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the date of receipt and acceptance should be inserted later

Abstract We present two bilevel programming formulations for the aircraft
deconfliction problem: one based on speed regulation in k dimensions, the other
on heading angle changes in 2 dimensions. We propose three reformulations
of each problem based on KKT conditions and on two different duals of the
lower-level subproblems. We also propose a cut generation algorithm to solve
the bilevel formulations. Finally, we present computational results on a variety
of instances.
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1 Introduction

Two aircraft are said to be in conflict if their relative distance is less than a
given safety threshold. By aircraft deconfliction we mean the set of strategies
for detecting and solving conflicts among flying aircraft. A growing effort
is dedicated to automate its optimal management, which is currently still
widely performed on the ground by (human) Air Traffic Controllers (ATC).
The development of urban air mobility will also rely on such decision-making
support tools. Looking at a certain restricted airspace on a radar screen, the
human controllers give real-time instructions to the pilots, based essentially on
the change of their trajectories.
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Many strategies can be used to avoid conflicts. In this paper, we focus on
heading angle and speed changes. While heading angle changes (HAC) are often
used by ATC to prevent collisions, speed changes are almost never performed
in practice because of the tight speed modification restrictions imposed by air
travel regulations. There are several reasons for the strict bounds, which include
aircraft dynamics, passengers’ comfort and the real-time nature of the decision
process needed to make this maneuver efficient. In 2004, however, the concept
of Subliminal Control was introduced in the context of the European project
ERASMUS [1]. Subliminal speed control consists in allowing minor speed
adjustments that have to be small enough to remain imperceptible to ATC,
thus reducing their workloads. During the ERASMUS project, the efficiency of
this method was validated through human-in-the-loop experiments by Drogoul
et al. [2], who proposed two speed modulation ranges: a weak one from -6% to
+3% and a strong one from -12% to +6%. Nowadays, the European Union is
working towards implementing these types of approaches through the Single
European Sky ATM Research (SESAR) project [3].

When we consider aircraft moving in a three-dimensional space, the need
for subliminal speed changes becomes less relevant: speed regulation (SR) is
not realistically performed while changing altitude, but only when aircraft are
flying within a fixed altitude layer. This does not apply to Unmanned Aerial
Vehicles (UAVs), however, which have different dynamics. As discussed in [4],
the minimum distance between UAVs can be guaranteed by modifying their
3D trajectories, including by SR methods.

In this paper, we present different formulations of the Aircraft Deconfliction
Problem (ADP) based on both HAC and SR. We present different bilevel pro-
gramming formulations for each case, with several corresponding reformulations.
Our formulations can also apply to other problems, such as coordinating a fleet
of robots or unmanned vehicles in a complex obstacle-ridden region [5]. This
includes, among others, the scenario of automated material handling vehicles
moving on fixed routes in warehouses or production plants, to transport raw
materials or perform tasks in production processes [6].
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Fig. 1: Two conflicting aircraft in 2 dimensions
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Fig. 2: Two conflicting aircraft in 3 dimensions

This paper considerably extends [7], where SR was applied to aircraft at the
same flight level. This implies that the optimization takes place in the plane
(see Figure 1). Here, we propose a more general approach by modeling the ADP
through SR in a k-dimensional airspace (see Figure 2), an additional single-level
reformulation based on the Wolfe dual, as well as a new bilevel formulation
of the ADP based on the HAC strategy in the plane. Moreover, we extend
the Cut Generation (CG) algorithm in [7] to the HAC based formulation, and
provide a new analysis thereof.

The rest of the paper is organized as follows. We review the relevant
literature in Sect. 2. In Sect. 3 we introduce our SR based ADP (SRADP)
formulations: a natural formulation and a bilevel formulation, with three single-
level reformulations. In Sect. 4 we introduce a bilevel formulation of the HAC
based ADP (HACADP), and its reformulations. A CG solution algorithm for
both SRADP and HACADP is presented in Sect. 5. In Sect. 6 we discuss
computational results. Some concluding comments are given in Sect. 7.

2 Literature review

There exists a wide range of approaches for modeling and solving the ADP. Here,
we give a non-exhaustive review on those related works proposing mathematical
programming formulations based on SR, HAC, or both.

SR is one of the most common strategies for aircraft deconfliction by
Mathematical Programming. In [8], speed is converted to travel time in order
to minimize the total cost of all potential conflicts: the cost of a conflict
depends on the time two aircraft spend travelling at a distance below the
security threshold, since this time is proportional to the ATC monitoring and
conflict solution effort. The decision variables of the proposed Mixed Integer
Linear Program (MILP) are the arrival times at the different intersection points
of the trajectories in the considered time horizon. An equity-oriented conflict
resolution (ECR) model, based on these same variables, is introduced in [9]. It
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proposes an innovative aircraft collision avoidance model promoting equitable
solutions (airlines are equally affected by the trajectory adjustments). The
ECR model combines three optimization stages, which can be formulated as
MILP and attempt respectively to: maximize the number of solved conflicts;
resolve conflicts in the fairest way; reduce the delay induced by the trajectory
changes. A different kind of approach is proposed in [10,11], where Mixed
Integer Nonlinear Programming (MINLP) formulations for the SRADP in
the plane are considered. Specifically, [10] proposes a heuristic algorithm that
decomposes the problem into smaller subproblems. The exact solutions of
the subproblems are then combined to form a globally feasible but possibly
sub-optimal solution of the original problem. A feasibility pump heuristic is
proposed in [11]. This algorithm builds two sequences of points: one consisting
of points that are feasible w.r.t. nonlinear constraints, and the other consisting
of points satisfying the integrality conditions. The algorithm iterates until the
two sequences converge to a feasible solution of the MINLP.

SR fails to solve frontal conflicts; moreover, it may not be sufficient to ensure
safety if speed bounds are tight. Consequently, it is usually combined with other
maneuvers, such as flight level reallocation. For instance, the authors of [12]
present a MILP formulation where conflict situations are avoided by performing
both speed and altitude changes over predefined routes. The objective is to
minimize the expected fuel costs of the aircraft. Binary variables are used to
assign flight levels, which indicate whether two aircraft fly at different altitudes,
as well as allowing deconfliction of aircraft traversing the same flight level. A
multi-objective MILP approach in a similar vein, based on both maneuver types,
and aiming at an equitable distribution of the maneuvers over the aircraft,
is proposed in [13]. In [14], two disjunctive formulations are proposed for the
ADP based on speed and altitude changes. Their objective functions penalize
the number of changes linearly or quadratically, giving rise to a MILP or a
Mixed Integer Quadratic Program, respectively.

A part of the literature focuses on the geometric characterization of conflicts.
These are then used in SR or HAC based models. This is, for example, the case
of [15], where the geometric characteristics of aircraft trajectories are used in
order to obtain closed-form expressions for single planar conflicts, based on SR
and HAC alone, as well as closed-form expressions yielding minimum deviations
from the original trajectories with combined SR and HAC. The authors of [16]
present a geometric analysis of the conflicts leading to two MILPs: one for SR
and another for HAC. The resulting separation constraints are linear on speeds
and heading angles, respectively.

Other works interpret maneuvers as a combination of SR and HAC. In [17],
SR and HAC are applied sequentially. First, a MINLP formulation minimizing
HAC and subject to the safety separation condition is presented. Then, another
MINLP is proposed which maximizes the number of collisions avoided by SR.
These two models are solved sequentially. Then, using a two-step methodol-
ogy, the solution of the SR MINLP is used as a pre-processing step for the
HAC MINLP. SR and HAC are sometimes combined in the same formulation.
In [18], the planar ADP is formulated as a nonconvex Quadratically Con-
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strained Quadratic Program (QCQP) where the objective function minimizes
the deviations from the original velocity vector. If the solution of the “natural”
Semidefinite Programming relaxation of this QCQP has rank one, then the
problem is solved; otherwise, a locally optimal and conflict-free solution with
a certain crossing pattern can be obtained via a stochastic rank reduction
procedure. A different approach, which also combines SR and HAC to find
optimal aircraft maneuvers, is proposed in [19]. In this case, a formulation in
complex numbers with disjunctive constraints is introduced; speed bounds are
translated into nonconvex quadratic constraints by considering the Euclidean
norm of the vectors of velocities; different relaxations of the resulting MINLP
are then proposed, solved, and compared.

In this paper, we formulate the SRADP in k dimensions and the HACADP
in two dimensions via bilevel programming. To the best of our knowledge,
this is the first time that a bilevel approach is used to model the ADP. Our
objective is to minimize the changes w.r.t. the original flight plan while still
satisfying the safety distance on aircraft pairs. The terminology and symbols,
as well as the formulæ aircraft separation, are taken from [10,11,17].

3 Aircraft deconfliction via speed regulation

The goal of the approach presented in this section is to minimize the total
speed changes needed to satisfy the minimum safety distance for each pair
of aircraft in a given time horizon. An important assumption is that changes
occur instantaneously and that the new speeds remain constant in the time
horizon. Specifically, given a constant speed for every aircraft, our formulation
decides new optimal constant speeds satisfying the safety constraints. The sets,
parameters, and variables used in all the mathematical formulations in this
section are listed below.

• Sets:
– A = {1, . . . , i, . . . , n} is the set of aircraft flying in a shared airspace;
– K = {1, . . . , kmax} is the set of dimension indices.

• Parameters:
– T is the length of the time horizon [hours];
– d is the safety distance between aircraft [Nautical Miles NM] 1;
– x0ik is the k-th component of the initial position of aircraft i;
– vi is the initially planned speed of aircraft i [NM/h];
– uik is the k-th component of the direction of aircraft i;
– qmin

i and qmax
i define the feasible range of the speed modification ratios

of aircraft i s.t. qmin
i < 1 < qmax

i .

• Variables: qi is the ratio of the implemented speed w.r.t. the initially
planned speed of aircraft i: qi = 1 if the speed is equal to the initially
planned one, qi > 1 if it is increased, qi < 1 if it is decreased.

11 NM = 1852 m
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3.1 Natural problem formulation

The following provides a “natural” way to formulate SRADP:

min
q

∑
i∈A

(qi − 1)2 (1a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (1b)

∀i < j ∈ A, t ∈ [0, T ]
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 ≥ d2. (1c)

Formulation (1a)–(1c) is a semi-infinite program, where the last line (Eq. (1c))
contains uncountably many constraints, which ensure aircraft separation. Specif-
ically, Eq. (1c) requires the squared Euclidean distance between each two aircraft
i and j to be greater than or equal to d2 at each instant t in the time window
[0, T ]. The (convex) objective function is the sum of squared aircraft speed
changes. This is equivalent to finding the feasible solution with the minimum
speed change, which must be in [qmin

i , qmax
i ] for every aircraft i. As mentioned

earlier, each aircraft i will start flying with the implemented speed, which is
equal to viqi.

3.2 Bilevel formulation of the problem

Since it is difficult to deal with the uncountably many constraints (1c) of
the natural formulation, we propose a bilevel reformulation of SRADP with
multiple lower-level subproblems. More details on the connections of semi-
infinite and bilevel programming can be found in [20]. For an introduction to
bilevel programming, see, for instance, [21].

The reformulation technique between semi-infinite and bilevel programs,
used in the proof of Prop. 1 below, is well known but provides an introduction
to some important concepts in bilevel programming.

Proposition 1 The semi-infinite formulation in Eq. (1a)-(1c) can be refor-
mulated exactly to the following bilevel formulation:

min
q,t

∑
i∈A

(qi − 1)2 (2a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (2b)

∀i < j ∈ A min
tij∈[0,T ]

∑
k∈K

[
(x0ik − x0jk) + tij(qiviuik − qjvjujk)

]2 ≥ d2. (2c)
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Proof We first introduce a bilevel formulation with a lower-level subproblem
for each pair of aircraft i < j ∈ A:

min
q,τ

∑
i∈A

(qi − 1)2 (3a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (3b)

∀i < j ∈ A τij ∈ arg min
tij∈[0,T ]

∑
k∈K

[
(x0ik − x0jk) + tij(qiviuik − qjvjujk)

]2
(3c)

∀i < j ∈ A
∑
k∈K

[
(x0ik − x0jk) + τij(qiviuik − qjvjujk)

]2 ≥ d2. (3d)

An optimal solution of each lower level subproblem, denoted by τij , corresponds
to the time instant at which aircraft i and j are closest. Note that each lower-
level subproblem is an optimization problem on the lower-level variables tij ,
parametrized by the upper-level variables qi and qj . Next, we reformulate
Eq. (3a)-(3d) by means of the optimal value function of each lower-level
subproblem:

ϕij(q) := min
tij∈[0,T ]

∑
k∈K

[
(x0ik − x0jk) + tij(qiviuik − qjvjujk)

]2
, (4)

which yields the so-called (and equivalent) optimal value formulation:

min
q,τ

∑
i∈A

(qi − 1)2 (5a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (5b)

∀i < j ∈ A
∑
k∈K

[
(x0ik − x0jk) + τij(qiviuik − qjvjujk)

]2 ≤ ϕij(q) (5c)

∀i < j ∈ A
∑
k∈K

[
(x0ik − x0jk) + τij(qiviuik − qjvjujk)

]2 ≥ d2. (5d)

By inspection, Eq. (5c)-(5d) can be replaced by

∀i < j ∈ A ϕij(q) ≥ d2.

By Eq. (4), we obtain Eq. (2a)-(2c) as claimed. ut

3.3 KKT reformulation

Certain bilevel programs, notably those having a convex lower-level subproblem,
can be easily reformulated to single-level by replacing the lower-level subproblem
by its KKT conditions [21, Sec. 3.5]. Assuming some regularity condition
(e.g. Slater’s condition) holds, this yields a single-level mathematical program
with complementarity constraints. Given the KKT multipliers µij and λij
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defined for each pair of lower-level subproblem constraints −tij ≤ 0 and
tij ≤ T respectively, we have:

min
q,t,µ,λ

∑
i∈A

(qi − 1)2 (6a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (6b)

∀i < j ∈ A
∑
k∈K

[
2tijψ

2
ijk + 2(x0ik − x0jk)ψijk − µij + λij

]
= 0 (6c)

∀i < j ∈ A µij , λij ≥ 0 (6d)

∀i < j ∈ A µij tij = 0 (6e)

∀i < j ∈ A λij tij − λij T = 0 (6f)

∀i < j ∈ A 0 ≤ tij ≤ T (6g)

∀i < j ∈ A
∑
k∈K

[
(x0ik − x0jk) + tijψijk

]2 ≥ d2 (6h)

where the symbol ψijk appearing in Eq. (6c) and (6h), and defined as:

ψijk := qiviuik − qjvjujk, (7)

is used throughout the paper as short-hand for its definition in the right hand
side.

Constraints (6c) (setting the gradient of the lower-level objective func-
tion equal to zero) correspond to the stationary condition, Eq. (6d) and (6g)
to dual and primal feasibility conditions respectively, and Eq. (6e)-(6f) to
complementary slackness. Eq. (6h) enforce the safety distance.

We remark that the complementarity constraints Eq. (6e)-(6f) involve
products of continuous decision variables, and, therefore, define nonconvex
feasible sets in general. A possible reformulation based on MILP modeling
may define mixed-integer linear feasible sets instead, but also requires the
determination of some big-M constant providing a valid bound to µ, λ. This
problem, however, is NP-hard [22]. This particular reformulation, moreover,
would not dispose of the nonconvexities in constraints Eq. (6c) and (6h). We
therefore propose to solve the formulation above by means of global optimization
techniques (see Sec. 6).

3.4 Dual reformulations

We propose another reformulation of the bilevel problem (2a)–(2c), which arises
because the lower-level subproblems in (2c) are convex Quadratic Programs
(QPs) occurring in constraints having general form:

min
y
{1

2
y>Qxy + p>x y + cx | Ay ≥ b} ≥ const (8)

with Qx positive semidefinite.
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In general, given the dual variable z, by strong duality we have:

max
z
{LowerDualObj(x, z) | LowerDualConstr(x, z)}

= min
y
{1

2
y>Qxy + p>x y + cx | Ay ≥ b}, (9)

where LowerDualObj(x, z) and LowerDualConstr(x, z) denote the objective func-
tion and the constraints of the dual problem of the left hand side of Eq. (8),
respectively. If we impose the following inequality:

max
z
{LowerDualObj(x, z) | LowerDualConstr(x, z)} ≥ const (10)

then, of course, Eq. (8) will also hold due to Eq. (9). The two constraints
Eq. (8) and (10) are then equivalent. The following proposition, first proved in
[7] w.r.t. Dorn’s dual problem, can be easily generalized as follows.

Proposition 2 Assume Eq. (8) occurs in a bilevel formulation. Replacing
Eq. (8) by the constraint set:

LowerDualObj(x, z) ≥ const
LowerDualConstr(x, z)

}
(11)

yields a formulation with the same optima.

Proof We can replace Eq. (8) by the equivalent Eq. (10). If Eq. (10) is active
(i.e. it is satisfied as an equality), then the maximum objective function value
of the dual lower-level subproblem is const. Because of the max operator, its
objective function cannot be greater than this value. This means that Eq. (11)
can only be feasible when LowerDualObj(x, y) attains its maximum over its
feasible region, defined by LowerDualConstr(x, z). If Eq. (10) is inactive, it has
no effect on the optimum. Since Eq. (11) is a relaxation of Eq. (10), the same
holds. �

Proposition 2 provides us with a scheme for reformulating (2a)–(2c), since,
as already mentioned, Eq. (2c) is of the form (8). We observe that we can
consider two different duals of the lower-level subproblems: Dorn’s dual [23,24]
(as we did for K = {1, 2} in [7]), and Wolfe’s dual [25].

3.4.1 Dorn’s dual reformulation

Given the dual variables gij and zij of each lower-level subproblem in the left
hand side of Eq. (2c) (defined for constraints −tij ≤ 0 and tij ≤ T respectively),
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using Dorn’s dual [23,24] and Prop. 2, the following reformulation of (2a)–(2c)
follows:

min
q,g,z

∑
i∈A

(qi − 1)2 (12a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (12b)

∀i < j ∈ A −
∑
k∈K

ψ2
ijk g

2
ij − Tzij ≥ d2 −

∑
k∈K

(x0ik − x0jk)2 (12c)

∀i < j ∈ A − zij
2
−
∑
k∈K

ψ2
ijk gij ≤

∑
k∈K

(x0ik − x0jk)ψijk (12d)

∀i < j ∈ A zij ≥ 0, (12e)

obtained by the application of Prop. 2 to replace the lower-level subproblems
of Eq. (2a)-(2c) by their Dorn duals in the variables gij , zij for each aircraft
pair i < j ∈ A. This yields Eq. (12c)-(12d). Note that the primal lower-level
variable tij does not appear in (12a)–(12e). This is not an issue because we
just want to know the new aircraft speeds such that each potential conflict is
avoided.

Proposition 3 Eq. (12a)–(12e) is an exact reformulation of (2a)–(2c).

Proof By Dorn’s duality theory [23], (D) is a dual problem of (P ):

min
y

1
2y
>Qy + p>y

Ay ≥ b
y ≥ 0

 (P )

max
g,z
− 1

2g
>Qg + b>z

A>z −Qg ≤ p
z ≥ 0

 (D)

In our case, we have:

• y := tij ,
• Q := 2

∑
k∈K

ψ2
ijk,

• p := 2
∑
k∈K

(x0ik − x0jk)ψijk,

• A := −1,
• b := −T .

Recall that ψijk is constant in the lower level since, by Eq. (7), it only depends
on the upper-level variables qi and qj . By easy replacements and Prop. 2,
with const = d2 −

∑
k∈K

(x0ik − x0jk)2 in Eq. (11), the formulation Eq. (12a)-(12e)

follows. ut

3.4.2 Wolfe’s dual reformulation

Another single-level reformulation can be obtained using Prop. 2 and Wolfe’s
dual [25] of the convex lower-level subproblems in Eq. (2c). The lower-level
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dual objective function is the Lagrangian of the lower-level primal problem in
Eq. (2c) ∑

k∈K

[
(x0ik − x0jk) + tijψijk

]2
+ αij(tij − T )− βijtij ,

where αij and βij are the Lagrangian multipliers associated to the constraints
−tij ≤ 0 and tij ≤ T , respectively. Therefore, by Prop. 2, we obtain the
following reformulation of Eq. (2a)-(2c):

min
q,t,α,β

∑
i∈A

(qi − 1)2 (13a)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (13b)

∀i < j ∈ A
∑
k∈K

[
(x0ik − x0jk) + tijψijk

]2
+ αij(tij − T )− βijtij ≥ d2 (13c)

∀i < j ∈ A
∑
k∈K

[
2tijψ

2
ijk + 2(x0ik − x0jk)ψijk + αij − βij

]
= 0 (13d)

∀i < j ∈ A αij , βij ≥ 0. (13e)

We note that the single-level reformulation presented above involves some
of the KKT conditions as constraints: the stationarity condition Eq. (13d) and
the nonnegativity of the Lagrangian multipliers Eq. (13e). The (nonlinear)
complementarity constraints, however, are not needed in Wolfe’s duality [25].
The obtained reformulation Eq. (13a)-(13e) is exact.

Proposition 4 Eq. (13a)-(13e) is an exact reformulation of Eq. (2a)-(2c).

Proof By Wolfe’s duality theory [25], (D) is a dual problem of (P ):

min
y

1
2y
>Qy + p>y + c

Ay ≥ b
y ≥ 0

 (P )

max
g,z
L(y, α, β)

∂L
∂y = 0

α, β ≥ 0

 (D)

with:

L(y, α, β) =
1

2
y>Qy + p>y + c+ α(b−Ay)− βy,

and
∂L
∂y

= Qy + p+ α− β.

In our case, we have:

• y := tij ,
• Q := 2

∑
k∈K

ψ2
ijk,

• p := 2
∑
k∈K

(x0ik − x0jk)ψijk,

• c :=
∑
k∈K

(x0ik − x0jk)2,
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• A := −1,
• b := −T .

Again, we recall that ψijk is constant in the lower level because, by Eq. (7),
it only depends on the upper level variables qi and qj . By easy replacements
and Prop. 2, with const = d2 in Eq. (11), the formulation Eq. (13a)-(13e)
follows. ut

4 Aircraft deconfliction via heading angle changes

In this section, we present several formulations to model the HACADP. The goal
is again to satisfy the minimum safety distance for each pair of aircraft while
minimizing the total deviations with respect to the original flight plan. The
outcome of the HACADP will be the set of new heading angles of the aircraft.
After collision avoidance, the routes are corrected (as a post-processing step)
in order to return each aircraft to its original trajectory. The new parameters
and variables used in the mathematical formulations introduced in this section
are listed below.

• Parameters:
– φi is the initial heading angle of aircraft i
– x0i is the first component of the initial position of aircraft i
– y0i is the second component of the initial position of aircraft i
– θmin

i and θmax
i are the bounds on heading angle variation, with θmin

i < 0
and θmax

i > 0
• Variables: θi is the heading angle variation for each aircraft i

4.1 Bilevel formulation of the problem

We introduce a bilevel formulation where the upper-level decision variables
are the heading angle variations θi (for all i ∈ A) and the lower-level decision
variables are tij (for all i < j ∈ A). Each lower-level subproblem is parametrized
by the upper-level variables θi, θj .

min
θ,t

∑
i∈A

θ2i (14a)

∀i ∈ A θmin
i ≤ θi ≤ θmax

i (14b)

∀i < j ∈ A min
tij∈[0,T ]

[
(x0i − x0j ) + tij(cos(φi + θi)vi − cos(φj + θj)vj)

]2
+
[
(y0i − y0j ) + tij(sin(φi + θi)vi − sin(φj + θj)vj)

]2 ≥ d2.
(14c)

The convex objective function of the upper level is the sum of squared
heading angle changes, which are bounded by [θmin

i , θmax
i ]. The objective of
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each lower-level subproblem is to minimize the squared Euclidean distance
between aircraft i and j over tij ∈ [0, T ]. Its expression is obtained by defining
the position (xi(t), yi(t)) of aircraft i at time t as

xi(t) = x0i + cos(φi + θi)vit and yi(t) = y0i + sin(φi + θi)vit.

Note that the lower-level objective function is also convex in tij . Similarly
to Eq. (2c) of previous section, Eq. (14c) guarantees that the minimum squared
distance between each pair within the time horizon is at least d2.

The optimal heading angle change θ?i for each aircraft i is obtained by
solving Eq. (14a)-(14c). The trajectory deviation is followed until necessary
to guarantee the safety distance, then the aircraft must return to their initial
trajectories. Following what is done in [26,17], for each pair of aircraft the
convex unconstrained QP Eq. (15) is solved as a post-processing step to return
each aircraft to its original flight plan as soon as possible after conflict resolution:

min
tij

∥∥∥∥((x0i − x0j ) + tij(cos(φi + θ?i )vi − cos(φj + θ?j )vj)
(y0i − y0j ) + tij(sin(φi + θ?i )vi − sin(φj + θ?j )vj)

)∥∥∥∥2 . (15)

The objective function of the problem Eq. (15) is the relative squared
Euclidean distance between aircraft, which is computed using the optimal
heading angles of the proposed bilevel problem Eq. (14a)–(14c).

Once the optimal solution τ?ij for problem Eq. (15) is found, we compute

T ?i := max
j:i 6=j

τ?ij (16)

as the optimal time for which aircraft i can return to its initial trajectory
after the deconfliction (there will be, for each i, a different τij for every pair of
aircraft (i, j)).

Knowing (xi(T
?
i ), yi(T

?
i )) and the exit point from the air sector, it is easy

to determine the new trajectory each aircraft has to follow in order to go back
to its initial trajectory, as shown in Fig. 3.

As clarified in [26], when the aircraft are returning to the initial trajecto-
ries, new conflicts may occur. In order to ensure a conflict-free situation, the
HACADP must be solved again. Sometimes, the maneuver to return to the
initial trajectory must start when the aircraft is already close to the boundary
of the air sector. This could lead to an angle variation exceeding the bounds. In
this case, [26] proposes turning at the maximum bound and sending a warning
message to the air traffic controllers of the following sector notifying that the
aircraft is arriving in that sector at a different entry point w.r.t. the scheduled
one.
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θ2

θ1

Exit point 2

Exit point 1
(x1(T ?

1 ), y1(T ?
1 ))

Fig. 3: New trajectories of two aircraft that, after conflict resolution, return to
their initial trajectories (dashed lines)

4.2 KKT reformulation

We derive the KKT reformulation of Eq. (14a)–(14c), based on KKT multipliers
λij (resp. µij) associated to constraints tij ≤ T (resp. −tij ≤ 0). Assuming
some regularity conditions hold, the reformulation is exact since the lower level
is convex in the variable tij [21, Sec. 3.5].

min
θ,t,λ,µ

∑
i∈A

θ2i (17a)

∀i ∈ A θmin
i ≤ θi ≤ θmax

i (17b)

∀i < j ∈ A 2tij(c
2
ij + s2ij) + 2(x0i − x0j )cij + 2(y0i − y0j )sij

+ λij − µij = 0 (17c)

∀i < j ∈ A λij , µij ≥ 0 (17d)

∀i < j ∈ A λij tij − λij T = 0 (17e)

∀i < j ∈ A µij tij = 0 (17f)

∀i < j ∈ A 0 ≤ tij ≤ T (17g)

∀i < j ∈ A
[
(x0i − x0j ) + tijcij

]2
+
[
(y0i − y0j ) + tijsij

]2 ≥ d2, (17h)

where the symbols cij and sij are shorthand for the following nonlinear expres-
sions:

cij := cos(φi + θi)vi − cos(φj + θj)vj (18)

sij := sin(φi + θi)vi − sin(φj + θj)vj . (19)

The formulation in Eq. (17a)–(17h) is a single-level Nonlinear Programming
(NLP) problem in the variables θ, t, λ, and µ. Constraints Eq. (17c) correspond
to stationarity conditions of the lower-level subproblems, Eq. (17g) to primal
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feasibility, Eq. (17d) to dual feasibility, Eq. (17e) and Eq. (17f) to complemen-
tarity conditions. We, again, require that the safety distance is satisfied for
each pair of aircraft with constraints (17h).

4.3 Dual reformulations

We follow the procedure discussed in Sect. 3.4 in order to obtain two dual
reformulations of Eq. (14a)-(14c). The first involves Dorn’s dual of the lower-
level subproblems, while the second involves Wolfe’s dual.

4.3.1 Dorn’s dual reformulation

Given the dual variables gij and zij of the lower-level subproblems, using Dorn’s
dual and Prop. 2, the following reformulation of Eq. (14a)-(14c) is obtained:

min
θ,g,z

∑
i∈A

θ2i (20a)

∀i ∈ A θmin
i ≤ θi ≤ θmax

i (20b)

∀i < j ∈ A − g2ij(c2ij + s2ij)− Tzij ≥ d2 − (x0i − x0j )2 − (y0i − y0j )2 (20c)

∀i < j ∈ A − zij
2
− (c2ij + s2ij)gij ≤ (x0i − x0j )cij + (y0i − y0j )sij (20d)

∀i < j ∈ A zij ≥ 0. (20e)

The formulation in Eq. (20a)–(20e) is a single-level problem in the variables θ, g,
and z, the exactness of which is proved below. Note that the primal lower-level
variable tij does not appear in(20a)–(20e). This is not an issue because we
just want to know the new heading angles such that each potential conflict is
avoided.

Proposition 5 Eq. (20a)-(20e) is an exact reformulation of Eq. (14a)-(14c).

Proof By Dorn’s duality theory [23], (D) is a dual problem of (P ):

min
y

1
2y
>Qy + p>y

Ay ≥ b
y ≥ 0

 (P )

max
g,z
− 1

2g
>Qg + b>z

A>z −Qg ≤ p
z ≥ 0

 (D)

In our case, we have:

• y := tij ,
• Q := 2(c2ij + s2ij),

• p := 2(x0i − x0j )cij + 2(y0i − y0j )sij ,
• A := −1,
• b := −T .
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We recall that cij and sij are constant in the lower level because, by Eq. (18)-
(19), they only depend on the upper-level variables θi and θj . By easy replace-
ments and Prop. 2, with const = d2 − (x0i − x0j)2 − (y0i − y0j )2 in Eq. (11),
Eq. (20a)-(20e) follow. ut

4.3.2 Wolfe’s dual reformulation

Using Prop. 2 and Wolfe’s dual of each lower-level subproblem in the variables
αij and βij , we obtain the following single-level reformulation of of Eq. (14a)-
(14c):

min
θ,t,α,β

∑
i∈A

θ2i (21a)

∀i ∈ A θmin
i ≤ θi ≤ θmax

i (21b)

∀i < j ∈ A
[
(x0i − x0j ) + tijcij

]2
+
[
(y0i − y0j ) + tijsij

]2
+ αij(tij − T )− βijtij ≥ d2 (21c)

∀i < j ∈ A 2tij(c
2
ij + s2ij) + 2(x0i − x0j )cij + 2(y0i − y0j )sij

+ αij − βij = 0 (21d)

∀i < j ∈ A αij , βij ≥ 0. (21e)

With Eq. (21c), the Lagrangian of each lower-level subproblem is required to
exceed the minimum required safety distance. The stationarity KKT condition
(gradient of the Lagrangian equal to zero) corresponds to (21d). Constraints
(21e) impose the nonnegativity of the dual variables αij and βij . The exactness
of formulation (21a)-(21e) is proved below.

Proposition 6 Eq. (21a)-(21e) is an exact reformulation of Eq. (14a)-(14c).

Proof By Wolfe’s duality theory [25], (D) is a dual problem of (P ):

min
y

1
2y
>Qy + p>y + c

Ay ≥ b
y ≥ 0

 (P )

max
g,z
L(y, α, β)

∂L
∂y = 0

α, β ≥ 0

 (D)

with:

L(y, α, β) =
1

2
y>Qy + p>y + c+ α(b−Ay)− βy,

and
∂L
∂y

= Qy + p+ α− β.

In our case, we have:

• y := tij ,
• Q := 2(c2ij + s2ij),

• p := 2(x0i − x0j )cij + 2(y0i − y0j )sij ,
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• c := (x0i − x0j )2 + (y0i − y0j )2,
• A := −1,
• b := −T .

Again we recall that cij and sij are constant in the lower level because, by
Eq. (18)-(19), they only depend on the upper-level variables θi and θj . By
easy replacements and Prop. 2, with const = d2 in Eq. (11), Eq. (21a)-(21e)
follow. ut

5 Cut generation algorithm

Cutting-plane approaches are one of the major techniques used for solving linear,
quadratic [27], and convex semi-infinite programs. In [7], we proposed a tailored
CG algorithm for the bilevel formulation Eq. (2a)–(2c) in two dimensions. We
recall our CG algorithm in Sec. 5.1 for SRADP in k dimensions. Then, we
discuss the possibility of exploiting some dominance relationships among cuts
in order to speed up the CG algorithm. In Sec. 5.2, we tailor the CG algorithm
for the bilevel formulation Eq. (14a)–(14c) of HACADP.

The problem solved at each iteration of the CG the algorithm is nonconvex.
In our implementation, its solution is obtained either with global solvers or, in
the interest of efficiency, by executing a local NLP solver several times within
a multistart procedure that starts from randomly chosen points.

5.1 Cut generation algorithm for ADP via speed regulation

Algorithm 1 is a solution algorithm for the bilevel formulation (2a)-(2c), which
iteratively defines the feasible set of the upper-level problem by means of
quadratic cuts in the upper-level variables q. At each iteration h, the relaxation
Rh of the original bilevel problem, obtained by considering the upper-level
problem together with the cuts added in previous iterations, is solved. At the
outset, R1 is:

min
q

∑
i∈A

(qi − 1)2

∀i ∈ A qmin
i ≤ qi ≤ qmax

i .
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Algorithm 1 CG algorithm for SRADP

1: Let h = 1. Initialize the relaxation Rh of the bilevel program, obtained by considering
the upper-level problem only.

2: while true do
3: Solve Rh to obtain the optimal solution q∗.
4: For each aircraft pair (i, j), compute the instant τhij ∈ [0, T ] as

τhij = −
∑

k∈K(x0ik − x
0
jk)(q∗i viuik − q∗j vjujk)∑

k∈K(q∗i viuik − q∗j vjujk)2
. (22)

5: if
∑

k∈K
((x0ik − x

0
jk) + τhij(q∗i viuik − q∗j vjujk))2 ≥ d2 ∀i < j ∈ A then

6: The algorithm terminates and q∗ is the optimal solution of the bilevel formulation.
7: else
8: For each pair (i, j) violating the inequality, define Rh+1 as Rh with the adjoined

inequality: ∑
k∈K

((x0ik − x
0
jk) + τhij(qiviuik − qjvjujk))2 ≥ d2. (23)

9: h := h+ 1
10: end if
11: end while

The problem Rh, solved at each iteration of Algorithm 1, is nonconvex since
constraints (23) are of the form f(qi, qj) ≥ d2 with f(qi, qj) convex. Therefore,
in order to find global optima of Rh, a global optimization algorithm should
be employed. This, however, would make the CG algorithm excessively slow.
In our implementation (see Sect. 6) we chose to heuristically solve Rh using a
multistart algorithm calling a local NLP solver, from randomly chosen starting
points, when global optimization solvers are too slow.

Note that, in Step 4, τhij , easily computed in closed form, is the instant for
which the distance between i and j is minimum. If this distance is greater than
or equal to the safety value for each pair of aircraft, the algorithm terminates
at Step 6, as q∗ must be an optimal solution of the bilevel formulation.

5.1.1 Cut dominance

The time per iteration taken by Algorithm 1 increases with the number of cuts
added to the formulation. In fact, while solutions of the lower-level subproblems
are easily computed in closed form at Step 4, increasing the number of quadratic
constraints (23) yields a time increase when solving Rh. It would therefore be
desirable to remove as many unnecessary cuts as possible. Consequently, we
consider dominance relationships between cuts.

In particular, at each iteration h > 1, given a pair (i, j), we only wish
to consider non-dominated cuts from Eq. (23) as constraints of our relaxed
problem Rh. Let us define, for any h′ ∈ {1, . . . , h− 1},

m := max{τhij , τh
′

ij }, p := min{τhij , τh
′

ij },



Aircraft deconfliction with bilevel programming 19

with m ≥ p ≥ 0. We aim at finding a dominance relationship among the
following two cuts:∑

k∈K

[
(x0ik − x0jk)2 +m2ψ2

ijk + 2m(x0ik − x0jk)ψijk
]

∑
k∈K

[
(x0ik − x0jk)2 + p2ψ2

ijk + 2p(x0ik − x0jk)ψijk
]
.

First, we remove the nonnegative term
∑
k∈K

(x0ik − x0jk)2 from both cuts and

just compare∑
k∈K

[
m2ψ2

ijk + 2m(x0ik − x0jk)ψijk
]
, and

∑
k∈K

[
p2ψ2

ijk + 2p(x0ik − x0jk)ψijk
]
.

Moreover, notice that ∑
k∈K

m2ψ2
ijk ≥

∑
k∈K

p2ψ2
ijk

holds, what with m2 and p2 being both multiplied by the same nonnegative
term

∑
k∈K ψ

2
ijk.

Different scenarios arise depending on the relationship among the terms of
the cut expressions. Either the cut involving p dominates the cut involving m,
namely∑

k∈K

[
m2ψ2

ijk + 2m(x0ik − x0jk)ψijk
]
≥
∑
k∈K

[
p2ψ2

ijk + 2p(x0ik − x0jk)ψijk
]
,

or the cut involving m dominates the cut involving p, namely∑
k∈K

[
m2ψ2

ijk + 2m(x0ik − x0jk)ψijk
]
≤
∑
k∈K

[
p2ψ2

ijk + 2p(x0ik − x0jk)ψijk
]
.

If, for each feasible qi and qj ,∑
k∈K

(x0ik − x0jk)ψijk ≥ 0 (24)

then ∑
k∈K

2m(x0ik − x0jk)ψijk ≥
∑
k∈K

2p(x0ik − x0jk)ψijk

also holds for each qi, qj ∈ [qmin, qmax], since m ≥ p by definition.
However, if Eq. (24) is true for all qi, qj ∈ [qmin, qmax] (i.e., the cut involving

p dominates the one involving m), then τhij ≤ 0 for all h. In fact, τhij has a
nonpositive numerator in Eq. (22) when Eq. (24) holds. This corresponds to
instances where aircraft i and j do not collide in the time horizon (0, T ], which
obviously makes this dominance rule moot.

If, for each feasible qi and qj ,
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∑
k∈K

(x0ik − x0jk)ψijk < 0, (25)

we can analyse the relationship between cuts by comparing the positive term
(m2 − p2)

∑
k∈K ψ

2
ijk, and the negative term 2(m− p)

∑
k∈K(x0ik − x0jk)ψijk.

In general we cannot infer anything about the above mentioned relationship,
unless we consider specific subclasses of the problem. Therefore, although τhij is
nonnegative in this case, it is not possible to detect the existence of dominances
among cuts.

5.2 Cut generation algorithm for ADP via HAC

We propose a tailored version of the CG algorithm for the bilevel formulation
Eq. (14a)-(14c), which models the HACADP. In this case, the nonconvex
problem R1 solved at the first iteration is

min
θ

∑
i∈A

θ2i

∀i ∈ A θmin
i ≤ θi ≤ θmax

i .

Algorithm 2 CG algorithm for HACADP

1: Let h = 1. Initialize the relaxation Rh of the bilevel program, obtained by considering
the upper-level problem only.

2: while true do
3: Solve Rh to obtain the optimal solution θ∗.
4: For each aircraft pair (i, j), compute the instant τhij ∈ [0, T ] as

τhij = −
(x0i − x0j )c∗ij + (y0i − y0j )s∗ij

(c∗ij)2 + (s∗ij)2
, (26)

with c∗ij = cos(φi + θ∗i )− cos(φj + θ∗j ) and s∗ij = sin(φi + θ∗i )− sin(φj + θ∗j ).

5: if
[
(x0i − x0j ) + τhijc

∗
ij

]2
+

[
(y0i − y0j ) + τhijs

∗
ij

]2
≥ d2 ∀i < j ∈ A then

6: The algorithm terminates and θ∗ is the optimal solution of the bilevel formulation.
7: else
8: For each pair (i, j) violating the inequality, define Rh+1 as Rh with the adjoined

inequality: [
(x0i − x0j ) + τhij(cos(φi + θi)vi − cos(φj + θj)vj)

]2
+

[
(y0i − y0j ) + τhij(sin(φi + θi)vi − sin(φj + θj)vj)

]2
≥ d2. (27)

9: h := h+ 1
10: end if
11: end while
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Again, the problem Rh, solved at each iteration of the algorithm, is non-
convex since the constraints (27) are of the form f(θi, θj) ≥ d2 with f(θi, θj)
convex. We find θ∗ in Step 3 using a global NLP solver or, when the time
limit is exceeded, with a local NLP solver within a multistart procedure from
randomly chosen starting points.

As in Algorithm 1, τhij indicates when the distance between i and j is
minimized and it is always computed in closed form in Step 4. If this distance
satisfies the safety threshold for each pair of aircraft, the algorithm terminates
at Step 6.

The considerations carried out in Sec. 5.1.1 also apply to Algorithm 2: we
can prove the existence of a dominance relation on the cuts only for those pairs
that do not collide in the time horizon (0, T ].

6 Computational experiments

For the SRADP in k dimensions, we use a 3D generalization of the 2D instances
tested in [7] (named sphere instances in Tab 1), where n aircraft are placed
on a sphere of a given radius r — see Figure 4. We consider also instances in
which aircraft move along straight 3D trajectories (named non-sphere instances
in Tab 1), which intersect in at least n

2 conflict points.

r

A1

A2

A3

A4

A5

Fig. 4: n conflicting aircraft flying towards the center of a sphere

A trajectory is defined by two angles: the so-called pitch angle γi (angle
that the vector of the direction ui forms with the axis k3) and the heading
angle φi (angle between the projection of ui onto the k1k2-plane and the axis
k1) — see Figure 5.

We test our approaches for the HACADP using the set of instances proposed
in [17], where n aircraft are randomly placed on a circle of a given radius r.
All aircraft speeds are initially set to the same value, and their trajectories are
such that the aircraft fly exactly or almost exactly towards the center of the
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k2

k3

k1

ui

φi

γi

Fig. 5: The 3-dimensional airspace

circle — see Figure 6. These problems, characterized by an unrealistic highly
symmetric configuration, are known in literature as circle problems.

We also consider instances, always from [17], in which aircraft are placed
around a circle and have trajectories with a starting heading angle φi randomly
chosen in [−π6 ,

π
6 ] with respect to the diameter of the circle. The end point

of each trajectory belongs to the circle as well. Note that these problems,
named random circle instances in Tab 2, are more realistic than circle problems
without deviation.

Moreover, we test some non-circle instances from [11] in which aircraft
move along straight trajectories intersecting in nc conflict points.

Conflict zone

n aircraft

Fig. 6: n conflicting aircraft flying towards the center of a circle

In all the experiments, we consider a time horizon of T = 2 hours and
standard safety distance d = 5 NM. All the solvers are run with their default
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settings. The tests are performed on a 2.53GHz Intel(R) Xeon(R) CPU with
49.4 GB RAM.

6.1 ADP in 3 dimensions via speed regulation

For the sphere instances the initial speed is vi = 400 NM/h for each i ∈ A and
the angles γi and φi are randomly generated within [0, π2 ] and parameters x0ik
and uik are given by

ui1 = cos(φi) sin(γi), ui2 = sin(φi) sin(γi), ui3 = cos(γi), x0ik = −r uik

where the sphere radius r is chosen in {100, 200, . . . , 700}. The bounds qmin
i

and qmax
i are set to 0.94 and 1.03 respectively, following the weaker bounds

proposed by the ERASMUS project.
We implement the single-level formulations using the AMPL modeling

language [28] and solve them with the global optimization solver Baron [29] (B
in the Table 1). When Baron exceeds the time-limit (set to 3600 seconds), we
use a Multistart algorithm (MS in Table 1), which performs 1000 calls to the
SNOPT [30] local NLP solver from randomly sampled starting points.

We solve the bilevel formulation using the CG algorithm in Sect. 5 (CG
in Table 1) with maximum iteration number set to 1000; at each iteration we
solve the relaxed formulation Rh using the SNOPT [30] local NLP solver called
50 times within a Multistart procedure from randomly chosen points.

All the results are reported in Table 1. The headings are the following: n
number of aircraft; r radius of the sphere in NM; obj best objective value found
by each model; cpu computing time in seconds; slv solver used (for the CG
algorithm we always use a Multistart method calling SNOPT to solve the inner
problem Rh).

The value of the objective function is always very small, given the nature
of the problem (q must be in [0.94, 1.03]). The tight speed variation bounds im-
posed by ERASMUS project lead to an additional complication since instances
are not guaranteed to be feasible. Best objective values and minimum required
time are reported in bold for each instance. The best formulation in terms of
solution quality is the one in Eq. (6a)-(6h) based on KKT conditions of the
lower-level subproblems. In terms of computational efficiency, for most of the
instances the CG Alg. 1 is the best.

6.2 ADP in 2 dimensions via heading angles changes

As mentioned above, the HACADP instances are taken from [17,11]. The
authors set vi = 400 NM/h for each i ∈ A for all the instances. For the circle
instances the angles φi are randomly generated and parameters x0i and y0i are
given by

x0i = −r cos(φi), y0i = −r sin(φi).
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For the random circle instances both the angles φi and the parameters x0i and
y0i are randomly generated. The bounds θmin

i and θmax
i are set to −π/6 and π/6

respectively.
We again implement the formulations using the AMPL modeling language

[28] and solve them with the global optimization solver Couenne [31] (C in
the Table 2). We do not use Baron because it cannot handle the trigonometric
functions sine and cosine. When Couenne exceeds the time-limit (set to 3600
seconds), we use a Multistart algorithm (MS in Table 2). It performs 1000
calls to SNOPT [30] for KKT reformulation Eq. (17a)–(17h) and Wolfe’s dual
reformulation Eq. (21a)–(21e), and 1000 calls to IPOPT [32] in the case of
Dorn’s dual reformulation Eq. (20a)–(20e). In all of the calls, starting points
are randomly chosen.

We solve the bilevel formulation using the CG algorithm in Sect. 5 (CG
in Table 2) with maximum iteration number set to 1000; at each iteration we
solve the relaxed formulation Rh using Couenne, or, when the CG exceed the
time-limit of 3600 seconds, the SNOPT [30] local NLP solver called 50 times
within a Multistart procedure from randomly chosen points.

Our results are reported in Table 2. The headings are the following: name
of the instance; n number of aircraft; nc number of potential conflicts; obj
best objective value found by each model; cpu computing time in seconds; slv
solver used (in the last column, the solver used to solve the inner problem
Rh of the CG algorithm). In Table 3 the results on circle and random circle
instances are compared with those that are obtained using HAC only (without
pre-processing) in [17]. Best objective values and minimum required time are
reported in bold for each instance.

As shown in Table 2, among the models proposed in this paper, for most of
the instances the CG algorithm is the best in terms of objective function and

Table 1: Results obtained solving 4 different formulations of SRADP

Instances KKT reformulation Dorn’s dual reformul. Wolfe’s dual reformul. CG
n r obj cpu slv obj cpu slv obj cpu slv obj cpu

Sphere
2 100 0.0022197 0.63 B 0.0022226 0.86 B 0.0022253 0.62 B 0.0022268 0.16
3 200 0.0014057 9.64 B 0.0014036 5.86 B 0.0014066 11.4 B 0.0014077 0.61
4 200 0.0037129 312 B 0.0037034 270 B 0.0037091 3582 B 0.0037142 0.90
5 300 0.0029590 5.90 MS 0.0029588 4.53 MS 0.0029590 11.7 MS 0.0029586 1.67
6 300 0.0058469 9.69 MS 0.0058469 7.41 MS 0.0058472 12.6 MS 0.0058750 4.41
7 500 0.0028553 15.3 MS 0.0028563 20.2 MS 0.0028563 26.4 MS 0.0028916 10.2
8 500 0.0045492 16.8 MS 0.00460517 35.6 MS 0.0045718 23.1 MS 0.0045989 22.7
9 500 0.0069865 20.4 MS 0.0072103 53.6 MS 0.0071089 28.1 MS 0.0071280 61.2
10 600 0.0064098 32.2 MS 0.0065400 80.9 MS 0.0064131 44.2 MS 0.0065062 242
12 700 0.0085109 79.4 MS 0.00868476 57.4 MS 0.0084041 81.4 MS 0.0088769 1063
Non-sphere
2 - 0.0003047 0.14 B 0.0003049 0.17 B 0.0003049 0.26 B 0.0003049 0.44
4 - 0.0032779 54.9 B 0.0032827 5.19 MS 0.0037091 3584 B 0.0032821 0.69
6 - 0.0060038 14.5 MS 0.0060038 10.2 MS 0.0060038 16.2 MS 0.0060032 0.75
8 - 0.011705 19.0 MS 0.011936 28.5 MS 0.011705 17.9 MS 0.011704 0.54
10 - 0.015025 34.5 MS 0.015025 67.3 MS 0.015025 30.0 MS 0.015025 2.30
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computational time, even when the inner problem Rh is solved using Couenne.
Looking at the comparison of our results with the ones obtained in [17] in
Table 3, it appears that they are comparable. Again the best solutions are
obtained for most of the instances by the CG algorithm.

7 Conclusions

We propose bilevel programming as a suitable approach to model the well-
known aircraft deconfliction problem or ADP. In particular, we present two
bilevel formulations of the ADP: one based on speed regulation in k dimensions
and another where potential conflicts are avoided via heading angle changes in
two dimensions. In both cases, the convexity of the lower-level subproblems
allows us to derive three different single-level problems respectively, using KKT
conditions, Dorn’s duality, and Wolfe’s duality.

The single level reformulations of both problems are solved by using state-
of-the-art solvers, which provide good solutions in reasonable computing time.
Alternatively, we propose a cut generation algorithm to solve the bilevel prob-
lems, and theoretically discuss the existence of dominance relations among cuts
that could improve the algorithm’s performance. The proposed cut generation
algorithm, compared with state-of-the-art solvers, obtains the best results for
most of the tested instances in few seconds. Numerical results, when compared
with other approaches in the literature, are encouraging and stress the potential
of the proposed approach.
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Table 2: Results obtained solving 4 different formulations of HACADP

Instances KKT reformul. Dorn’s dual reformul. Wolfe’s dual reformul. CG
Name n nc obj cpu slv obj cpu slv obj cpu slv obj cpu slv

Circle
pb n2 2 1 0.001250 0.15 C 0.001250 0.14 C 0.001250 0.18 C 0.001250 0.23 C
pb n3 1 3 3 0.002501 0.83 C 0.002501 1.27 C 0.002501 0.83 C 0.002500 0.12 C
pb n3 2 3 3 0.006672 7.83 C 0.006672 5.82 C 0.006657 7.89 C 0.006650 20.0 C
pb n3 3 3 3 0.000950 1.03 C 0.000950 1.16 C 0.000950 1.26 C 0.000950 1.11 C
pb n4 1 4 6 0.007240 416 C 0.007240 529 C 0.007228 1410 C 0.007217 661 C
pb n4 2 4 6 0.017061 2497 C 0.017094 38.2 MS 0.017095 21.8 MS 0.017098 1.18 MS
pb n4 3 4 6 0.001318 25.3 C 0.001318 85.2 C 0.001318 33.5 C 0.001317 36.9 C
pb n5 1 5 10 0.011629 25.3 MS 0.011629 38.4 MS 0.011629 27.4 MS 0.011591 938 C
pb n5 2 5 10 0.018467 28.1 MS 0.018467 37.7 MS 0.018467 30.0 MS 0.018482 1.81 MS
pb n5 3 5 10 0.017122 23.6 MS 0.017121 40.8 MS 0.017122 27.7 MS 0.017103 2.07 MS
pb n5 4 5 10 0.014750 22.9 MS 0.014750 40.5 MS 0.014750 27.6 MS 0.014717 2.84 MS
pb n5 5 5 10 0.012163 33.0 MS 0.012163 53.4 MS 0.012163 35.0 MS 0.012119 1777 C
pb n5 6 5 10 0.011235 36.7 MS 0.011235 111 MS 0.011235 38.2 MS 0.011225 1.18 MS
pb n5 7 5 10 0.012273 31.6 MS 0.012273 42.3 MS 0.012274 37.2 MS 0.012248 1.54 MS
pb n5 8 5 10 0.017556 36.0 MS 0.017556 42.0 MS 0.017556 39.5 MS 0.017548 2.33 MS
pb n5 9 5 10 0.019140 29.1 MS 0.019140 46.2 MS 0.019140 32.9 MS 0.019088 3.38 MS
pb n5 10 5 10 0.026022 20.9 MS 0.026022 42.3 MS 0.026022 23.6 MS 0.026122 3.78 MS
pb n5 11 5 10 0.011202 42.4 MS 0.011202 38.2 MS 0.011202 37.4 MS 0.011179 1.15 MS
pb n5 12 5 10 0.012122 23.7 MS 0.012121 39.0 MS 0.012122 25.3 MS 0.012113 1.48 MS
pb n5 13 5 10 0.023265 32.1 MS 0.023265 43.9 MS 0.023265 33.4 MS 0.023269 1.55 MS
pb n5 14 5 10 0.013789 28.1 MS 0.013789 40.6 MS 0.013789 32.7 MS 0.013779 1.53 MS
pb n5 15 5 10 0.014578 32.9 MS 0.014578 51.4 MS 0.014578 35.3 MS 0.014543 1.22 MS
pb n5 16 5 10 0.010378 31.9 MS 0.010378 93.8 MS 0.010378 35.8 MS 0.010344 2370 C
pb n5 17 5 10 0.011956 34.9 MS 0.011956 38.8 MS 0.011956 39.2 MS 0.011985 1.18 MS
pb n5 18 5 10 0.011167 24.6 MS 0.011167 32.1 MS 0.011167 27.5 MS 0.011130 473 C
pb n5 19 5 10 0.009920 2498 C 0.009920 1613 C 0.009920 36.9 MS 0.009892 119 C
pb n5 20 5 10 0.019774 27.6 MS 0.019774 40.7 MS 0.019774 29.2 MS 0.019834 1.49 MS
pb n5 21 5 10 0.009050 1402 C 0.009050 1503 C 0.009051 61.8 MS 0.009034 41.3 C
pb n5 22 5 10 0.030611 30.5 MS 0.030610 49.3 MS 0.030611 33.0 MS 0.030833 4.32 MS
pb n5 23 5 10 0.001543 27.4 MS 0.001543 38.9 MS 0.001543 40.1 MS 0.001541 1831 C
pb n6 1 6 15 0.001667 49.9 MS 0.001667 43.2 MS 0.001667 71.3 MS 0.001664 1.86 MS
pb n6 2 6 15 0.001667 51.5 MS 0.001667 44.0 MS 0.001667 75.8 MS 0.001664 1.31 MS

Random Circle
rpb2 1 2 1 0.000141 0.07 C 0.000141 0.06 C 0.000141 0.06 C 0.000141 0.07 C
rpb2 2 2 1 0.000795 0.07 C 0.000795 0.05 C 0.000795 0.06 C 0.000793 0.07 C
rpb3 1 3 2 0.000078 0.39 C 0.000078 2946 C 0.000078 0.29 C 0.000078 0.18 C
rpb3 2 3 2 0.000515 0.63 C 0.000509 9.9 C 0.000515 0.85 C 0.000514 0.60 C
rpb3 3 3 1 0.000114 0.11 C 0.000114 234 C 0.000114 0.11 C 0.000114 0.06 C
rpb4 1 4 1 0.000156 4.36 C 0.000156 4.70 C 0.000156 3.65 C 0.000156 0.06 C
rpb4 2 4 3 0.001177 13.3 C 0.001177 24.7 MS 0.001177 28.6 C 0.001174 0.82 C
rpb4 3 4 2 0.000202 1.55 C 0.000202 3.39 C 0.000202 6.39 C 0.000202 0.17 C
rpb5 1 5 6 0.000413 356 C 0.000413 39.3 MS 0.000413 319 C 0.000412 2.07 C
rpb5 2 5 3 0.000454 1323 C 0.000454 40.7 MS 0.000454 36.4 MS 0.000452 4.54 C
rpb5 3 5 8 0.000612 213 C 0.000612 39.2 MS 0.000612 171 C 0.000611 4.58 C
rpb6 1 6 5 0.000965 44.2 MS 0.000965 48.1 MS 0.000965 58.3 MS 0.000962 283 C
rpb6 2 6 9 0.000858 50.7 MS 0.000858 45.4 MS 0.000858 58.8 MS 0.000858 5.68 C
rpb6 3 6 4 0.000694 44.0 MS 0.000694 49.5 MS 0.000694 57.9 MS 0.000693 34.0 C
rpb7 1 7 2 0.002199 50.7 MS 0.000213 60.6 MS 0.000213 96.0 MS 0.000213 0.39 C
rpb7 2 7 7 0.001161 64.5 MS 0.001161 64.8 MS 0.001161 89.0 MS 0.001159 1629 C
rpb7 3 7 9 0.002794 66.4 MS 0.001914 58.1 MS 0.001914 99.8 MS 0.001913 1.61 MS
rpb8 1 8 12 0.001174 99.1 MS 0.001174 82.9 MS 0.001174 93.8 MS 0.001173 2.23 MS
rpb8 2 8 5 0.000370 102 MS 0.000370 79.6 MS 0.000370 97.2 MS 0.000369 93.5 C
rpb8 3 8 10 0.001006 97.8 MS 0.001007 84.3 MS 0.001006 98.7 MS 0.001529 3.94 MS

Non-Circle
pb6 5 6 5 0.128250 59.3 MS 0.128249 40.4 MS 0.128250 146 MS 0.127742 171 C
pb7 4 7 4 0.001628 219 MS 0.001602 71.7 MS 0.001602 327 MS 0.001599 0.86 MS
pb7 6 7 6 0.001567 222 MS 0.001567 75.6 MS 0.001567 324 MS 0.001565 0.60 MS
pb8 4 8 4 0.002401 108 MS 0.002384 81.6 MS 0.002384 261 MS 0.002382 0.50 MS
pb10 10 10 10 0.127695 166 MS 0.127693 90.9 MS 0.127695 270 MS 0.127525 2.08 C



Aircraft deconfliction with bilevel programming 27

Table 3: Results obtained solving 4 different formulations of HACADP compared
with those obtained in [17]

Instances obj
Name n nc KKT reformul. Dorn’s dual reformul. Wolfe’s dual reformul. CG [17]

Circle
pb n2 2 1 0.001250 0.001250 0.001250 0.001250 0.001250
pb n3 1 3 3 0.002501 0.002501 0.002501 0.002500 0.002501
pb n3 2 3 3 0.006672 0.006672 0.006657 0.006650 0.006665
pb n3 3 3 3 0.000950 0.000950 0.000950 0.000950 0.000950
pb n4 1 4 6 0.007240 0.007240 0.007228 0.007217 0.007240
pb n4 2 4 6 0.017061 0.017094 0.017095 0.017098 0.017065
pb n4 3 4 6 0.001318 0.001318 0.001318 0.001317 0.001318
pb n5 1 5 10 0.011629 0.011629 0.011629 0.011591 0.011629
pb n5 2 5 10 0.018467 0.018467 0.018467 0.018482 0.018468
pb n5 3 5 10 0.017122 0.017121 0.017122 0.017103 0.017100
pb n5 4 5 10 0.014750 0.014750 0.014750 0.014717 0.014750
pb n5 5 5 10 0.012163 0.012163 0.012163 0.012119 0.012149
pb n5 6 5 10 0.011235 0.011235 0.011235 0.011225 0.011225
pb n5 7 5 10 0.012273 0.012273 0.012274 0.012248 0.012262
pb n5 8 5 10 0.017556 0.017556 0.017556 0.017548 0.017556
pb n5 9 5 10 0.019140 0.019140 0.019140 0.019088 0.019119
pb n5 10 5 10 0.026022 0.026022 0.026022 0.026122 0.025960
pb n5 11 5 10 0.011202 0.011202 0.011202 0.011179 0.011190
pb n5 12 5 10 0.012122 0.012121 0.012122 0.012113 0.012111
pb n5 13 5 10 0.023265 0.023265 0.023265 0.023269 0.023265
pb n5 14 5 10 0.013789 0.013789 0.013789 0.013779 0.013790
pb n5 15 5 10 0.014578 0.014578 0.014578 0.014543 0.014551
pb n5 16 5 10 0.010378 0.010378 0.010378 0.010344 0.010367
pb n5 17 5 10 0.011956 0.011956 0.011956 0.011985 0.011940
pb n5 18 5 10 0.011167 0.011167 0.011167 0.011130 0.011153
pb n5 19 5 10 0.009920 0.009920 0.009920 0.009892 0.009920
pb n5 20 5 10 0.019774 0.019774 0.019774 0.019834 0.019739
pb n5 21 5 10 0.009050 0.009050 0.009051 0.009034 0.009051
pb n5 22 5 10 0.030611 0.030610 0.030611 0.030833 0.030577
pb n5 23 5 10 0.001543 0.001543 0.001543 0.001541 0.001543
pb n6 1 6 15 0.001667 0.001667 0.001667 0.001664 0.001649
pb n6 2 6 15 0.001667 0.001667 0.001667 0.001664 0.001661

Random Circle
rpb2 1 2 1 0.000141 0.000141 0.000141 0.000141 0.000141
rpb2 2 2 1 0.000795 0.000795 0.000795 0.000793 0.000795
rpb3 1 3 2 0.000078 0.000078 0.000078 0.000078 0.000078
rpb3 2 3 2 0.000515 0.000509 0.000515 0.000514 0.000513
rpb3 3 3 1 0.000114 0.000114 0.000114 0.000114 0.000113
rpb4 1 4 1 0.000156 0.000156 0.000156 0.000156 0.000156
rpb4 2 4 3 0.001177 0.001177 0.001177 0.001174 0.001175
rpb4 3 4 2 0.000202 0.000202 0.000202 0.000202 0.000202
rpb5 1 5 6 0.000413 0.000413 0.000413 0.000412 0.000408
rpb5 2 5 3 0.000454 0.000454 0.000454 0.000452 0.000450
rpb5 3 5 8 0.000612 0.000612 0.000612 0.000611 0.000613
rpb6 1 6 5 0.000965 0.000965 0.000965 0.000962 0.000955
rpb6 2 6 9 0.000858 0.000858 0.000858 0.000858 0.000855
rpb6 3 6 4 0.000694 0.000694 0.000694 0.000693 0.000693
rpb7 1 7 2 0.002199 0.000213 0.000213 0.000213 0.000210
rpb7 2 7 7 0.001161 0.001161 0.001161 0.001159 0.001162
rpb7 3 7 9 0.002794 0.001914 0.001914 0.001913 0.002637
rpb8 1 8 12 0.001174 0.001174 0.001174 0.001173 0.001189
rpb8 2 8 5 0.000370 0.000370 0.000370 0.000369 0.000373
rpb8 3 8 10 0.001006 0.001007 0.001006 0.001529 0.001019
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