras the k-neighbors model is quite stable.
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Fig. 9: Test MSE for different regression models when the inputs are gaussian processes with a random linear trend, as defined by (13), and the
response is the norm of the trend slope.

6.3. Air quality dataset

We conclude this section with a study of the UCI “Air Quality Data Set” [11]. The data contains the hourly
averaged response from 5 metal oxide chemical sensors recorded in a polluted area in Italy during a year (from March
2004 to February 2005). Ground truth concentrations are also included, together with temperature and humidity
values. We restrict our analysis to the study of the concentration of nitrogen dioxide (N02), and more precisely to the
prediction of the ground truth value of NO2 at the next hour. We consider two situations for the predictor function
X: a univariate and a multivariate case. In the univariate case, we are given the values of the sensor recording the
concentration of NO2 during the previous 7 days. In this case, the data is in dimension d = 1 and sampled at p = 168
values. In the multivariate case, we add the information of temperature and relative humidity to X, making it a path in
dimension d = 3. We show in Fig. 8 one sample in the multivariate case (in the univariate case, X consists only of the
blue solid curve).

We perform 20 random train/test splits and show in Fig. 10 a boxplot of the test MSE for each model. We do
not consider the k-neighbors regression due to its prohibitive running time for the sample size of this dataset (6156
training samples and 3033 test samples). Indeed, the other models take a few minutes to run while the k-neighbors
regression takes two hours. We can see that in the univariate case, the B-Splines perform best. However, when more
information is taken into account, that is, in the multivariate case, the signature model has the smallest error. The error
of the three other models almost does not change when information about temperature and humidity is added, whereas
the error of the signature linear model is divided by 2. We conclude that signatures can extract relevant information
from multivariate time series. It should be noted that this type of data is increasingly common in modern applications,
as the capabilities for recording and storing data are only getting better.

To conclude, we represent in Fig. 11 the values of the regression vector β̂m̂ to illustrate its interpretation. We
observe that the two largest coefficients are the ones corresponding to S (1)(X) and S (1,1)(X): they both correspond to
the variation in NO2 concentration during the period (last value minus initial value). It is therefore not surprising that
this is a key quantity to predict the concentration of NO2 at the next hour. We can also comment on the large absolute
value of some coefficients of order 2, for example, the one corresponding to S (2,1)(X). The value S (2,1)(X) is the
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Fig. 10: Test MSE for different regression models for the Air Quality dataset.

0
1

2

()

(1,) (2,) (3,) (4,)

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 11: Heatmap of the first coefficients of β̂m̂ for the Air quality dataset with a truncation order of 4. The vertical axis represents the order of the
coefficients: on top the coefficient of order 0, then the 4 coefficients of order 1, then the 16 coefficients of order 2. The color corresponds to the
value of the coefficient.

area under the curve (Temperature, NO2), as explained in Fig. 1. The corresponding coefficient, therefore, contains
information about the importance of the joint evolution of Temperature and NO2 to predict future concentration.
For example, if it is positive, it means that a common increase in Temperature and NO2 will give rise to a larger
concentration of NO2. In other words, there is an interaction between Temperature and NO2 concentration. A similar
analysis can be done for the curve (Humidity, NO2), which corresponds to the coefficient (3,1). Finally, the large
value of the coefficient corresponding to S (4,1)(X), which is equal to the area under the curve (Time, NO2) is also not
surprising: it counts the total quantity of concentration of NO2 during the period.

To conclude, the coefficients obtained with the signature linear model have a geometric interpretation, which is
often valuable for practical applications. Contrary to the coefficients in traditional functional linear models, they are
global measures of interaction between coordinates: there is no time-specific interpretation as there would be for β(t)
in (1). We refer to Giusti and Lee [16] for more details on the interpretation of signatures, in particular as a measure
of causality between different coordinates.

7. Conclusion and perspectives

In this paper, we have provided a complete and ready-to-use methodology to implement the signature linear model.
This led us to define a consistent estimator of the signature truncation order. We show on both simulated and real-
world datasets that this model performs better than traditional functional linear models when the functional data is
vector-valued, especially in high dimensions.
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The signature is a flexible tool for summarizing multidimensional time series and can be used in various contexts.
This study is just a first step towards understanding how it should be used in a statistical setting and there are a lot
of potential extensions. First, we restricted our study to the setting of linear regression, however, signatures are just
as relevant in classification or unsupervised learning settings. Moreover, the problem of the high dimension of the
regression coefficient, due to its exponential dependence on m, is the major limitation of the signature linear model.
In this article, we dealt with it by carefully choosing the truncation order. However, this is not the only option. For
example, regularization approaches that induce a sparsity pattern on this coefficient, or the use of a related lower-
dimensional object called the logsignature, are two interesting directions.

8. Proofs

Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We will use extensively results from [20]. The next two lemmas
first show that it is sufficient to obtain a uniform tail bound on the risk to control the convergence of m̂.

Lemma 1. For any m ∈ N, ∣∣∣L̂n(m) − L(m)
∣∣∣ ≤ sup

β∈Bm,α

∣∣∣R̂m,n(β) − Rm(β)
∣∣∣.

Proof: Introducing R̂m,n(β∗m) yields

L̂n(m) − L(m) = R̂m,n (̂βm) − Rm(β∗m) = R̂m,n (̂βm) − R̂m,n(β∗m) + R̂m,n(β∗m) − Rm(β∗m).

Since β̂m minimises R̂m,n over Bm,α, R̂m,n (̂βm) − R̂m,n(β∗m) ≤ 0, which gives

L̂n(m) − L(m) ≤ R̂m,n(β∗m) − Rm(β∗m) ≤ sup
β∈Bm,α

|R̂m,n(β) − Rm(β)|.

In the same manner, L(m) − L̂n(m) ≤ sup
β∈Bm,α

|R̂m,n(β) − Rm(β)|, which proves the lemma.

Lemma 2. For any m > m∗, P(m̂ = m) ≤ P
(
2 supβ∈Bm,α

|R̂m,n(β) − R(β)| ≥ penn(m) − penn(m∗)
)
.

Proof: For any m ∈ N,

P(m̂ = m) ≤ P
(
L̂n(m) + penn(m) ≤ L̂n(m∗) + penn(m∗)

)
= P

(
L̂n(m∗) − L̂n(m) ≥ penn(m) − penn(m∗)

)
.

Recall that, by definition of model (5), m 7→ L(m) is a decreasing function and that its minimum is attained at m = m∗.
Therefore, for any m ∈ N, L(m∗) ≤ L(m), and Lemma 1 yields

L̂n(m∗) − L̂n(m) = L̂n(m∗) − L(m∗) + L(m∗) − L(m) + L(m) − L̂n(m) ≤ L̂n(m∗) − L(m∗) + L(m) − L̂n(m)

≤ supβ∈Bm∗ ,α
|R̂m,n(β) − Rm(β)| + supβ∈Bm,α

|R̂m,n(β) − Rm(β)|.

For m > m∗, Bm∗,α ⊂ Bm,α, which gives L̂n(m∗) − L̂n(m) ≤ 2supβ∈Bm,α
|R̂m,n(β) − Rm(β)|, and the proof is complete.

From now on, we denote by Zm,n the centered empirical risk for signatures truncated at m: for any β ∈ Bm,α,

Zm,n(β) = R̂m,n(β) − Rm(β) =
1
n

n∑
i=1

(
Yi −

〈
β, S m(Xi)

〉)2
− E

(
Y −

〈
β, S m(X)

〉)2
.

We will now derive a uniform tail bound on Zm,n(β), which is the main result needed to prove Theorem 1. In a
nutshell, we show that (Zm,n(β))β∈Bm,α is a subgaussian process for some appropriate distance, and then use a chaining
tail inequality [20, Theorem 5.29] on Zm,n.

16



Lemma 3. Under the assumptions (Hα) and (HK), for any m ∈ N, the process
(
Zm,n(β)

)
β∈Bm,α

is subgaussian for the
distance

D(β, γ) =
K
√

n
‖β − γ‖, (14)

where the constant K is defined by (6).

Proof: By definition, it is clear that EZm,n(β) = 0 for any β ∈ Bm,α. Let `(X,Y) : Bm,α → R be given by `(X,Y)(β) =(
Y −

〈
β, S m(X)

〉)2
. We first prove that `(X,Y) is K-Lipschitz. For any β, γ ∈ Bm,α,

|`(X,Y)(β) − `(X,Y)(γ)| =
∣∣∣(Y − 〈

β, S m(X)
〉)2
−

(
Y −

〈
γ, S m(X)

〉)2∣∣∣
≤ 2 max

(∣∣∣Y − 〈
β, S m(X)

〉∣∣∣, ∣∣∣Y − 〈
γ, S m(X)

〉∣∣∣) × ∣∣∣〈β − γ, S m(X)
〉∣∣∣

(because |a2 − b2| ≤ 2 max(|a|, |b|)|a − b|)

≤ 2 max
(∣∣∣Y − 〈

β, S m(X)
〉∣∣∣, ∣∣∣Y − 〈

γ, S m(X)
〉∣∣∣) × ∥∥∥S m(X)

∥∥∥ ‖β − γ‖
(by the Cauchy-Schwartz inequality).

Moreover, by the triangle inequality and Cauchy-Schwartz inequality,∣∣∣Y − 〈
β, S m(X)

〉∣∣∣ ≤ |Y | + ∥∥∥S m(X)
∥∥∥‖β‖ ≤ KY + α

∥∥∥S m(X)
∥∥∥,

and, by Proposition 3,
∥∥∥S m(X)

∥∥∥ ≤ e‖X‖TV ≤ eKX . Consequently,
∣∣∣Y − 〈

β, S m(X)
〉∣∣∣ ≤ KY + αeKX , and∣∣∣`(X,Y)(β) − `(X,Y)(γ)

∣∣∣ ≤ 2
(
KY + αeKX

)
eKX ‖β − γ‖ = K‖β − γ‖.

Therefore, by Hoeffding’s lemma [20, Lemma 3.6], `(X,Y)(β)−`(X,Y)(γ) is a subgaussian random variable with variance
proxy K2‖β − γ‖2, which gives, for λ ≥ 0,

E exp
(
λ
(
`(X,Y)(β) − `(X,Y)(γ) − E

(
`(X,Y)(β) − `(X,Y)(γ)

)))
≤ exp

(
λ2K2 ‖β − γ‖2

2

)
.

From this, it follows that

Eeλ
(
Zm,n(β)−Zm,n(γ)

)
= E exp

(
λ

n

n∑
i=1

`(Xi,Yi)(β) − `(Xi,Yi)(γ) − E
(
`(Xi,Yi)(β) − `(Xi,Yi)(γ)

))
=

n∏
i=1

E exp
(
λ

n

(
`(Xi,Yi)(β) − `(Xi,Yi)(γ) − E

(
`(Xi,Yi)(β) − `(Xi,Yi)(γ)

)))
≤ exp

(λ2K2 ‖β − γ‖2

2n

)
= exp

(λ2D(β, γ)2

2

)
,

where D(β, γ) =
K‖β−γ‖
√

n , which completes the proof.

We can now derive a maximal tail inequality for Zm,n(β).

Proposition 5. Under the assumptions (Hα) and (HK), for any m ∈ N, x > 0, β0 ∈ Bm,α,

P
(

sup
β∈Bm,α

Zm,n(β) ≥ 108
√
πKα

√
sd(m)

n
+ Zm,n(β0) + x

)
≤ 36 exp

(
−

x2n
144K2α2

)
,

where the constant K is defined by (6).
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Proof: By Lemma 3, Zm,n is a subgaussian process for D, defined by (14). So, we may apply Theorem 5.29 of [20]
to Zm,n on the metric space (Bm,α,D):

P
(

sup
β∈Bm,α

Zm,n(β) − Zm,n(β0) ≥ 36
∫ ∞

0

√
log(N(ε, Bm,α,D))dε + x

)
≤ 36 exp

(
−

x2n
36 × 4K2α2

)
,

where N(ε, Bm,α,D) is the ε-covering number of Bm,α with respect to D, and where we use that

diam(Bm,α) =
2Kα
√

n
.

Moreover, N(ε, Bm,α,D) = N(
√

n
K ε, Bm,α, ‖ · ‖) , and so, by Lemma 5.13 of van Handel [20],

N(ε, Bm,α,D) ≤
(

3Kα
√

nε

)sd(m)

if ε <
Kα
√

n
,

and N(ε, Bm,α,D) = 1 otherwise. Therefore,∫ ∞

0

√
log(N(ε, Bm,α,D))dε =

∫ Kα
√

n

0

√
log(N(ε, Bm,α,D))dε

≤

∫ Kα
√

n

0

√
sd(m) log

(
3Kα
√

nε

)
dε

≤ 3Kα

√
sd(m)

n

∫ ∞

0
2x2 exp

(
−x2

)
dx = 3Kα

√
sd(m)

n
√
π, (15)

where in the second inequality we use the change of variable x =

√
log

(
2Kα
√

nε

)
.

Since P(m̂ , m∗) = P(m̂ > m∗) + P(m̂ < m∗), we divide the proof into two cases. Let us first consider m > m∗ in
the next proposition.

Proposition 6. Let 0 < ρ < 1
2 , and penn(m) be defined by (7): penn(m) = Kpenn−ρ

√
sd(m). Let n1 be the smallest

integer satisfying

n1 ≥

( 432
√
πKα

√
sd(m∗ + 1)

Kpen(
√

sd(m∗ + 1) −
√

sd(m∗))

)1/( 1
2−ρ)

. (16)

Then, under the assumptions (Hα) and (HK), for any m > m∗, n ≥ n1,

P
(
m̂ = m

)
≤ 74 exp

(
−C3(n1−2ρ + sd(m))

)
,

where the constant C3 is defined by

C3 =
K2

pendm∗+1

128sd(m∗ + 1)(72K2α2 + K2
Y )
.

Proof: Let

um,n =
1
2
(
penn(m) − penn(m∗)

)
=

Kpen

2
n−ρ

( √
sd(m) −

√
sd(m∗)

)
.

As m 7→ penn(m) is increasing in m, it is clear that um,n > 0 for any m > m∗. From Lemma 2, we see that

P
(
m̂ = m

)
≤ P

(
sup
β∈Bm,α

∣∣∣Zm,n(β)
∣∣∣ > um,n

)
= P

(
sup
β∈Bm,α

Zm,n(β) > um,n

)
+ P

(
sup
β∈Bm,α

(
−Zm,n(β)

)
> um,n

)
.
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We focus on the first term of the inequality, the second can be handled in the same way since Proposition 5 also holds
when Zm,n(β) is replaced by −Zm,n(β). Let β0 be a fixed point in Bm,α that will be chosen later, we have

P
(

sup
β∈Bm,α

Zm,n(β) > um,n

)
= P

(
sup
β∈Bm,α

Zm,n(β) > um,n, Zm,n(β0) ≤
um,n

2

)
+ P

(
sup
β∈Bm,α

Zm,n(β) > um,n, Zm,n(β0) >
um,n

2

)
≤ P

(
sup
β∈Bm,α

Zm,n(β) >
um,n

2
+ Zm,n(β0)

)
+ P

(
Zm,n(β0) >

um,n

2

)
. (17)

We treat each term separately. The first one is handled by Proposition 5. To this end, we need to ensure that um,n

2 −

108Kα
√

πsd(m)
n is positive. By definition,

um,n

2
− 108Kα

√
πsd(m)

n
=

Kpen

2
n−ρ

( √
sd(m) −

√
sd(m∗)

)
− 108Kα

√
πsd(m)

n

=
√

sd(m)n−ρ
Kpen

2

(
1 −

√
sd(m∗)
sd(m)

−
2 × 108

√
πKα

Kpen
nρ−

1
2

)
.

≥
√

sd(m)n−ρ
Kpen

2

(
1 −

√
sd(m∗)

sd(m∗ + 1)
−

216
√
πKα

Kpen
nρ−

1
2

)
.

Let n1 ∈ N be such that

1 −

√
sd(m∗)

sd(m∗ + 1)
−

216
√
πKα

Kpen
nρ−

1
2

1 >
1
2

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)
⇔ n1 >

( 432
√
πKα

√
sd(m∗ + 1)

Kpen(
√

sd(m∗ + 1) −
√

sd(m∗))

)1/( 1
2−ρ)

,

then, for any n ≥ n1,

um,n

2
− 108Kα

√
πsd(m)

n
≥

√
sd(m)n−ρ

Kpen

4

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)
> 0.

Hence, Proposition 5 applied to x =
um,n

2 − 108
√
πKα

√
sd(m)

n now shows that, for n ≥ n1,

P
(

sup
β∈Bm,α

Zm,n(β) >
um,n

2
+ Zm,n(β0)

)
≤ 36 exp

(
−

n
144K2α2

(um,n

2
− 108Kα

√
πsd(m)

n

)2)
≤ 36 exp

(
−

sd(m)n1−2ρK2
pen

144K2α2 × 16

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2)
= 36 exp

(
− κ1sd(m)n1−2ρ

)
, (18)

where

κ1 =
K2

pen

2304K2α2

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2
.

We now turn to the second term of (17). Since
∣∣∣Y −〈β0, S m(X)〉

∣∣∣2 ≤ (
KY + ‖β0‖eKX

)2 a.s., Hoeffding’s inequality yields,
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for n ≥ n1,

P
(
Zm,n(β0) >

um,n

2

)
≤ exp

(
−

nu2
m,n

8
(
KY + ‖β0‖eKX

)2

)

= exp
(
−

n1−2ρK2
pen

(√
sd(m) −

√
sd(m∗)

)2

32
(
KY + ‖β0‖eKX

)2

)
≤ exp

(
−

n1−2ρK2
pensd(m)

32
(
KY + ‖β0‖eKX

)2

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2)
= exp

(
−κ2n1−2ρsd(m)

)
, (19)

where

κ2 =
K2

pen

32
(
KY + ‖β0‖eKX

)2

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2
.

Combining (18) with (19), we obtain

P
(

sup
β∈Bm,α

Zm,n(β) > um,n

)
≤ 36 exp

(
− κ1n1−2ρsd(m)

)
+ exp

(
− κ2n1−2ρsd(m)

)
≤ 37 exp

(
− κ3n1−2ρsd(m)

)
≤ 37 exp

(
−
κ3

2
(
n1−2ρ + sd(m)

))
,

where κ3 = min(κ1, κ2). The same proof works for the process
(
−Zm,n(β)

)
, and consequently

P
(
m̂ = m

)
≤ 2 × 37 exp

(
−
κ3

2
(
n1−2ρ + sd(m)

))
.

We are left with the task of choosing an optimal β0. Since

κ3 = min(κ1, κ2) =
K2

pen

32

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2
min

( 1
72K2α2 ,

1(
KY + ‖β0‖eKX

)2

)
,

it is clear that κ3 is maximal at β0 = 0, which yields

κ3 =
K2

pen

32

(
1 −

√
sd(m∗)

sd(m∗ + 1)

)2
min

( 1
72K2α2 ,

1
K2

Y

)
.

Noting that √
sd(m∗ + 1) −

√
sd(m∗) =

√
dm∗+1 + sd(m∗) −

√
sd(m∗) ≥

√
dm∗+1

2
,

where we have used the fact that for a, b ≥ 0,
√

a +
√

b ≥
√

2
√

a + b, letting

C3 =
1
2
×

K2
pendm∗+1

64sd(m∗ + 1)(72K2α2 + K2
Y )

completes the proof.

To treat the case m < m∗, we need a rate of convergence of L̂n. This can be obtained with arguments similar to the
previous proof.

Proposition 7. For any ε > 0, m ∈ N, let n2 ∈ N be the smallest integer such that

n2 ≥
4322K2πα2sd(m)

ε2 . (20)
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Then, for any n ≥ n2,
P
(
|L̂n(m) − L(m)| > ε

)
≤ 74 exp

(
−C4nε2),

where the constant C4 is defined by

C4 =
(
2(1152K2α2 + K2

Y )
)−1
. (21)

Proof: By Lemma 1,

P
(
|L̂n(m) − L(m)| > ε

)
≤ P

(
sup
β∈Bm,α

|Zm,n(β)| > ε
)

= P
(

sup
β∈Bm,α

Zm,n(β) > ε
)

+ P
(

sup
β∈Bm,α

(
−Zm,n(β)

)
> ε

)
.

Let us fix β0 ∈ Bm,α, we can now proceed as in Proposition 6. Since, for n ≥ n2,

ε

2
− 108Kα

√
πsd(m)

n
>
ε

4
> 0,

Hoeffing’s inequality and Proposition 5 show that

P
(

sup
β∈Bm,α

Zm,n(β) > ε
)
≤ P

(
sup
β∈Bm,α

Zm,n(β) >
ε

2
+ Zm,n(β0)

)
+ P

(
Zm,n(β0) >

ε

2

)
≤ 36 exp

(
−

n
144K2α2

(ε
2
− 108Kα

√
πsd(m)

n

)2
)

+ exp
(
−

nε2

2
(
KY + ‖β0‖eKX

)2

)
≤ 36 exp

(
−

nε2

2304K2α2

)
+ exp

(
−

nε2

2
(
KY + ‖β0‖eKX

)2

)
≤ 37 exp

(
−κ4nε2

)
,

where
κ4 = min

( 1
2304K2α2 ,

1

2
(
KY + ‖β0‖eKX

)2

)
.

The same analysis can be done to (−Zm,n(β)), and so P
(
|L̂n(m) − L(m)| > ε

)
≤ 74 exp

(
−κ4nε2

)
. Moreover, taking

β0 = 0 gives

κ4 = min

 1
2304K2α2 ,

1

2
(
KY + ‖β0‖eKX

)2

 ≥ 1
2(1152K2α2 + K2

Y )
= C4,

which completes the proof.

This allows us to treat the case m < m∗.

Proposition 8. Let 0 < ρ < 1
2 and penn(m) be defined by (7). Let n3 be the smallest integer satisfying

n3 ≥

( 2
√

sd(m∗)
L(m∗ − 1) − σ2

(
432Kα

√
π + Kpen

))1/ρ
. (22)

Then, under the assumptions (Hα) and (HK), for any m < m∗, n ≥ n3,

P
(
m̂ = m

)
≤ 148 exp

(
− n

C4

4
(
L(m) − L(m∗) − penn(m∗) + penn(m)

)2
)
,

where the constant C4 is defined by (21).

Proof: This is a consequence of Proposition 7. For any m < m∗,

P(m̂ = m) ≤ P
(
L̂n(m) − L̂n(m∗) ≤ penn(m∗) − penn(m)

)
= P

(
L̂n(m∗) − L(m∗) + L(m) − L̂n(m) ≥ L(m) − L(m∗) −

(
penn(m∗) − penn(m)

))
≤ P

(∣∣∣L̂n(m) − L(m)
∣∣∣ ≥ 1

2
(
L(m) − L(m∗) − penn(m∗) + penn(m)

))
+ P

(∣∣∣L̂n(m∗) − L(m∗)
∣∣∣ ≥ 1

2
(
L(m) − L(m∗) − penn(m∗) + penn(m)

))
.
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In order to apply Proposition 7, we first need to ensure that L(m)−L(m∗)−penn(m∗)+penn(m) is strictly positive. Recall
that m 7→ L(m) is a decreasing function, minimal at m = m∗ and then bounded by σ2. Recall also that m 7→ penn(m)
is strictly increasing. This gives, for m < m∗:

L(m) − L(m∗) − penn(m∗) + penn(m) > L(m∗ − 1) − σ2 − Kpenn−ρ
√

sd(m∗).

This implies that it is enough that

L(m∗ − 1) − σ2 − Kpenn−ρ
√

sd(m∗) >
1
2

(L(m∗ − 1) − σ2) (23)

to ensure that L(m) − L(m∗) − penn(m∗) + penn(m) > 0. This yields a first condition on n3:

n3 ≥

( 2Kpen
√

sd(m∗)
L(m∗ − 1) − σ2

) 1
ρ

. (24)

However, to apply Proposition 7, we also need n3 to satisfy (20) , which writes

n3 ≥
4322K2πα2sd(m)

(L(m) − L(m∗) − penn(m∗) + penn(m))2 .

If n3 satisfies (24), we can bound the right-hand side uniformly in m:

4322K2πα2sd(m)(
L(m) − L(m∗) − penn(m∗) + penn(m)

)2 ≤
4 × 4322K2πα2sd(m∗)

(L(m∗ − 1) − σ2)2 =

(2 × 432Kα
√
πsd(m∗)

L(m∗ − 1) − σ2

)2
.

We can assume that this quantity is larger than 1, as otherwise the condition on n3 will be trivially satisfied. Then, as
ρ < 1

2 , it is enough for n3 to satisfy

n3 ≥ max
( 2Kpen

√
sd(m∗)

L(m∗ − 1) − σ2 ,
2 × 432Kα

√
πsd(m∗)

L(m∗ − 1) − σ2

)1/ρ
,

or in a more compact form that

n3 ≥

(2(Kpen + 432Kα
√
π)
√

sd(m∗)
L(m∗ − 1) − σ2

)1/ρ
.

We conclude by applying Proposition 7 to both terms with

ε =
1
2
(
L(m) − L(m∗) − penn(m∗) − penn(m)

)
.

We are now in a position to prove Theorem 1.

Proof: [Proof of Theorem 1] The result is a consequence of Propositions 6 and 8. For this, we first need to ensure
that the conditions on n (16) and (22) are satisfied. Thus, we need to bound

M = max
(( 2

√
sd(m∗)

L(m∗ − 1) − σ2

(
432Kα

√
π + Kpen

))1/ρ
,
( 432

√
πKα

√
sd(m∗ + 1)

Kpen(
√

sd(m∗ + 1) −
√

sd(m∗))

)1/( 1
2−ρ))

.

If ρ̃ = min(ρ, 1
2 − ρ), then

M ≤
(
(432Kα

√
π + Kpen)

√
sd(m∗ + 1) max

( 2
L(m∗ − 1) − σ2 ,

1
Kpen

(√
sd(m∗ + 1) −

√
sd(m∗)

) ))1/ρ̃

≤

(
(432Kα

√
π + Kpen)

√
sd(m∗ + 1)

( 2
L(m∗ − 1) − σ2 +

√
2

Kpen
√

dm∗+1

))1/ρ̃
.
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Therefore, condition (8) implies that (16) and (22) are satisfied. Splitting the probability P
(
m̂ , m∗

)
into two terms

now gives
P

(
m̂ , m∗

)
= P

(
m̂ > m∗

)
+ P

(
m̂ < m∗

)
≤

∑
m>m∗

P
(
m̂ = m

)
+

∑
m<m∗

P
(
m̂ = m

)
.

On the one hand, Theorem 6 shows that, for n ≥ n0,∑
m>m∗

P
(
m̂ = m

)
≤ 74e−C3n1−2ρ

∑
m>m∗

e−C3 sd(m),

and, on the other hand, Proposition 8 gives

∑
m<m∗

P
(
m̂ = m

)
≤ 148

m∗−1∑
m=0

exp
(
−

C4

4
n
(
L(m) − L(m∗) − penn(m∗) + penn(m)

))
≤ 148m∗ exp

(
−

C4

8
n(L(m∗ − 1) − σ2)

)
,

where we have used that for n ≥ n0, (23) is true. Letting

κ5 = min
(
C3,

C4(L(m∗ − 1) − σ2)
8

)
yields

P
(
m̂ , m∗

)
≤ 74e−κ5n1−2ρ

∑
m>0

e−C3 sd(m) + 148m∗e−κ5n ≤ C1e−κ5n1−2ρ
,

where
C1 = 74

∑
m>0

e−C3 sd(m) + 148m∗.

To complete the proof, it remains to find a lower bound on κ5:

κ5 = min
(
C3,

C4(L(m∗ − 1) − σ2)
8

)
= min

( K2
pendm∗+1

128sd(m∗ + 1)(72K2α2 + K2
Y )
,

L(m∗ − 1) − σ2

16(1152K2α2 + K2
Y )

)
≥

1
16(1152K2α2 + K2

Y )
min

( K2
pendm∗+1

8sd(m∗ + 1)
, L(m∗ − 1) − σ2

)
= C2. (25)

Proof of Corollary 1

First, let us note that E
(
〈̂βm̂, S m̂(X)〉 − 〈β∗m∗ , S

m∗ (X)〉
)2

= E
(
Rm̂ (̂βm̂)

)
− Rm∗ (β∗m∗ ). Moreover, we have a.s.

Rm̂ (̂βm̂) − Rm∗ (β∗m∗ ) = Rm̂ (̂βm̂) − Rm̂(β∗m̂) + Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

= Rm̂ (̂βm̂) − R̂m̂,n (̂βm̂) + R̂m̂,n (̂βm̂) − R̂m̂,n(β∗m̂) + R̂m̂,n(β∗m̂) − Rm̂(β∗m̂) + Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

≤ Rm̂ (̂βm̂) − R̂m̂,n (̂βm̂) + R̂m̂,n(β∗m̂) − Rm̂(β∗m̂) + Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

≤ 2 sup
β∈Bm̂,α

|R̂m̂,n(β) − Rm̂(β)| + Rm̂(β∗m̂) − Rm∗ (β∗m∗ ).

We decompose the proof into two lemmas.

Lemma 4.

E
[

sup
β∈Bm̂,α

|R̂m̂,n(β) − Rm̂(β)|
]
≤ 36Kα

√
π

n

(
(m∗ + 1)

√
sd(m∗) + 74e−C3n1−2ρ

∑
m>m∗

√
sd(m)e−C3 sd(m)

)
,

where the constant C3 is defined by (6).
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Proof: From Corollary 5.25 of [20] and (15), for any m ∈ N,

E
(

sup
β∈Bm,α

|R̂m,n(β) − Rm(β)|
)
≤ 12

∫ ∞

0

√
log(N(Bm,α,D, ε)) = 36Kα

√
sd(m)

√
π

n
,

where N(Bm,α,D, ε) is the ε-covering number of Bm,α with respect to the distance D, defined by (14). This gives, for
m = m̂,

E
(

sup
β∈Bm̂,α

|R̂m̂,n(β) − Rm̂(β)|
)
≤ 36Kα

√
π

n
E
( √

sd(m̂)
)
.

To compute this expectation, Proposition 6 yields

E
( √

sd(m̂)
)

=
∑

m≤m∗

√
sd(m)P(m̂ = m) +

∑
m>m∗

√
sd(m)P(m̂ = m)

≤ (m∗ + 1)
√

sd(m∗) +
∑

m>m∗

√
sd(m)74 exp

(
−C3(n1−2ρ + sd(m))

)
≤ (m∗ + 1)

√
sd(m∗) + e−C3n1−2ρ

∑
m>m∗

√
sd(m)74 exp

(
−C3sd(m)

)
,

which completes the proof.

Lemma 5. E
(
Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

)
= 2α2eKX C1e−C2n1−2ρ

, where the constants C1 and C2 are defined by (9) and (10).

Proof: Since, for any m ∈ N, 〈β∗m, S
m(X)〉2 ≤ ‖β∗k‖

2
2‖S

m(X)‖22 ≤ α
2eKX , it follows that

E
(
Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

)
= E

((
Y − 〈β∗m̂, S

m̂(X)〉
)2
−

(
Y − 〈β∗m∗ , S

m∗ (X)〉
)2
)

= E
((
〈β∗m∗ , S

m∗ (X)〉 + ε − 〈β∗m̂, S
m̂(X)〉

)2
− ε2

)
= E

((
〈β∗m∗ , S

m∗ (X)〉 − 〈β∗m̂, S
m̂(X)〉

)2
)
≤ 2α2eKXP(m̂ , m∗).

By Theorem 1, this yields E
(
Rm̂(β∗m̂) − Rm∗ (β∗m∗ )

)
≤ 2α2eKX C1e−C2n1−2ρ

, where C1 and C2 are defined by (9) and
(10).

Letting C5 = 36Kα
√
π(m∗ + 1)

√
sd(m∗), and C6 = 2664Kα

√
π
∑

m>m∗
√

sd(m)e−C3 sd(m) + 2α2eKX C1, since, by (25),
C2 ≤ C3, we conclude that

E
(
〈̂βm̂, S m̂(X)〉 − 〈β∗m∗ , S

m∗ (X)〉
)2
≤

C5
√

n
+ C6e−C2n1−2ρ

.
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