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African mustard (Brassica tournefortii) as source
of nutrients and nutraceuticals properties
Rami Rahmani, Jalloul Bouajila , Marwa Jouaidi, and Mohamed Debouba

Abstract: Brassica tournefortii is an annual herbaceous plant, native to the North Africa and Middle East. It is considered as
an excellent medicinal plant due to its richness by antioxidant like isothiocyanates and polyphenols. The present study is the
first phytochemical investigation on Brassica tournefortii organs (leaves, stems, and roots) in terms of nutraceutical, chemical
composition, and bioactivity. Brassica tournefortii leaves exhibited the highest values of nutraceutical contents. Interestingly,
gas chromatograph-y-mass spectrometry (GC-MS) analysis enabled to identify three new isothiocyanates: iberverin nitrile
and iberin detected only in roots, and iberin nitrile detected in all organs. HPLC chromatograms displayed different profiles
depending on organic solvent and extracted organ. Icariin and 5,7-dihydroxy 4-propylcoumarin showed the highest
concentrations with 2.3 and 1.3 mg/g of dr among other molecules identified by high performance liquid chromatography
(HPLC). Some phenolic compounds were identified in more than one organ extracts such as phenoxodiol and 4-hydroxy-
3-propylbenzoic acid methyl ester. Brassica tournefortii extracts showed a moderate total phenolic contents and anti-15-LOX
activity, while they exhibited a good anti-α-glucosidase activity ranging from 40% to 60%. Furthermore, leaves-MeOH
and root-dichloromethane (DCM) extracts induced the highest cytotoxicity against MCF-7 cell lines, while roots-
cyclohexane (CYHA) extract highlighted the highest inhibition activity against, both, HCT-116 and OVCAR cell lines.

Keywords: African mustard, bioactivity, Brassica tournefortii, chromatography, nutraceutical

1. INTRODUCTION
Spontaneous plant species growing wildly in southern regions

of Tunisia constitute a resource and a potential reservoir of food
products. Over the last few decades, a particular attention had
been given to wild edible plants, especially those containing a large
amount of secondary metabolites, also known as phytochemicals
compounds (Cartea, Francisco, Soengas, & Velasco, 2010). Cur-
rently, there is an increasing interest on the antioxidant activity of
phytochemicals found in the diet (Kasote, Katyare, Hegde, & Bae,
2015). Among the plants containing phytonutrients, represen-
tatives of the Brassicaceae family have been particularly studied.
Brassicaceae, formally named Cruciferae, is a monophyletic group
with 338 genera and approximately 3,709 species distributed
throughout the world (Ishida, Hara, Fukino, Kakizaki, & Morim-
itsu, 2014), mainly concentrated in the temperate regions and
reaching maximum of diversity around the Mediterranean area
(Marzouk, Al Nowaihi, Kawashty, & Saleh, 2010). Brassica genus
is the most known genus in this family and contains some of the
important crops and forage species, including, Brassica oleracea (cab-
bage), Brassica napus (seed rape), Brassica rapa (turnip rape), Brassica
nigra (black mustard), and Brassica juncea (mustard) (Lowe et al.,
2002). With regard to the other vegetables, Brassica crops contain
a huge spectrum of various secondary metabolites (glucosinolates,
carotenoids, phenolic compounds) as well as their richness with
vitamins and minerals (Small, 2012). This richness in nutritional
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é de Toulouse, CNRS, INPT,  UPS, Toulouse, France. Direct inquiries to authors 
Jalloul Bouajila and Mohamed Debouba (E-mails: jalloul.bouajila@univ-tlse3.fr, 
mohamed.debouba@gmail.com).

compounds offer to the Brassica vegetables a high antioxidant po-
tential which makes them very interesting crops for the consumer
(Ares, Nozal, & Bernal, 2013). Moreover, the consumption of cru-
ciferous vegetables has been recommended, thanks to the healthful
properties that they possess, such as the prevention of degenerative
diseases and different type of cancer (Velasco et al., 2011).

Thanks to these virtues, Brassica genus has great economic and
commercial values and plays a major role in feeding the world
population (El Esawi, 2015). To the best of our knowledge, many
studies in the literature focused on nutraceutical and antioxidant
properties of leaves, roots, and seeds of the different Brassica
vegetables (Amarowicz, Naczk, & Shahidi, 2000; Reif, Arrigoni,
Berger, Baumgartner, & Nyström, 2013). Nevertheless, there
are no reports on nutritional value, antioxidant and biological
characterization of B. tournefortii organs. The determination of the
biochemical composition of B. tournefortii leaves has become of in-
terest due to its consumption as local food products for many gen-
erations, especially in the southern areas of Tunisia and Libya. The
present work focuses on nutraceutical properties determination
of B. tournefortii organs collected from the arid regions of Tunisia.

2. MATERIALS AND METHODS

2.1 Chemicals use
All chemicals used were of analytical reagent grade. All reagents

were purchased from Sigma, Aldrich (France): Acetic acid,
acetonitrile (ACN), cyclohexane (CYHA), dichloromethane
(DCM), Dulbecco’s modified eagle medium (DMEM), dimethyl
sulfoxide (DMSO), Doxorubicin, Folin-Ciocalteu reagent (2 N),
Gallic acid, HCl, KH2PO4, MeOH, MTT, NaOH, Roswell Park
Memorial Institute (RPMI), 4-nitrophenyl-β-D-glucuronic acid
(PNP-G), sodium carbonate, 15-LOX.

2.2 Plant collection
Brassica tournefortii plants were collected from an agricultural

land in the southeast of Tunisia (El Fja, Medenine, 33°32′16′′ N;
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10°40′34′′ E) characterized by an arid climate (mean rainfall of
150 mm/year). The plant was authenticated by Dr. Mohamed
Tarhouni (expert in botany at the Range of Ecology Laboratory,
Arid Land Institute in Medenine, Tunisia). After harvesting, the
different organs (leaves, stems, and roots) were dried at ambient
temperature (20 to 25 °C) in the research unit at the Higher
Institute of Applied Biology (Medenine, Tunisia), then ground
using a mixer (Moulinex AT 710131, France) into a fine powder
and stored in the dark until further use.

2.3 Plant extraction
Ten grams of fine powder were successively extracted with

three organic solvents of increasing polarity: CYHA, DCM, and
MeOH. The solvents were evaporated using a rotary evaporator
under vacuum at 35 °C (IKA, RV 10 auto V, Germany). The
obtained dry residues were put in a hemolysis tubes and stored
at −20 °C until further analysis. Thereafter, the yield extraction
was calculated as follows:

Yield (%) = (m/M) × 100,

with m: weight of dry wt (g); M: weight of plant material (g).

2.4 Macronutrients analysis
The samples were analyzed for chemical composition (fat,

proteins, and ash) using the AOAC procedures (AOAC, 1995).
Total fat content was determined by extracting a known weight of
sample powder with CYHA, using Soxhlet. Total protein content
was analyzed using the Bradford as a reagent and bovine serum
albumin (BSA) as a standard. The ash content was determined after
incineration of the sample crude at 550 °C for 8 hr. After that,
the different mineral constitutes such as potassium (K+), calcium
(Ca2+), sodium (Na+), magnesium (Mg2+), iron (Fe2+), man-
ganese (Mn2+), and zinc (Zn2+) were determined using an atomic
absorption spectrophotometer (Analytik Jena AG, Germany). The
total carbohydrates were calculated by difference of mean values:

Carbohydrate = [
total solid − (protein + lipids + minerals)

]
.

2.5 Carotenoı̈ds and chlorophylls contents
Pigments contents were determined according to the method

of Arnon (Hafsi, Falleh, Saada, Ksouri, & Abdelly, 2017). Fresh
material (1 g) was vigorously crushed with 8 mL of Tris-HCl
buffer. Then, 50 µL of the obtained extract was suspended
in 950 µL of acetone (80%), well mixed, and kept at 4 °C
overnight. The absorbance of the extract was measured at
different absorbances; 460, 645, and 663 nm. The contents of
chlorophyll (a and b), and carotenoı̈ds were calculated according
to the formulas of Mackinney (1941),

Chl a = (12.7 × (A663) − (2.69 × A645)

Chl b = (22.9 × A645) − (4.68 × A663)

Carotenoids = (5 × A460) − ((Chl a × 3.19) + (Chl b × 130.3))

/200

Pigments contents were expressed as mg/g of fw.

2.6 Chromatographic analysis
2.6.1 High performance liquid chromatography anal-

ysis (HPLC-DAD). The HPLC analysis was performed in an

Table 1–Yield and total polyphenols contents of B. tournefortii
organs.

Yield (%) Polyphenols (mg GAE/g dr)

Leaves CYHA 1.0 nd
DCM 0.5 22.7 ± 0.4bb

MeOH 14.0 19.7 ± 0.6ba

Stems CYHA 0.5 3.7 ± 0.8cc

DCM 0.3 10.3 ± 0.8ab

MeOH 2.6 33.2 ± 2.6aa

Roots CYHA 0.4 Nd
DCM 0.5 8.2 ± 0.9cb

MeOH 1.6 4.5 ± 0.4ca

Notes. The different superscript in the same column means significant difference (P �
0.05); nd: not detected. Means values ± SD (n = 3). (CYHA: cyclohexane; DCM:
dichloromethane; MeOH: methanol).

ultimate 3000 pump-Dionex and Thermos Sepration products
detectors UV-150 model (Thermo Fisher Scientific, USA) as
mentioned by Yahyaoui, Bouajila, Cazaux, and Abderrabba
(2018). The separation was done on an RP-C18 column (25 cm
× 4.6 mm, 5 µm), at ambient temperature (20 to 25°C). Elution
was performed at a flow rate of 1.2 mL/min, using a mobile phase
consisted of acidified water (pH 2.65) (solvent A), and acidified
water/ACN (20:80 v/v) (solvent B). The samples were eluted by
the following linear gradient: from 0.1% B to 30% B for 35 min,
from 30% B to 50% B for 5 min, from 50% B to 99.9% B for
5 min and finally from 99.9% B to 0.1% B for 15 min. The
extracts were prepared at the concentration of 20 mg/mL using
the mixture acidified water/ACN (80:20 v/v), and then filtered
by a filter (Sigma Aldrich, Millex-HA filter 0.45 µm, France).
Then, 20 µL of each sample was injected and the detection was
done at 280 nm. The phenolic compounds were identified by
comparison of the retention time of some known standards and
then quantified using their calibration curves.

2.6.2 Gas chromatography–mass spectrometry (GC-
MS) analysis. The chemical identification of the volatile
compounds from the B. tournefortii extracts used the procedures of
Kohoude et al. (2017). The analysis was done on a gas chromatog-
raphy system (7890A) coupled to a mass spectrometry system
(5975C, MSD) (Agilent Technologies, Santa Clara, CA, USA),
fitted with a fused silica capillary HP-5 column (5% phenyl-
methylpolysyloxane, 30 × 0.25 mm, film thickness 0.25 µm)
(Agilent Technologies, J & W GC Columns). Chromatographic
conditions were 50 °C hold for 1 min, up to 250 °C at the rate of
10 °C/min and then 1 min isothermally at 250 °C. Afterward, a
second gradient was used 300 °C at 50 °C/min and finally 300 °C
hold at 3 min. For analysis reasons, the samples were dissolved in
their principal solvents. Ten microliter of each extract was injected
in the split mode ratio of 1:10. Helium was used as carrier gas at
1 mL/min. The injector was operated at 200 °C. Mass spectrom-
eter was adjusted for an emission current of 10 µA and electron
multiplier voltage between 1,400 and 1,500 V. Trap temperature
was 250 °C and that of the transfer line was 270 °C. Mass scan-
ning was from 40 to 650 mAU. Compounds were identified by
comparison of their mass spectra with those obtained in NIST 08.

2.7 Total phenolic content (TPC)
The TPC of the B. tournefortii extracts was determined using

Folin-Ciocalteu method, with some modifications (Bekir, Mars,
Pierre, & Bouajila, 2013). The reaction mixture contained 20 µL
of each plant extract (0.5 mg/mL) and 100 µL of Folin Ciocalteu
reagent (0.2 N). After 5 min of incubation at ambient temperature
(20 to 25 °C), 80 µL of sodium carbonate (75 g/L in water) has



Table 2–Physicochemical composition of B. tournefortii organs
(n = 3).

Leaves Stems Roots

Moisture
a

93.3 ± 0.5 91.0 ± 0.3 60.0 ± 0.4
Fat

b
5.1 ± 0.01 4.1 ± 0.02 0.1 ± 0.01

Soluble proteins
c

9.3 ± 0.04 5.1 ± 0.02 3.0 ± 0.01
Carbohydrates

b
65.6 ± 0.8 83.3 ± 0.4 90.8 ± 0.7

Ash
b

20.0 ± 1.1 7.6 ± 0.07 6.1 ± 0.5
Chlorophyll a

c
1.2 ± 0.09 0.6 ± 0.03 nd

Chlorophyll b
c

0.5 ± 0.1 0.2 ± 0.03 nd
Carotenoı̈ds

c
0.3 ± 0.09 0.1 ± 0.07 0.1 ± 0.02

ag/100 g fresh weight.
bg/100 g dry weight.
cmg/g fresh weight.
nd: not detected.

Table 3–Mineral contents in B. tournefortii organs (mg/100 g dw)
(n = 3).

Mineral/
plant tissue Leaves Stems Roots

Ca2+ 1131.0 ± 1.7 214.0 ± 0.9 53.5 ± 0.4
Na+ 561.6 ± 1.5 390.8 ± 1.5 205.7 ± 0.9
K+ 248.6 ± 1.4 255.4 ± 0.6 185.5 ± 1.6
Mg2+ 140.4 ± 0.9 30.4 ± 1.5 29.9 ± 1.1
Fe2+ 16.6 ± 0.8 2.3 ± 0.1 8.4 ± 0.2
Mn2+ 2.5 ± 0.1 0.1 ± 0.01 0.1 ± 0.01
Zn2+ 1.9 ± 0.1 0.9 ± 0.1 0.6 ± 0.1

been added. After a second incubation at ambient temperature for
25 min, the absorbance has been measured at 765 nm. A standard
calibration curve was plotted using Gallic acid (0 to 115 mg/L).
Results were expressed as mg of gallic acid equivalents (GAE)/g dr.

2.8 Biological activities
2.8.1 Anti-15-LOX activity. Human 15-LOX (from

soybean) is the crucial enzyme that catalyzes the formation of
bioactive leukootriens (LT4A) from arachidonic acid (biological
substrate) (polyunsaturated omega 6-fatty acid) (Znati et al.,
2014). In this experiment, linoleic acid (substrate) was oxidized
in vitro to conjugate diene by 15-LOX. Briefly, 20 µL of extract
(0.5 mg/mL) was mixed with 170 µL of Na3PO4 buffer (pH 7.4),
60 µL of linoleic acid, and 20 µL of enzyme solution (15-LOX).
The absorbance was measured at 234 nm. The enzyme activity
inhibition was calculated as follows: % inhibition = 100 × (Ablank

− Asample)/Ablank

2.8.2 Anti α-glucosidase activity. The α-glucosidase

3

described by Rahmani et al. (2019) with some modifications.
Cells were distributed in 96-well plates at 3 × 104 cells/well
in 100 µL, and then 100 µL of the corresponding culture
medium; RPMI (RPMI 1640, Thermo Fisher Scientific, France)
for HCT-116, or DMEM (Advanced DMEM, Thermo Fisher
Scientific) for MCF-7 and OVCAR, containing sample at various
concentrations were added. Cell growth was estimated by the
MTT assay. MTT is a water-soluble tetrazolium salt with a yellow
coloration. Metabolically active cells are able to convert the dye to
water-insoluble dark blue formazan by reductive cleavage of the
tetrazolium ring. The extracts were resolubilzed in the DMSO
followed by dilution in the buffer, whereby the DMSO does not
exceed 0.8%. Doxorubicin was used as a positive control. The
cells activity inhibition percentage was calculated as: % inhibition
= 100 × (Ablank − Asample)/Ablank

2.9 Statistical analysis
All measurements were performed in quadruplicate. Data

were calculated for significance by analysis of variance (ANOVA;
two-wayANOVA) using SPSS 20.1 (Version 20.0.2004, IBM,
Armonk, NY, USA and J Guru.com). Statistical differences
between the solvents were estimated by Tukey’s test. Multiple
range tested at 5% significance level. The linear coefficient of
determination (R2) was evaluated to determine the relationship
between the TPC and biological activities. Principal component
analysis (PCA) was also done using XLSTAT (version 2014.5.03,
Addinsoft, Pearson edition, Boston, MA, USA) to visualize the
discrimination between the different parameters.

3. RESULTS AND DISCUSSION

3.1 Extraction yield and TPC
According to the literature, no studies have been reported

before on the effect of organs and solvents on extraction yield
and TPC of B. tournefortii organs. Dried material was extracted
using various solvents of increasing polarity. Regardless of solvent
polarity, the highest extraction yields percentages were found in
leaves (Table 1). For all B. tournefortii organs, the best yields were
obtained with MeOH extracts (from 1.6% to 14.0%) followed by
CYHA extracts (from 0.4% to 1.0%) and finally DCM extracts
(from 0.3% to 0.5%) (Table 1). In general, the yields of polar ex-
tracts (MeOH) were � sixfold higher than those of the nonpolar
extracts (CYHA and DCM). The present results were within the
range of those found by Nawaz, Shad, and Rauf (2018) in their
study on Brassica oleracea leaves extracts and the study of Rafińska
et al. (2019) when working on Lepidium sativum seeds extract.

B. tournefortii extracts showed a modest TPC ranked from 3.7 to
33.2 mg GAE/g dr (Table 1). Statistically, there was a significant
difference (P � 0.05) between the used-solvents extraction in
terms of TPC. TPC in CYHA extracts does not exceed 4 mg
GAE/g dr for all the organs. However, the stems-MeOH extract
showed the highest phenolic content with 33.2 mg GAE/g dr
followed by leaves DCM and MeOH extracts. Such results are
higher than those found in the ethanolic extract of Brassica oleracea
botrytis cimosa, with a TPC do not exceed 10 mg GAE/g dr
(Fratianni et al., 2014).

3.2 Nutritional value and mineral composition
No previous studies were found in the literature about B.

tournefortii nutritional value and mineral composition. According
to Table 2, B. tournefortii leaves and stems showed the highest

inhibitory activity was determined within the method used by 
Shalaby et al. (2014). In this practice, a reaction blend containing 
50 µL of Na  PO4 buffer (0.1 M, pH 6.9), 100 µL of the alpha 
glucosidase (1 U/mL), and 50 µL of plant extract (0.5 mg/mL) 
was incubated at 25 °C for 10 min. Then, 50 µL of 5 mM PNP-G 
(substrate) was added to the reaction mixture. After a second 
incubation at 25 °C for 5 min, a yellow coloration produced 
(due to the formation of p-nitrophenol from p-nitrophenyl α-
D-glucopyranoside) and the absorbance was measured at 405 nm. 
The enzyme activity inhibition was calculated as:

% inhibition = 100 × 
(
Ablank − Asample

) 
/Ablank

2.8.3 Cytotoxic activity. Cytotoxicity of the sample 
was estimated on MCF-7, HCT-116, and OVCAR cells lines 
(American Type Culture Collection, Manassas, VA, USA) as

http://Guru.com


Figure 1–HPLC chromatograms of B. tournefortii organs extracts. (CYHA: cyclohexane; DCM: dichloromethane; MeOH: methanol). Peaks: (1) 3-
amino-4-hydroxy benzoic acid; (2) L-tyrosine 7-amido-4-methylcoumarin; (3) polydatin; (4) 2,4-dihydroxy-3,6-dimethylbenzoic acid; (5) icariin; (6) 3′ ,5′-
dihydroxyflavone; (7) 5,7-dihydroxy-4-propylcoumarin; (8) 7-hydroxyflavone; (9) phenoxodiol; (10) pinostilbene hydrate; (11) 4-hydroxy-3-propylbenzoic
acid methyl ester; (12) benzyl 4-hydroxybenzoate.



Table 4–Phenolic compounds identified in the different extracts of B. tournefortii organs by HPLC- DAD.
Concentration (mg/g dr)

Leaves Stems RootsCompounds

and Chemical structure
Compounds

Rt

(min) C
Y

H
A

D
C

M

M
eO

H

C
Y

H
A

D
C

M

M
eO

H

C
Y

H
A

D
C

M

M
eO

H

Referen
ces

3-amino-4-hydroxybenzoic 
acid

2.20 - - - - - - - - 0.9

Suzuki et 
al.,
2006

L-tyrosine 7-amido-4

-methylcoumarin

19.19 - - 0.4 - - - - - -

Negrel 
and
Javelle, 
2001

Polydatin

23.37 - - - - 0.01 - - - -

Sohretog
lu et al.,

2018

2,4-dihydroxy-3,6-dimethyl

benzoic acid

35.19 - - - - - - - 0.07 0.04

Filho et 
al.,
2014

Icariin

41.99 - 2.3 - - - - - - -

Fang and
Zhang,
2017

3',5'-dihydroxyflavone

42.16 0.8 - - - - - - - -

Mnif and
Aifa,
2015



Table 4–Continued.

Pinostilbene hydrate

44.67 0.1 - - - - 0.1 - - -

Tyukavk
ina et al.,
1974

4-hydroxy-3-propyl

benzoic acid  methyl ester

46.13 - 0.9 - 0.06 - - - - -

Rodgma
n and 
Perfetti,
2016

Benzyl 4-hydroxybenzoate

46.34 - - - - - - 0.4 - -

Ganzera 
et al.,
2006

5,7-dihydroxy 4-
propylcoumarin

43.41 - 1.3 - - - - - - -

Ulubelen 
et al.,
1982

7-hydroxyflavone

44.15 - - - - - - 0.2 - -

Ong et 
al.,
2006

Phenoxodiol

44.19 0.03 0.04 - - - 0.02 - - -

Souza et 
al.,
2018

-: not detected; Rt: retention time; (CYHA: cyclohexane; DCM: dichloromethane; MeOH: methanol).

moisture content (about 90%). Broadly, leaves and stems are the
most freshly organs in the majority of Brassica plants, such as B.
napus and B. oleracea. Fat content, found in leaves and stems (5.1
and 4.4 g/100 g, respectively), was higher than that found in roots
(0.1 g/100 g). B. tournefortii leaves showed a fat content higher
than that reported in B. oleracea and B. rapa species (Batista, Barros,
Carvalho, & Ferreira, 2011). Ash content was � threefold higher
value in leaves (20 g/100 g) than in stems and roots (Table 2). Ash

content in the leaves was higher than that found by Hameed et al.
(2015) in B. oleracea (6.6 g/100 g).

High ash content reflects a richness of mineral nutrients
(Tavares et al., 2013). Generally, the mineral concentrations were
higher in leaves compared to the stems and roots except for
K+ (Table 3). Among the analyzed nutrients in leaves, Ca2+
and Na+ contents were higher in B. tournefortii than the values
reported in the study of Ahmed and Ali (2013) when working
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Figure 2–GC-MS chromatograms of B.
tournefortii leaves extracts. (CYAH:
cyclohexane; DCM: dichloromethane; MeOH:
methanol). Peaks: (1) 5-hydroxymethylfurfural;
(2) 2-undecanone; (3) carvacrol; (4)
2-dodecanone; (5) iberin nitrile (6) phytol; (7)
n-hexadecanoic acid; (8)
9,12,15-octadecatrienoic acid; (9) α-tocopherol.

standards with known retention time. Comparing unknown reten-
tion with those of standard is a suitable approach for compound
identification. Overall, 12 phenolic compounds were identified
and quantified in all the extracts by means of their relative re-
tention time (Figure 1; Table 4). In addition, the concentrations
of identified compounds were ranged from 0.01 to 2.3 mg/g
dr. When examining the chromatograms (Figure 1), it is observ-
able that many compounds, with low intensity (1 to 35 mV),
were detected in the CYHA extracts (between 2.5 and 52 min).
This low intensity was correlated to the results found with calori-
metric method (Table 1). Overall, six phenolic compounds were
identified in the different CYHA extracts, distributed as follows:
three compounds in leaves (3′,5’-dihydroxyflavone, phenoxodiol,
and pinostilbene hydrate) with the concentrations of 0.8, 0.03,
and 0.1 mg/g dr, respectively, corresponding to the intensities

on B. oleracea. Actual results showed that Fe2+ was the most 
abundant micronutrient in B. tournefortii organs, with a highest 
concentration found in leaves (16.6 mg/100 g) followed by the 
Mn2+ (2.5 mg/100 g) (Table 3). These findings were comparable 
to that reported for B. oleracea and B. rapa (Wu et al., 2008). The 
Mn2+ content in B. tournefortii leaves was higher compared to the 
other Brassicaceae plants (Rosa, David, & Gomes, 2001).

3.3 Chromatographic analysis
3.3.1 HPLC analysis. In order to identify the phenolic 

compounds extracted in the different extracts of B. tournefortii 
organs (leaves, stems, and roots) HPLC-DAD analysis at 280 nm 
were done (Figure 1). For each extract chromatogram, the reten-
tion time of each peak was sequentially compared with those of



Table 5–GC-MS analysis and percentages of compounds identified in the different extracts of B. tournefortii organs.

Peak area percentage (%)
       Leaves            Stems            Roots

Compounds and structures
Rt

(min)

C
Y

H
A

D
C

M

M
eO

H

C
Y

H
A

D
C

M

M
eO

H

C
Y

H
A

D
C

M

M
eO

H

Mesitylene (aromatic)

6.03 - - - 0.1 - - - - -

4-(methylthio) butanenitrile (Iberverin 
nitrile)

7.73 - - - - - - - - 0.5

n-Undecane (alcane)

7.90 - - - 0.7 - - - - 0.7

Naphthalene

9.31 - - - 0.2 - - - - -

5-Hydroxymethylfurfural

9.86 - - 4.5 - - - - - -

2-Undecanone

10.55 - 3.0 - - - - - - -

Carvacrol

10.71 2.5 - - - - - - -

2-Dodecanone

11.62 - 1.2 - - - - - - -



Table 5–Continued.

n-Hexadecanoic acid

18.48 1.6 2.0 8.2 6.9 21.1 20.9 3.6 2.7 7.6

Gamolenic acid

20.04 - - - - 2.7 - - - -

9,12,15-Octadecatrienoic acid

20.25 - 5.1 11.6 - - - - - -

Phenol

13.64 - - - - - - - 0.8 0.5

3-(Methylsulphinyl) propyl 1-
isothiocyanate (Iberin)

15.00 - - - - - - - 0.9 -

Phytol

17.54 0.8 0.8 - - - - - - -

4-(methylsulfinyl) butanenitrile
(Iberin nitrile)

12.00 - - 4.8 - - 8.8 - - 4.3



Table 5–Continued.

9,12-Octadecadienoic acid

20.31 - - - - 1.2 1.7 15.4 - -

β-Sitosterol

23.70 - - - - - 1.5 - - -

Erucic acid

24.21 - - - - - - 26.4 - -

Nonacosane

26.85 - - - 19.1 - - - - -

α-Tocopherol

28.99 - 3.6 - - - - - - -

-: not detected; Rt: retention time; (CYHA: cyclohexane; DCM: dichloromethane; MeOH: methanol).

of 5.8, 0.4, and 6.9 mV (Figure 1; Table 4). In addition, two
compounds were detected in roots (7-hydroxyflavone and benzyl
4-hydroxybenzoate) with the concentrations of 0.2 and 0.4 mg/g
dr, respectively, corresponding to the intensities of 4.7 and 7.1 mV
(Figure 1, Table 4). However, only one compound was identified
in stems (4-hydroxy-3-propylbenzoic acid methyl ester) with the
concentration of 0.06 mg/g of dry wt and the intensity of 1.6 mV
(Figure 1; Table 4). HPLC-DAD analysis (280 nm) of DCM ex-
tracts showed that stems and roots chromatograms were similar,
in terms of profile and intensity (140 and 180 mV). Leaves-DCM
extract displayed the largest number of peaks with modest in-
tensity (18 mV) and the same number of identified compounds as
the leaves-CYHA one. Four phenolic compounds were identified:
icariin (2.3 mg/g of dry wt and 18.2 mV), phenoxodiol (0.04 mg/g
dr and 0.7 mV), 5,7-dihydroxy 4-propylcoumarin (1.3 mg/g dr
and 13.4 mV), and 4-hydroxy-3-propylbenzoic acid methyl ester
(0.9 mg/g dr and 8.2 mV) (Figure 1; Table 4). Interestingly, icariin
and 5,7-dihydroxy-4-propylcoumarin showed the highest concen-
trations compared to the other identfied compounds (Table 4).

The polar extract (MeOH), showed a different phytochemical
profiles compared to the apolar extracts (CYHA and DCM)
(Figure 1). Overall, methanolic extracts exhibited high intensity
level (160 to 350 mV) compared to the other extracts. Leaves

and stems chromatograms showed almost the same patterns with
a closer intensity level (300 and 350 mV, respectively). However,
they presented the lowest intensity (160 mV), despite the higher
number of polar compounds appeared in the chromatogram. In
total five compounds were identified in all the organs distributed
as follows: two compounds in stems, phenoxodiol (0.02 mg/g dr
and 0.2 mV) and pinostilbene hydrate (0.1 mg/g dr and 0.7 mV);
two in roots, 3-amino-4-hydroxybenzoic acid (0.9 mg/g of dry
wt and) and 2,4-dihydroxy-3,6-dimethylbenzoic acid (0.04 mg/g
dr, and 0.3 mV). However, only one compound was identified in
leaves; L-tyrosine 7-amido-4-methylcoumarin (0.4 mg/g dr and
4.4 mV) (Table 4; Figure 1). To summarize, it is observable, that
the HPLC chromatograms (Figure 1) showed the chemical com-
position change clearly qualitatively and quantitatively according
to the polarities of used solvent. Moreover, some compounds were
detected in more than one extract of the different organ, such as
phenoxodiol, 4-hydroxy-3-propylbenzoic acid methyl ester, and
2,4-dihydroxy-3,6-dimethylbenzoic acid. By comparison with
the literature, the identified phenolic compounds were found
for the first time in the Brassica extracts organs and precisely in
the B. tournefortii ones. Some other phenolic compounds, such
as 3-amino-4-hydroxybenzoic acid and 7-hydroxyflavone were
found in B. compestris and B. nigra roots, respectively (Choi et al.,
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Figure 3–GC-MS chromatograms of B.
tournefortii stems extract. (DCM:
dichloromethane; MeOH: methanol). Peaks: (1)
mesitylene; (2) n-undecane; (3) naphthalene (4)
iberin nitrile; (5) n-hexadecanoic acid; (6)
gamolenic acid; (7) 9,12-octadecadienoic acid;
(8) nonacosane.

terpenes, phenols, sterols, vitamins, sucres, and aromatic hydro-
carbures. Three different GLS hydrolysis products were detected
in B. tournefortii organs (Table 5). The identified compounds were
iberin nitrile (nitriles), detected in all the organs with MeOH
solvent (Figures 2, 3, and 4) while iberin (isothiocyanates) and
iberverin nitrile (nitriles) detected in roots with DCM and MeOH
solvents (Figure 4), respectively. Iberin nitrile was detected with
varied percentages between the organ extracts. Leaves and roots
had showed a close values with 4.8% and 4.3%, respectively, while
is �twofold higher for the stems (8.8%) (Table 5). In addition,
iberverin nitrile and iberin were detected with low values in
the roots extracts, with 0.5% and 0.9% respectively (Table 5).
The previous study of Vaughn and Berhow (2005) mentioned
the presence of iberin and iberverin nitrile in B. oleracea and

2016; Garcés Mejı́a, Pino, & Peñuela, 2017). Moreover, Carlos 
Hilario, Shimshock, Ng, Bingham, and Christopher (2015) 
reported the existence of polydatin and pinostilbene hydrate in 
the Arabidopsis thaliana transegenic plants.

3.3.2 GC-MS analysis. The organic extracts of the differ-
ent extract of B. tournefortii were analyzed by GC-MS (Figure 2). 
The technique used made it possible to identify 20 compounds in 
the different extracts of B. tournefortii organs (Table 5). The com-
pounds were distributed as follows: nine compounds in the leaves 
extracts, eight compounds in stems extracts, and eight compounds 
in roots extracts. Several compounds were in common between 
the different extracts (Figures 2, 3, and 4). The volatile profile 
from the different extracts showed the presence of 10 organic 
compound classes: GLS hydrolysis products, fatty acids, ketones,



Figure 4–GC-MS chromatograms of B.
tournefortii roots extract. (DCM:
dichloromethane; MeOH: methanol). Peaks: (1)
iberverin nitrile; (2) n-undecane; (3) iberin
nitrile; (4) phenol; (5) iberin; (6) n-hexadecanoic
acid; (7) 9,12-octadecadienoic acid; (8) erucic
acid.

Lesquerella fendeli species. Similarly, iberin nitrile was detected in
B. oleracea species (Penas, Pihlava, Vidal, Valverde, & Frias, 2012).
By thorough literature review, iberin, iberin nitrile, and iberverin
nitrile were detected for the first time in B. tournefortii organs.

Moreover, roots CYHA fraction (Figure 4) of B. tournefor-
tii were characterized by a high portion of erucic acid and
9,12-octadecadienoic acid, with 26.4% and 15.4%, respectively,
as previously reported by Krishnaveni and Saranya (2016).
Nonacosane and 9,12,15-octadecatrienoic acid were, also, the
main volatile constituents of the stems extracts of B. tournefortii
(Figure 3) with 19.1% and 11.6%, respectively. In addition, it was
remarkable that the n-hexadecanoic acid compound was present
in all the different extracts of B. tournefortii organs (Figures 2,

3, and 4). This funding was in agreement with Ramamurthy
and Durga Devi (2017) and Tyagi and Agarwal. (2017) studies,
who reported n-hexadecanoic acid as a common compounds in
Brassica oleracea and Pistia stratiotes extracts.

This type of GC-MS analysis is one of the steps toward
understanding the nature of active compounds in medicinal plant
and helpful for the further detailed study. B. tournefortii organs
contain several bioactive compounds that justify its use in various
traditional ailments.

3.4 Biological activities
This is the first study that investigated the anti-15-LOX, anti-

α-glucosidase, and cytotoxic activities of B. tournefortii organs.



Figure 5–Anti-15-lipoxygenase activity of B. tournefortii organs extracts
(CYHA: cyclohexane; DCM: dichloromethane; MeOH: methanol). The same
superscript means no significant difference (P > 0.05).

Cardaria draba, Draba nemorosa, and Capsella bursa pastiros showed a
low α-glucosidase inhibitory activity that does not exceed 23% at
the concentration of 50 mg/L. However, the actual results were
showed that all B. tournefortii extracts have an active α-glucosidase
inhibitory potential ranked from 40% to 60% (Figure 6). Similarly,
Jo et al. (2018) found in their previous study that the red mustard
(Brassica juncea var integrifolia) showed a significant α-glucosidase
inhibitory activity (80%) associated to a low TPC (8.5 mg/g
GAE) of dry wt. The low correlation found between TPC
and anti-α-glucosidase activity, suggested the presence of other
powerful compounds able to inhibit α-glucosidase enzyme. Due
to their richness in glucosinolates compounds, Brassica crops are
known to have a good anti-diabetic activity (Herr, Lozanovski,
Houben, Schemmer, & Büchler, 2013). Glucosinolates are
considered as inhibitors of α-glucosidase that delay the breaking
down of carbohydrates in the small intestine and diminish the
postprandial blood glucose level (Banihani et al, 2017).

3.4.3 Cytotoxic activity. Cytotoxic activity of B. tourne-
fortii organs extracts against MCF-7, HCT-116, and OVCAR
cell lines was performed using MTT assay, which is reliable
for detecting cell proliferation. Among all tested extracts,
leaves-MeOH and roots-DCM extracts showed the most potent
cytotoxic activity against MCF-7 cell line, with an inhibition
percentage of 35.12 and 33.31, respectively (Figure 7A). The
other extracts showed a weak or no cytotoxic activity (Figure 7A).
Roots-CYHA and roots-DCM extracts showed a moderate
cytotoxic activity of about 30% against HCT-116 and OVCAR
cell lines (Figures 7B and 7C). However, leaves and stems showed
an active cytotoxic effect against HCT-116 and OVCAR cell
lines only with the CYHA extracts.

Statistically, the cytotoxicity of the different extracts depends
on the type of organs as well as the solvents polarity. Obtained
data were higher compared to those found in the study of
Moustafa, Menshawi, Wassel, Mahmoud, and Mounier (2014)
when working with other Brassicaceae species such as B. nigra
and Matthiola arabica.

3.5 PCA
To better comprehend the relationship between TPC and

biological activities of B. tournefortii organs, PCA analysis was
done. Principal component weighting for the complete data set
was done for six measured attributes (TPC, anti-15-LOX, anti-
α-glucosidase, and cytotoxic activity [MCF-7, HCT-116, and
OVCAR cell lines]). The first two dimensions account together
66.79% of data variability. The principal components (PC1 and
PC2) were responsible for 40.87% and 25.94% of the total data
variance, respectively (Figure 8). PC1 showed a strong positive cor-
relation with the level of cytotoxic activities (HCT-116 and OV-
CAR cell lines) with (r = 0.94) and (r = 0.86), respectively. This
being less pronounced for the variables, anti-15-LOX activity (r
= 0.47), anti-α-glucosidase activity (r = 0.40). For the PC2, there
was a good positive correlation with MCF-7 (r = 0.87) and anti-
15-LOX activity (r = 0.70). However, it is being less pronounced
with TPC (r = 0.54) (Table 6). Overall, there was a positive corre-
lation between OVCAR and HCT-116, HCT-116, and 15-LOX
and finally between OVCAR and α-glucosidase activity having an
r (Pearson correlation coefficients) values of 0.74, 0.55, and 0.52,
respectively. Oval forms shown on Figure 9 grouped the different
organs extracts in three classes: class 1 (roots-DCM and roots-
CYHA), class 2 (stems-MeOH, leaves-MeOH, and stems-CYHA)
while class 3 contains (leaves-DCM, stems-DCM, leaves-CYHA,
and roots-MeOH). Using the biplot figure (Figure 10), it seems

Figure 6–Anti-α-glucosidase activity of B. tournefortii organs extracts. (n = 
3). (CYHA: cyclohexane; DCM: dichloromethane; MeOH: methanol). Means 
values ± SD (n = 3); Different letter on the histograms means a significant 
difference (P � 0.05).

3.4.1 Anti-15-LOX activity. B. tournefortii extracts showed 
a moderate anti-15-LOX inhibition effect ranked from 13% to 
19% for the leaves, from 16% to 24% for the stems, and from 8%
to 28% for the roots (Figure 5). Statistically, there was no significant 
difference (P > 0.05) between the different extracts of the three or-
gans, regardless the used solvent, in terms of 15-LOX inhibition. 
However, the roots highlighted a significant difference between 
the three solvents. It is remarkable that roots-DCM extract, which 
contain a low TPC, showed the highest anti-15-LOX activities. 
This suggests that other chemical classes of metabolites, such as 
the isothiocyanates, are probably responsible for the bioactivity of 
extracts rather than phenolic compounds (Habtemariam, 2017).

3.4.2 Anti-α-glucosidase activity. Organic extracts of B. 
tournefortii organs were evaluated for their inhibitory effect on 
α-glucosidase enzyme by in vitro assay. Statistically, the different 
extracts showed a nonsignificant difference between stems and 
roots compared to the leaves. However, leaves extracts showed 
no significant difference between MeOH and CYAH solvents 
compared to the DCM one in terms of their α-glucosidase in-
hibitory activity (Figure 6). Previous studies of Gholamhoseinian, 
Fallah, Sharifi, and Mirtajaddini (2008) and Sancheti, Seung, Jae, 
and Sung (2011) reported that other Brassicaceae species such as



Figure 7–Cytotoxic activity of B. tournefortii organs extracts against MCF-7, HCT-116 and OVCAR cell lines. (n = 3). (CYHA: cyclohexane; DCM:
dichloromethane; MeOH: methanol). Means values ± SD (n = 3); Different letter on the histograms means a significant difference (P � 0.05).

Figure 8–Principal components analysis “loading plot” of antioxidant prop-
erties (TPC: total phenolic content) and biological activities (α-glucosidase:
anti-α-glucosidase activity; 15-LOX: anti-15-lipoxygenase activity; MCF-7,
HCT-116 and OVCAR: cytotoxic activity) of B. tournefortii organs extracts.

that the extracts were located, relative to TPC and biological ac-
tivities, on the basis of their chemical composition. Stems-MeOH
and leaves-MeOH extracts, which contain the highest TPC, were
located close to MCF-7 and anti-α-glucosidase activity. Hence,
it is possible to suggest that polyphenols compounds contribute
to the inhibition of these two activities (Archivio, Filesi, Varı̀,

Figure 9–Principal components analyses “score plot” of different B. tourne-
fortii organs extracts. (L: leaves; S: stems; R: roots), (CYHA: cyclohexane;
DCM: dichloromethane; MeOH: methanol).

& Scazzocchio, 2010; Rothwell, Knaze, & Zamora, 2017).
Likewise, roots-CYHA extract was located close to HCT-116
and OVCAR. This extract contains several fatty acid compounds
such as erucic acid and 9,12-octadecadienoic acid (unpublished
data) known according to the literature by their cytotoxic
properties.



Table 6–Correlations between variables and factors.

F1 F2

Total phenolic content (TPC) −0.65 0.54
Anti-15-lipoxygenase activity (15-LOX) 0.47 0.70
Anti- α-glucosidase activity (α-glucosidase) 0.39 −0.01
Cytotoxic activity (HCT-116) 0.94 0.02
Cytotoxic activity (MCF-7) 0.12 0.87
Cytotoxic activity (OVCAR) 0.86 −0.12

Figure 10–Principal components analysis biplot of biological activities of
different B. tournefortii organs extracts.

4. CONCLUSION
To the best of our knowledge, this study is the first work

to highlight the nutritional and the biological activities of B.
tournefortii organs. Physicochemical composition of B. tournefortii
showed that leaves highlighted the highest amount of moisture,
fat, proteins, pigments, macro- and micronutriments. In addition,
B. tournefortii organs showed a moderate anti-15-LOX activity and
an active α-glucosidase inhibitory effect. GC-MS analysis enabled
us to identify a new isothiocyanate (iberin) detected in the
stems-DCM extract, while the two new nitriles (iberverin nitrile
and iberin nitrile) were detected in the MeOH extracts of all B.
tournefortii organs. Among the identified phenolic compounds,
the concentration of icariin and 5,7-dihydroxy-4-propylcoumarin
have exceeded the level of 1 mg/g of dr. Obtained data argued for
high healthy benefits of B. tournefortii as spontaneous legumes and
explained the importance of its inclusion in the typical regional
gastronomy.
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BSA bovine serum albumin

CYHA cyclohexane
DCM dichloromethane

DMEM Dulbecco’s modified eagle medium
DMSO dimethyl sulfoxide

dr dry residue
fw fresh weight

GC-MS gas chromatography-mass spectrometry
GLS glucosinolates

HCT-116 human colon cancer
HPLC high performance liquid chromatography
mAU milli absorbance unit

MCF-7 human breast cancer
MeOH methanol

MSD mass selective detector
MTT 3-(4,5-dimethyl thiazol-2-yl) 2,5-diphenyl tetra-

zolium bromide
Na3PO4 sodium phosphate

NIST national institute of standards and technology
PNP-G 4-nitrophenyl-β-D-glucuronic acid
RPMI Roswell Park Memorial Institute
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15-LOX 15-lipoxygenase.
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