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The temperature variation of the defect densities in a crystal depends on vibrational entropy. This
contribution to the system thermodynamics remains computationally challenging as it requires a
diagonalisation of the system’s Hessian which scales as O(N3) for a crystal made of N atoms. Here,
to circumvent such an heavy computational task and make it feasible even for systems containing
millions of atoms the harmonic vibrational entropy of point defects is estimated directly from the
relaxed atomic positions through a linear-in-descriptor machine learning approach of order O(N).
With a size-independent descriptor dimension and fixed model parameters, an excellent predictive
power is demonstrated on a wide range of defect configurations, supercell sizes and external defor-
mations well outside of the training database. In particular, formation entropies in a range of 250
kB are predicted with less than 1.6 kB error from a training database whose formation entropies
span only 25 kB (train error less than 1.0 kB). This exceptional transferability is found to hold
even when the training is limited to a low energy superbasin in the phase space while the tests are
performed for a different liquid-like superbasin at higher energies.

Keywords: Vibrational Entropy, Defects, Machine Learning, Molecular Dynamics, Harmonic approximation,
Empirical Potentials

I. INTRODUCTION

The aging of crystalline materials is heavily influenced
by the thermodynamic and kinetic properties of point
defects. Their evolution gives rise to an extraordinarily
diverse range of defect morphologies [1–8] whose distri-
butions in size, character and density exhibit significant
variations with temperature.

The stability of defect populations changes in response
to temperature variation [9–12] according to the system
entropy in which one distinguishes three distinct con-
tributions associated to : (i) various geometry config-
urations [13], (ii) electronic thermal excitations [14] and
(iii) lattice thermal vibrations [15]. For an isolated va-
cancy close to melting temperature, both electronic and
vibrational entropies have same order of magnitude [14]
around 3kB/2 while configurational entropy reduces to
the mixing entropy and thus is negligible in dilute sys-
tems [15]. Below the melting temperature, the electronic
entropy decreases linearly in temperature as the width of
the Fermi surface sharpens. The vibrational contribution
becomes thus dominant up to few kelvins where quantum
effects yields an abrupt decrease, similar to the phonon
heat capacity. For more complex defects, the configura-
tional entropy is augmented by a term kB ln(Nc) where
Nc is the number of different geometries corresponding to
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the same internal energy. Since it does not vary with tem-
perature, this contribution does not affect the stability of
defect structures. We shall also leave aside the tempera-
ture dependence of the internal energy which is inherent
to the thermal expansion of solids [15]. Our study is de-
voted to the computation of the vibrational entropy as
it represents surely [16] an important contribution to the
stability of defect in a wide range of temperature.

For a solid containing N atoms, the standard harmonic
approximation of entropy [17] requires a O(N2) calcula-
tion of the dynamical matrix and a O(N3) diagonalisa-
tion to find the vibrational spectrum. The procedure is
schematically represented in Fig.1(a). For instance, the
computational load for such a task in a crystal made
of 2 × 105 atoms requires more than 20 TB of memory
and ten hours over thousands of the most recent CPUs.
Different methods have been developed [18–26] to com-
pute directly the free energy of defects including the non-
harmonic contributions from energy and entropy in an
indistinguishable manner. However these methods re-
main computationally very heavy as they usually rely on
sampling the system phase space through the construc-
tion of random or optimized trajectories. The essential
problem arises from the convergence of such methods as
to achieve a reliable sampling the number of iterations
needed scales as O(N2) or O(N3), in the more favorable
case. Furthermore we notice that according to neutron
scattering experiments, the non-harmonic contributions
to the formation of defect are not essential to the com-
putation of vibrational entropy in a broad range of tem-
perature, i.e. up to 700 K for example in α-Fe [27] and
Al [28].
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In the present study we thus propose a surrogate model
to evaluate the harmonic vibrational entropy using a
linear-in-descriptor machine learning (LDML) approach
with O(N) computational cost [29–38]. The method is
applied to a wide class of point defects using only the
relaxed atomic positions to determine directly the vi-
brational entropy. We chose to exemplify our computa-
tional technique using empirical potential interactions in
α-Fe. The accuracy of interatomic potentials is currently
undergoing a renaissance due to ever larger databases
and new potential formalisms employing machine learn-
ing techniques [30, 34–37, 39–44], statistical on-the-fly
learning [45, 46] and mixed elastic-atomic models [3, 47]
amongst others. The empirical interatomic potential
models employed here were fitted on ab initio [48] or
experimental data [49]. Their relative simplicity allowed
us rapidly asses a wide range of defect structures and to
explore a large dataset in large crystals inaccessible via
standard ab initio methods [50–52].

Our main finding is that the LDML approach we pro-
pose exhibits an exceptional degree of transferability, giv-
ing the ability to rapidly asses defect vibrational entropy
at realistic temperatures in different systems of body-
centered cubic (bcc) Fe containing defects. The same
machine learning parametrisation allows us to predict the
formation entropies of different defects over a wide range
of 250 kB to within an root mean square error (RMSE)
inferior to 2 kB , despite the rather narrow training set
having a total formation entropy range of only 25 kB .

In section II we define the harmonic vibrational
entropy and emphasis the equivalence between the
local and the eigen descriptions for phonons in the
harmonic approximation. In section III we describe
the machine-learning approach for vibrational entropy,
by introducing the LDML model and the descriptor
functions. In section IV the dataset production and
model training is detailed before being applied to predict
the formation entropy of various defects in section V.
The excellent transferability found in initial applications
to point defects is pushed further in section V D, where
our model trained on defect structures is applied to
predict the formation entropy of high defected structures
generated by random displacements in bcc iron super-
cell. The success of the present approach opens many
perspectives for high-throughput, multiscale materi-
als science calculations which are discussed in section VI.

II. VIBRATIONAL ENTROPY IN THE
HARMONIC APPROXIMATION

To evaluate vibrational properties under the harmonic
approximation we consider the normal modes of a system
with N atoms, obtained from the spectrum of the force
constant matrix φ ∈ R3N×3N through

(φ−Mω2
ν)|ν〉 = |0〉. (1)

FIG. 1: Two strategies to evaluate the harmonic formation
entropy of defects embedded into crystalline structure

having N atoms: (a) the traditional approach based on the
phonons spectrum of Hessian H (the second derivatives of

the potential energy of the system) (b) the machine learning
surrogate model based on the M instances of the database,

fitted via regression in the descriptor space RD. The
descriptor or feature space is the representation of the

atomic configuration through the descriptor functions. Both
scaling coefficients of the regression n and p range between 0

and 2 depending on the method used. For the linear fit,
used in the present study, n = 1 and p = 0.

Where M ∈ R3N×3N is a diagonal mass matrix. If we
only consider phonons in the Debye approximation, ap-
propriate for phonons near the center of the Brillouin
zone, the force constant matrix becomes the Hessian op-
erator H, the matrix of second derivatives of the poten-
tial energy U . As discussed above, to obtain the eigen-
values ω2

ν and eigenvectors |ν〉 the Hessian must be di-
agonalised. In the classical approximation, i.e. when the
temperature is larger than the crystal Debye temperature
such as ~ων

kBT
� 1 ∀|ν〉, the entropy becomes [53, 54]:

S(T,N) = kB
∑
ν

[
ln

(
kBT

~ων

)
+ 1

]
, (2)

where kB and ~ are the Boltzmann and Planck constants,
respectively. For finite crystalline systems containing Nb
bulk atoms and ±Nd point defects, the vibrational for-
mation entropy Sf is defined as

Sf (T,Nd) = Sd(T,Nb ±Nd)−
Nb ±Nd
Nb

Sb(T,Nb), (3)

where the entropies Sb and Sd of the bulk and defec-
tive systems are computed at the same volume V . With
Hessian eigenvalues ω2

νb
and ω2

νd
for the bulk and defect

systems, Eq.(2) yields a harmonic formation entropy :

Sf (T,Nd) = kB ln

∏νb
(~ωνb)

Nb±Nd
Nb∏

νd
~ωνd

 . (4)

Fig.1 schematically summarises the numerical treatment
required to compute entropy through the diagonalisa-
tion of the Hessian matrix, which has an O(N3) compu-
tational demand that typically prohibits application to
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large systems. We have to note that an O(N) approach
has been developed by different authors [55], who treat
the summation in Eq.(2) as an expectation value over the
eigenvalue distribution. They approximated this distri-
bution using a set of Chebyshev polynomials with a ran-
dom basis set. Whilst this stochastic approach is indeed
more efficient than O(N3) treatment for large systems,
a converged result requires a proper selection of a large
set of polynomials and basis vectors, requiring a com-
putational effort which is still impractically high for the
high-throughput evaluation desired in the present work,
motivating our use of LDML models.

A. Green function formalism for vibrational
entropy calculations

Within the harmonic approximation, evaluation of the
vibrational entropy requires knowledge of the full phonon
spectrum, which can be directly computed from the sec-
ular equation Eq.(1). The Green function formalism is
an alternative and elegant way to iteratively solve this
same eigen-problem. Taking eigenmodes |ν〉 the Greens
function G ∈ C3×3 ⊗ CN×N writes [53]:

G(ω) =
∑
ν

|ν〉 ⊗ 〈ν|
ω2
ν − ω2

. (5)

The total phonon density of states is then the imaginary
part of the trace of Green’s function [53]

Ω(ω) =
2ω

π
= (Tr {G(ω)}) , (6)

where =(·) is the imaginary part and Tr(·) is trace oper-
ator. It is straightforward to verify the total degrees of
freedom are respected through

∫∞
0

Ω(ω)dω = 3N , whilst
the classical vibrational entropy of the system at a given
temperature T :

S = −kB
∫ ∞
0

[
ln

(
~ω
kBT

)
− 1

]
Ω(ω)dω. (7)

Whilst equations Eq.(6) and Eq.(7) provide a clear con-
nection between the phonon Green’s function and the
vibrational entropy, the normal modes |ν〉 are typically
delocalized across many atoms, complicating an analysis
based on a mapping to localized atomic descriptors. As
a result, we now emphasis this same formalism using a
local basis set to give the local density of states [53].

B. Local basis for densities of states of phonons

The local density of states can be deduced directly in
the Green’s function formalism [53]. Our goal is to re-
place the delocalized basis |ν〉 in the above results with
a localized basis |iα〉, where each basis vector is localized

on a coordinate α of an atom i. As both bases |ν〉 and
|iα〉 are complete, they are related by a rotation in R3N :

|ν〉 =
∑
i

∑
α

ξiα(ν)|iα〉, (8)

the square of the rotation matrix elements, the |ξiα(ν)|2,
can be seen as the probability of the phonon |ν〉 to be
localised on the atom i and along the α direction. By di-
rect substitution into Eq.(5) and using generic properties
of rotation matrices we obtain

%iα(ω) =
2ω

π
= (Giα(ω)) . (9)

%iα(ω) =
∑
ν

|ξiα(ν)|2δ(ω − ων), (10)

where %iα is the local DOS of phonon projected on the
atom i following the α direction. The classical vibrational
entropy of the system from Eq.(7), can then be written
as local entropy contribution of each atom:

S =
∑
i

[
−kB

∑
α

∑
ν

[
ln

(
~ων
kBT

)
− 1

]
|ξiα(ν)|2︸ ︷︷ ︸

Si, local information

]

=
∑
i

[∑
α

siα

]
, (11)

where siα accounts for the local entropy from the ith atom
in the α direction and Si =

∑
α s

iα represents the total
contribution from the same atom. The above equation is
a consequence also of the fact that total density of states
of phonons is the sum of the local contribution:

Ω(ω) =
∑
i

[∑
α

%iα(ω)

]
. (12)

The redistribution of the total entropy of the system into
local contribution, Eq.(11), is exact, as is the total den-
sity of states, Eq.(12). As with the local density of states,
the local entropy is related to the local environment of
the atom. It should be noted that local entropies gather
the full spectrum of the dynamical matrix. Green formal-
ism allows to formulate the vibrational entropy problem
as a linear problem of sources in term of local geometric
environments. This formalism describes long range in-
teractions in term of source as linear elasticity describes
long range interactions in term of elastic dipoles.

III. MACHINE-LEARNING SURROGATE
MODEL FOR THE VIBRATIONAL ENTROPY

Prediction of the vibrational entropy S directly from
the relaxed atomic coordinates is impractical due to the
high dimension of the input space and the highly non-
linear regression required. In addition, physical con-
straints such as extensivity in N and V or symmetry
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under exchange of identical atoms are very hard to en-
force.

In common with the majority of machine learning
models [29, 34, 39, 41, 43], we instead replace a highly
complex nonlinear regression task on atomic coordinates
q ∈ R3N with a much simpler linear regression task
on nonlinear descriptor functions of the atomic coordi-
nates, which we dubbed linear-descriptor machine learn-
ing (LDML) model. Often, the effective dimension of the
descriptor space is larger than the dimension of the orig-
inal input space [35–37, 43, 56], though in the present
work our mapping will achieve a significant dimensional
reduction. The precise choice of descriptor functions is
presented in section III A.

To build LDML model, we first assume that the most
general model input is a set of N evaluations of D de-
scriptor functions, giving a descriptor vector Di ∈ RD
for each atom i. To build Di, the D descriptor functions
take as input the atomic environment around an atom
i. The atomic environment around i can in principle be
the entire system, a point we return to in the next sec-
tion. This procedure thus initially maps an input space
of R3N to a descriptor space of RD×N . We then assume
that these descriptor functions are sufficiently diverse and
well chosen such that the local entropy for an atom i can
be written as the linear relation[∑

α

siα

]
= wi ·Di., (13)

where wi ∈ RD is a vector of D weights. In principle, the

total entropy S =
∑N
i=1

[∑
α s

iα
]

then requires the deter-

mination of DN parameters for the {wi}; however, whilst
linearity in the wi is sufficient to give a thermodynami-
cally extensive entropy [57], to respect symmetry under
identical exchange we further require that the weight vec-
tors are identical amongst indistinguishable atoms, im-
plying that wi = w for the elemental systems considered
here, i.e. all weight vectors are identical. This gives a
total entropy of

S =

N∑
i=1

[∑
α

siα

]
= w ·

(
N∑
i=1

Di

)
= Nw · 〈D〉, (14)

where 〈D〉 = N−1
∑N
i=1D

i ∈ RD is the average de-
scriptor vector, meaning that we map the original input
q ∈ R3N to a descriptor space of dimension D � 3N
which is system size independent. The predicted entropy
Eq.(14) is invariant under identical exchange. Further-
more if one considers n copies of the system then the
average vector 〈D〉 over the n copies is unchanged com-
pared to the original system, thence proving thermody-
namic extensivity. The fixed dimensionality of vector 〈D〉
allows the dimension of the input space (i.e. number of
atoms) to vary, essential to compute the LDML model
formation entropy. Using Eq.(3) we find the formation
entropy for a defective system containing ±Nd defects in

a bulk lattice of Nb atoms :

Sf = (Nb ±Nd) w · [〈D〉d − 〈D〉b] , (15)

where 〈D〉d and 〈D〉b are the average descriptor vectors
for the defect-containing and bulk systems, respectively.
The formation entropy is therefore the inner product be-
tween the model weight vector w and the difference in
the average descriptor vectors 〈D〉d − 〈D〉b, multiplied
by the total number of atoms. Eq.(15) is a central re-
sult of this paper, defining our LDML model. Whilst
many choices for machine learning based surrogate mod-
els exist, including the popular kernel methods and neu-
ral networks [30, 56], the conceptually simpler approach
followed here offer many advantages in transferability,
overfitting control and analytic connection to thermody-
namic properties. In the next section we consider candi-
date descriptor functions.

A. Choice of descriptor functions

We have seen that the input vector to our LDML
model is the total descriptor vector N〈D〉, which is
symmetric under identical exchange. However, the
choice of descriptor functions must also preserve the
symmetries and the invariances of the local atomic
environment. The notion of descriptor in material
science was introduced by Behler and Parrinello [29–31].
They proposed the G2 descriptor, defined below, that
underlines the radial distribution of neighbouring atoms
weighted by a Gaussian. Since this pioneering work,
many descriptors have been developed by (i) introducing
the explicit angular description, as the G3 [29], (ii)
using the spectral decomposition in 3D or 4D spherical
functions of the atomic density [32, 33] (iii) particular
design for a given system [45, 58–61] (iv) using even
machine / deep learning methods in order to find the
appropriate descriptors [62–65] (v) hybrid descriptors
that can mix all others classes mentioned above [34]. We
note that there are also particular type of descriptors
that take the fingerprint of the whole system, offering
significant advantages when the observable targeted by
the surrogate model cannot be described as a sum of
local quantities. Within this particular formalism, the
full atomic density is decomposed through a multi-scale
convoluted wavelet network, giving a vector of atom-
delocalized scattering coefficients [35–38]. This method
is particularly relevant for coarse-graining systems where
several scales interact. The dimension of descriptors is
flexible and is often used to control the level of the accu-
racy necessary to represent the local atomic environment
in the descriptor space. There is therefore always a
trade off between computational efficiency, accuracy,
and the sensitivity to overfitting which can arise for
large input space dimensions. This work compares three
local descriptors: the Angular Fourier Series (AFS) [33],
the bispectrum SO(4) (bSO(4)) [32, 33] and a scattering
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transform descriptor [35, 36].

The AFS descriptor An,l combines the radial and an-
gular information of the local atomic environment. The
n and l components account for the radial and angular
information of the neighbourhood structure centered on
the i atom; defining as Ri the set of indices for atoms
less than rcut from i, we have

Ain,l =
∑

k,k′∈Ri

gn(rik)gn(rik′) cos (lθik,ik′) fi(rik)fi(rik′),

where rik is the distance between atom i and atom
k and θik,ik′ the angle formed by the triplet of atom
i, k, k′ centred on i. The sum involves the pairs and the
triplets of atoms formed by the central ith atom and the
neighbouring atoms inside the sphere with the radius
rcut around atom i. f is a cut-off function, which for the
distances r ≥ rcut gives fi(r) ≡ 0. The radial functions
gn are decreasing polynomials with the distance r having
the degree of α+ 2 for 0 ≤ α ≤ n. The angular functions
are the Tchebyshev polynomials [33] with 0 ≤ l ≤ lmax.
As An,l is formed from a product of the radial and angu-
lar functions, the descriptor has a total of nmax(lmax+1)
components. The AFS descriptor enables wide-ranging
level of accuracy on radial and angular information by
imposing nmax and lmax, respectively. Otherwise stated,
in this paper we have used nmax = 20, and lmax = 10
and the cut-off distance of 5Å. The total number of com-
ponents for the AFS descriptor used here therefore is 220.

The bSO(4) descriptor bSO(4)jmax is a spectral de-
scriptor based on the decomposition of the atomic den-
sity in 4D hyper-spherical harmonics [32, 33]. The three
components of the vector r ∈ R3 can be recast into the
three angles of the unit sphere S4 ∈ R4. The local envi-
ronment of the ith atom is described as a density ρi(r),
and can be decomposed on the 4D hyper-spherical har-
monics basis:

ρi(r) =
∑
k∈Ri

wkδ(r − rk), (16)

=
∑
k∈Ri

∞∑
j=0

j∑
m,m′=−j

cm,m
′

i,j Um,m
′

j (17)

where wk is the species-dependent weight, cm,m
′

i,j are the
result of the scalar product between the density cen-

tred on atom i and the hyper-spherical harmonic Um,m
′

j .

From the above equation, and the cm,m
′

i,j coefficients, it
can be deduced the power and the bi-spectrum of the
atomic density. The bi-spectral components of bSO(4)
are defined by the following equation, where j ≤ jmax
and |j1 − j2| ≤ j ≤ j1 + j2:

Bijj1j2 = (cm,m
′

i,j )†Hj1j2(c
m1,m

′
1

i,j1
⊗ cm2,m

′
2

i,j2
), (18)

where Hj1j2 is related with the Clebsch-Gordan coef-
ficient of SO(4) group. A detailed description can be

found in [32, 33]. Following the analysis of the results of
the first trial regressions, presented in section V, in this
study we use the jmax = 3.5 and select only the diago-
nal components j1 = j2 [32, 33, 66] yielding in the total
number of components to 26, the cut-off distance is set
to 5Å.

The solid harmonic wavelet scattering transform [35,
36] is a multi-scale translation-rotation invariant descrip-
tor. First a global density ρ is computed as a sum of
Gaussian functions g centered at the atomic positions:

ρ(r) =
∑
i

g(r − ri). (19)

Scattering coefficients SJ ,Lρ[j, `], j ∈ J , 0 ≤ l ≤ L are
then computed with convolutions of this density ρ with
solid harmonic wavelets ψmj,` of scale j ∈ J , followed by
an integral to have the rotation-translation invariance:

SJ ,Lρ[j, `] =

∫
R3

( ∑̀
m=−`

|ρ ∗ ψmj,`(r)|2
)1/2

dr (20)

ψmj,`(r) =
1

(
√

2π)3
e−

1
2 | r2j |

2
∣∣∣ r
2j

∣∣∣` Y m` (
r

|r|

)
. (21)

In this paper, we have used L = 9 and 9 scales J =
{0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5} yielding a descriptor of di-
mension 90.

IV. TRAINING LDML MODEL

A. Production of the configuration database

Any surrogate model is clearly heavily reliant on the
database used for training. In this work, we used the
ART method [67–70], following the methodology of previ-
ous studies [2], to generate a large number of configura-
tions for small vacancy and interstitial clusters in bcc Fe.
All clusters contained between 1-4 removed or additional
atoms, which we label as Vn and In respectively, with
n = 1, 2, 3, 4. Despite their apparent simplicity, the en-
ergy landscape of such defect configurations is known to
have many thousands of binding configurations [2, 4, 11].
To test the sensitivity of our surrogate model to the un-
derlying energy model, all calculations were performed
in duplicate using two interatomic potentials for bcc Fe,
the embedded atom model (EAM) potential developed by
Ackland et al. [48](AM04) and the modified embedded
atom model (MEAM) potential introduced by Alireza
and Asadi [49].

After an initial period of structure generation, all con-
figurations were pairwise compared to ensure the final
database only contained non-equivalent structures. Two
configurations are considered as non-equivalent provided
that two conditions are verified : (i) their energies differ
by more than 10−2 eV; (ii) in the case of interstitial de-
fects the sum of squares of the principal components of
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inertia tensor are different. Interstitial atoms are local-
ized using the Wigner-Seitz method [71].

The resulting database is one order of magnitude larger
than that obtained in our previous work [2], due to a
wider exploration of phase space with ARTn. The result-
ing database is summarised in Tab.I.

System (N, ε)
Type of point defects (Ncf )

Total
I2 I3 I4 V4

1024, ε = +0% 434 1105 1280 1701 4520
1024, ε = −1% 434 1105 1280 1701 4520
1024, ε = +1% 434 1105 1280 1701 4520
1024, ε = +2% 434 1105 1280 1701 4520
1024, ε = +3% 434 1105 1280 1701 4520
2000, ε = +0% 434 1105 1280 1701 4520
3456, ε = +0% 434 1105 1280 1701 4520
Total 3038 7735 8960 11907 31640

TABLE I: Database used for training the present regression
model. N is the number of atom in the perfect system, Ncf

the number of distinct instances for a point defect class.
I2−4 and V4 denotes the interstitial clusters with 2 up to 4

SIAs and the quadri-vacancy, respectively. The sizes of these
systems with defects are N + (2 . . . 4) and N − 4 for I2−4

and V4, respectively. ε is the isotropic and homogeneous rate
of deformation for the system

The local descriptors of the retained configurations
were computed using the MILADY package [34, 72] and
the scattering coefficients using the PyScatHarm pack-
age [36]. To compute the harmonic entropy for each con-
figuration, the Hessian was computed from 3N force eval-
uations using the standard finite difference formula with
a displacement of 10−3 Å. Each configuration was tested
to be a minimum by checking that the eigen-frequencies
are real. For each configuration, we perform an energy
relaxation by using LAMMPS [73]. Then, the phonon spec-
trum and vibrational entropy are computed using PHONDY
package [74–77].

B. Regression procedure

We wish to choose a parametrisation w for the LDML
model Eq.(14) which is able to approximate the M cal-
culated entropies S ∈ RM from the M total descrip-
tor vectors D ∈ RD×M . The general training procedure

takes a random subset of Mt < M entropies St ∈ RMt

and descriptor vectors D
t
∈ RD×Mt , performs a multilin-

ear regression to determine w, then tests the prediction
against the remaining Mr = M−Mt entropies Sr ∈ RMr

and descriptor vectors D
r
∈ RD×Mr by taking statistical

measures of the vector-valued training error St − w ·Dt
and test error Sr − w ·Dr

. As it is standard in machine
learning development, we compare both the root mean
square (RMSE) and mean absolute (MAE) errors. By
defining the Lp magnitude ‖v‖p of a vector v ∈ RM as

‖v‖p ≡
∑M
l=1 |vl|p, the RMSE and MAE errors for the

vector-valued error Ss − w ·Ds
∈ RMs read√

M−1s ‖Ss − w ·Ds
‖2 (RMSE), (22)

M−1s ‖Ss − w ·Ds
‖1 (MAE), (23)

where s = t gives the training error and s = r the test
error.

Whilst multilinear regression is conceptually simple,
in practice the optimal parametrisation can be difficult
to obtain when the number of parameters (here the
descriptor vector dimension D) is large. The purpose
of standard regression is to minimize the L2 error :
‖St−w ·Dt

‖2 with respect to w. However this can lead to
overfitting or highly heterogeneous parametrisation. In
order to avoid such difficulties we used a ridge regression
where a penalty term is added in the minimisation :
‖St − w · D

t
‖2 + λ‖w‖2. To optimize the parameter

λ we use Bayesian ridge regression, a probabilistic
generalization of multilinear ridge regression that was
applied commonly in the machine learning [56].

Briefly, in the Bayesian approach one models the error
St − w ·Dt

∈ RMt as a multidimensional Gaussian ran-

dom variable with a diagonal covariance matrix σ2IMt
.

In the language of Bayesian estimation, σ is a hyperpa-
rameter of our estimation procedure, to be distinguished
from the model parameters w which we want to estimate.
This gives a Gaussian likelihood of observing output data
St given model parameters w, input data D

t
and error

variance σ2 of

L(St|w,D, σ) ∝ exp
(
−‖St − w ·Dt

‖2/2σ2
)
, (24)

which is clearly a Gaussian of the L2 loss function
‖St − w · Dt

‖ with variance σ2. A prior distribution of
the model parameters w is required and as it is stan-
dard in a Bayesian approach, we chose another mul-
tidimensional Gaussian p0(w|σw) = exp(−‖w‖2/2σ2

w)
with σw as the second and final hyperparameter. The
product of the prior distribution with the likelihood
L(St|w,D, σ)p0(w|σw) gives a Gaussian of the ridge reg-

ularized L2 loss function with λ = σ2/σ2
w. The prior

distributions p0(σ), p0(σw) for the hyperparameters are
chosen as Gamma distributions, which can be shown to
facilitate the analytical derivations when using Gaussian
likelihoods [56]. In practice, the hyperparameters reflect
the confidence in the final parametrisation.

Defining integrals over the joint hyperparameter prior
p0(σ)p0(σw) as

∫
σ,σw

. . . , the posterior distribution for w

given training data St, Dt
reads

p(w|St, Dt
) = N

∫
σ,σw

L(St|w,Dt
, σ)p0(w|σw) (25)

where N−1 =
∫

dDw
∫
σ,σw

L(St|w,Dt
, σ)p0(w|σw)〉σ,σw

ensures normalization. We aim to find the mode
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FIG. 2: Formation entropy computed from the numerical diagonalisation of Hessian against the formation entropy computed
from LDML model using (a) EAM and (b-d) MEAM dataset for 2-4 interstitial clusters I2−4 and for quadri-vacancies V4 in

(8a0)3 supercells. The number of configurations are given at first line of Tab.I. The descriptors in the present study are (a-b)
A20,10, (c) bSO(4)3.5 and (d) SJ ,L with scales J = {0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}.

of the posterior distribution to determine the optimal
parametrisation w. This is equivalent to maximizing any
monotonic function of the posterior with respect to w, in
particular the logarithm, which avoids calculation of the
normalization constant N . Our final variational problem
for Bayesian ridge regression is thus

w = arg max
w′∈RD

log

∫
σ,σw

L(St|w′, Dt
, σ)p0(w′|σw), (26)

which is typically the most stable method to determine
the optimal parametrisation. Bayesian linear regressions
have been performed by using the scikit-learn pack-
age [78]. The initial value of σw for the prior is set by
default in the code.

V. TESTING OF THE LDML MODEL

A. Influence of interatomic potential and
descriptor set

The LDML model formalism was tested on bcc defect
systems as described above (Tab.I), initially in a supercell
of size 8a0 × 8a0 × 8a0. The bulk lattice contained 1024
atoms before the introduction of 2-4 interstitial atoms to
produce I2−4 defects or removal of 4 atoms for the V4
quadri-vacancies. The volume of the defected supercell
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FIG. 3: Illustration of the performance of the training of the surrogate model using deformed supercells of I2−4/V4 clusters
(MEAM database) with the A20,10 descriptor. The initial configurations have a (8a0)3 volume and have been deformed by

applying an homogeneous and isotropic dilatation of the supercell. The deformation ranges from −1% to 3%. (a) The figure
illustrates the results of the regression model depending on the type of defect in the supercell; (b) same as in (a) but for the

quadri-vacancy V4 and various deformation rate.

is fixed to the equilibrium bulk volume.

We first tested the influence of the underlying inter-
atomic potentials by training and testing the LDML
model on either EAM [48] or MEAM [49] datasets. The
MEAM potential augments the EAM potential form with
angular three body terms and typically employs analytic
expressions for the pair and embedding functions [79–81]
as opposed to the tabulated cubic splines of EAM po-
tentials. We also compared three sets of descriptors for
LDML model : (i) A20,10 descriptors, (ii) bSO(4)3.5 bis-

pectrum, both with rcut = 5.0 Å, and (iii) the global
Scattering descriptor SJ ,L. In our tests the A20,10 was
around 50% faster to evaluate than bSO(4)3.5 and SJ ,9

.

For the three descriptors the MEAM results have a
lower RMSE and MAE (see Fig.2), a feature we found
replicated across other training sets. The present sur-
rogate model estimates the multi-dimensional curvature
of the potential energy surface solely from the geomet-
ric structure of the minimum basin. Consequently, it
is assumed a smooth energy landscape, i.e. mathemati-
cally speaking, the underling potential energy surface is a
smooth function with regular derivatives. The EAM po-
tential uses spline functions does not satisfy the assumed
regularity, inducing error in the fitting procedure. The
MEAM force field is coded on smoother functions result-
ing in a smaller intrinsic error in the regression model.
This inconvenient is not related to the capacity of the
force field, EAM or MEAM to describe the physics of
phonons in bcc iron. In order to reduce the intrinsic er-
ror due to the regularity of the force-field in this paper
we use the MEAM potential exclusively. [49].

The results of regressions to the MEAM data with dif-
ferent descriptor functions are shown in Fig.2. On forma-
tion entropies ranging between 8 kB and 28 kB , the per-
formance in descriptor sets has limited variation but we
find that A20,10 consistently outperforms bSO(4)3.5, and
SJ ,9 despite the greater computational efficiency, with
an RMSE of 0.8 kB and 0.7 kB to 0.3 kB , respectively.

B. Modelling datasets with multiple defect species
and variable supercell volume

It is highly desirable to have predictability on the
changes in formation entropy under deformations of the
simulation supercell, as this can be used as a proxy
for changes in the formation entropy under varying mi-
crostructural environments.

In addition, as LDML model formation entropy
Eq.(14) receives an input vector of fixed dimension, in-
dependent of system size, it is possible to simultane-
ously train the model on datasets with variable number
of atoms.

As a first application, we trained the LDML model
on a large dataset of I2−4 and V4 configurations, found
through the ARTn searches. The simulation cell is the
same 8a0 cubic supercell as above, where each configu-
ration was additionally copied, subjected to an isotropic
dilation of −1% to 3% before a new calculation of de-
scriptor vector and harmonic entropy. The number of
configuration in the dataset has been increased by a fac-
tor 5. Fig.3 illustrates the accuracy of LDML model using
a single weight vector w for the entire dataset. We notice
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that RSME error is only 0.4 kB .

C. Training on combined disordered and
crystalline datasets

To test the ability of LDML model and descriptor func-
tions to predict formation entropies beyond crystalline
structures, we created an additional database of highly
disordered structures from an ARTn database of I2−4 and
V4 configurations in cubic supercells of dimension 8a0,
10a0 and 12a0, as described in Tab.I. For each configura-
tion, a large number of individual atoms were subjected
to random displacements, which creates many Frenkel
pairs even after relaxation. Once the relaxation proce-
dure has been realized we obtained a highly defective
structure containing up to 22 vacancies and 26 inter-
stitials. The set of such structures will be referred to
as the random database. The distribution of defects in
the random database is presented in Fig.4. The differ-
ence between the number of interstitials and vacancies
is conserved before and after the disordering procedure,
giving a strong correlation between the effective vacancy
and interstitial count. We also present the distribution
of formation entropies Fig. 5(b) and the distribution of
distances between point defects Fig. 5(a) associated to
Fig. 4. The distribution of formation entropies Fig. 5(b)
emphasizes that the selected configurations are diverse
and carefully selected. Concerning the distribution of
distances between defects Fig. 5(a), we can notice that
about 1/3 of distances are less than the ’interaction dis-
tance’ defines by 2rcut = 10Å for the descriptors. More-
over, the interaction between defects is not limited to the
cut-off distance of the force field. The point defects used
in the present database have strong elastic dipole tensor
[3, 82–84] that induces a strong elastic field far beyond
the defects and made that almost all the defects interact
with each other. Fig.6(a) presents the results of LDML
model trained on this highly diverse dataset. We find
that the RSME error is only 0.8 kB , which is to be com-
pared to a formation entropy range of approximately 250
kB . This high value of formation entropy in comparison
to Artn database Fig.2, is ascribed to the much higher
effective number of defects in the system.

In order to prove the robustness and the transferability
of the model illustrate in the Fig.6(a), a train/test pro-
cedure is performed. The database is split randomly into
two sets following the proportion p. One set corresponds
to the training set with the proportion (1−p), the second
one is the test set with p proportion. The LDML model
is adjusted on the training set and a prediction is realised
for the test set. In order to reduce bias on the random
procedure we iterate this train/test set sampling hundred
times for a given proportion p and we average the values
of RMSE and MAE for the training and test set. RMSE
and MAE calculated for both sets are presented in in-
set of Fig.6(a). The weak variability of RMSE against
the proportion p indicates the extremely good quality

of predictions, up to a splitting of 90%. We notice for
90% train / 10% test ratio, that test error is less than
train error. This behaviour reflects natural tendency of
any regression: more are data in train therefore more the
RMSE train is higher. Moreover, at that unbalanced ra-
tio it is possible to have some stochastic fluctuations. So
far, the probability to have predicted data with a large
systematic error (symptomatic data) is higher than the
probability to find symptomatic data in the test set.

FIG. 4: The analysis of the distribution of randomly gener-
ated point defects in the random database. This database is
derived from the ARTn database only using the supercells of
volume (10a0)3 and (12a0)3 by random creation of Frenkel
pairs. The plot emphasises the occurrences in the entire ran-
dom database of number of self interstitial atoms and vacan-
cies in the same supercell. The random database contains
9016 configurations.

Defects from random database are representative struc-
tures of bcc iron under irradiation. These structural
properties of defects influence drastically the phonon
properties. Let’s take the case of 〈111〉 interstitial clus-
ters [75, 85, 86]. These interstitial clusters exhibit a soft
mode due to an almost free translation of the dumbbell
along the 〈111〉 direction. This phonon mode is highly
active in the α− γ martensitic transition of Fe as well as
the pair kinks nucleation in the 1/2〈111〉 dislocation [87]
and is delocalized over distances larger than 10 Å.

The ability of the present LDML model to mimic the
physics of those soft modes is nontrivial, as the charac-
teristic wavelength is far beyond the cutoff radius of the
descriptors used to sample the local atomic environment.
Despite this, the linear regression in the descriptor space
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FIG. 5: The analysis of the distribution of formation entropies (b) and of distances between point defects in the random
database. Formation entropies follow the same distribution that defect numbers in simulation boxes drawn in Fig. 4.

Concerning distances distribution, about 1/3 of point defects are separated by less than 10Å = 2rcut.

is able to reconstruct the correlation between high for-
mation entropies and the large phonons wavelengths.

D. Transferability of crystalline model to
disordered structures

In this final example, we artificially tested the trans-
ferability of LDML model by training only on the ARTn
database of defect structures, before attempting to pre-
dict the formation entropies of the random database. As
illustrated in Fig.6(b), the LDML model achieves a re-
markable predictive accuracy with an RSME error of only
1.53 kB . Such a performance is obtained whilst the pre-
diction is made for a bassin of the energy landscape which
is disjointed from the training bassin where formation en-
tropy is bounded by 25 kB .

In order to prove the transferability of the LDML
in non-crystalline structures we investigate LJ38, the
Lennard-Jones cluster containing 38 atoms. It is a
archetypal system with thousands on minima organ-
ised in many attraction basins [88]. This system is of-
ten the benchmark for advanced numerical methods in
the exploration of the complex energetic landscapes [89–
91]. We used the LJ38 database from Cambridge Uni-
versity: http://www-wales.ch.cam.ac.uk/CCD.html,
gratefully provided by Prof. David J. Wales. For such
a system the cluster entropies could be easily calculated
by direct diagonalisation of the Hessian of the system.
We randomly chosen up to 10000 different LJ38 configu-
rations. The present surrogate model used AFS(20, 10)
descriptor having rcut = 5Å. The Fig. 7 illustrates the re-
sults of regression model for LJ38, and inset shows the re-

sults of the training/test procedure. The surrogate model
presents the same score and transferability behaviour as
in the case of bcc iron system.

FIG. 7: LDML applied to the Lennard-Jones clusters of 38
atoms LJ38 to adjust the vibrational entropy of clusters in
εT−1 units. Train/test procedure is described Sec. V C results
are presented in the inset. The statistical indicators RMSE
and MAE remains stable even for large proportions of testing
set.
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FIG. 6: The robustness and the transferability of the surrogate model is tested by (a) crossing validation using several
splitting proportions between train and tested configurations of the joined ARTn database and the random database (the

entropies are computed using MEAM potential [49] and the LDML model employs A20,10 descriptor). The statistical
indicators are given by the RMSE And MAE. The inset shows RMSE for training and testing dataset against testing

proportion (defined in the text). (b) The predictive power of the LDML model trained on the ARTn database and validated on
the random database. The statistical indicators, RMSE and MAE, are computed for the random database. The order of

magnitude of the statistical indicator are the same as in (a) while the model is in extrapolation regime.

VI. CONCLUSIONS AND PERSPECTIVES

This work proposes a strategy predict the vibrational
entropy of structural defects in crystalline solids from the
Cartesian coordinates of atoms. After a training phase,
the procedure is based solely on geometrical information
and does not require explicit knowledge of the Hessian
and its spectrum. The D chosen descriptor functions
are calculated for each atom in a relaxed configuration,
then summed across all N atoms, giving a model input
space of dimension D independent of the system size
N . This reduction is based on the physics of the har-
monic approximation that enables to compute the total
vibrational entropy of the system as the sum of the lo-
cal atomic entropies. This reduction is exact within the
harmonic approximation and justify the summation over
the local descriptors in order to build the descriptor of
the simulation box. The regression entropy-descriptor is
then parametrised via methods developed in the machine
learning community, specifically Bayesian ridge regres-
sion. The extensivity for entropy, in number of partic-
ules, volume and deformations were carefully checked.

The physics background of the present surrogate model
ensures robustness and outstanding transferability. By
using two disjoint parts of an extensive database we
demonstrate the transferability from supercells contain-
ing only one defect cluster to complex configurations hav-
ing more defects and clusters. The low error in predic-
tions, around 1 kB for the absolute values ranging from
20 kB to 250 kB , open many perspectives e.g. the defects
can be trained separately in small cells, whilst, compli-

cated structures as those in the radiation damage can be
accurately predicted [92].

Moreover, the routinely calculations of formation vi-
brational entropies of defects is hindered by the com-
putational cost. The harmonic approximation scales as
cubic in number of atoms. In the present approach, the
evaluation is very rapid. The vast majority of the nu-
merical evaluation is reserved by the calculation of the
fingerprint of the local atomic environment. The present
algorithm scales as linear with the number of atoms and
can be easily parallelized for massive systems.

The present surrogate model opens the way for the
prediction of the vibrational entropy of defects up to
nanometric-size with a host medium up to millions of
atoms. Moreover, the present strategy can be integrated
in on-the-fly skims such as relaxed Monte Carlo for fast
evaluation of the the kinetical pathways of the system on
the free energy landscape.
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[23] T. Lelièvre, M. Rousset, and G. Stoltz, Journal of Chem-
ical Physics 126, 134111 (2007).

[24] L. Bonati and M. Parrinello, Physical Review Letters
121, 265701 (2018).
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