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DERIVATIVE MARTINGALE OF THE BRANCHING BROWNIAN
MOTION IN DIMENSION d ≥ 1

ROMAN STASIŃSKI, JULIEN BERESTYCKI, AND BASTIEN MALLEIN

Abstract. We consider a branching Brownian motion in Rd. We prove that there exists a
random subset Θ of Sd−1 of full measure such that the limit of the derivative martingale exists
simultaneously for all directions θ ∈ Θ almost surely. This allows us to define a random measure
on Sd−1 whose density is given by the derivative martingale.

The proof is based on first moment arguments: we approximate the martingale of interest
by a series of processes, which do not take into account particles that travelled too far away.
We show that these new processes are uniformly integrable martingales whose limits can be
made to converge to the limit of the original martingale.

On considère un mouvement brownien branchant dans Rd. Nous montrons qu’il existe
presque sûrement un sous-ensemble aléatoire Θ de Sd−1 de mesure pleine tel que la limite de
la martingale dérivée existe simultanément pour toutes les directions θ ∈ Θ. Cela nous permet
de définir une mesure aléatoire sur Sd−1 dont la densité est donnée par la martingale dérivée.

La preuve est basée sur des arguments de premier moment: nous approchons les martingales
d’intérêt par une série de processus, qui ne prennent pas en compte les particules qui ont voyagé
trop loin. Nous montrons que ces nouveaux processus sont des martingales uniformément
intégrables dont les limites convergent vers les limites des martingales d’origine.

1. Introduction

Consider a branching Brownian motion in dimension d ≥ 1. This is a particle system in
which independent particles move in Rd as Brownian motions and branch independently at rate
1 into two particles. This system behaves as a growing cloud of diffusing particles. Let us fix
the notation. We denote by Px the law of the branching Brownian motion starting from one
particle at position x ∈ Rd, (writing P for P0 for simplicity). For all times t ≥ 0, we denote by
Nt the set of particles alive at time t, and for each particle j ∈ Nt and s ≤ t, we write Xs(j)
for the position that j, or its ancestor at time s, occupied at time s. The natural filtration of
the branching Brownian motion is denoted by (Gt, t ≥ 0).

In [16], Mallein studied the maximal displacement of this model, i.e. the quantity
Rt = max

j∈Nt
‖Xt(j)‖, t ≥ 0.

He showed that as t→∞

(1.1) Rt =
√

2t+ d− 4
2
√

2
log t+O(1),

where O(1) is a process Yt such that limK→∞ P(supt |Yt| > K) = 0, thus generalising a famous
result of Bramson [5] for d = 1.

Imagine now that we want to know in which direction D(t) is the particle at distance Rt at
time t. Under P0, the process is completely spherically symmetric and it is thus evident that
the distribution of the direction D(t) of this extremal particle is uniform on the sphere Sd−1.
However, if we first observe the process up to time s and then try to guess the direction of
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2 DERIVATIVE MARTINGALE OF THE BBM IN DIMENSION D ≥ 1

the furthest particle at a later time t, the answer obviously depends on the configuration we
observe at time s, even in the limit t → ∞. Advantages gained or delays incurred early in a
given direction are never forgotten.

It is believed that almost surely, for all measurable sets A ⊂ Sd−1

lim
s→∞

lim
t→∞

P(D(t) ∈ A | Gs) = µ(A),

where µ is a random probability measure which captures what happens early on in the life of
the process. What should this measure be?

To answer this question, it is instructive to look at the one-dimensional case. When d = 1,
it is well-known that the asymptotic behaviour of the extremal particles (i.e. particles within
distance O(t1/2) from the maximal displacement at time t) is mainly driven by the limit of the
so-called derivative martingale, defined by

Z+
t :=

∑
j∈Nt

(
√

2t−Xt(j))e
√

2(Xt(j)−
√

2t).

Although (Z+
t , t ≥ 0) is known to be a non-uniformly integrable martingale, and clearly takes

both positive and negative values, Lalley and Sellke [13] proved that it does have an almost sure
limit Z+

∞ := limt→∞ Z
+
t which is positive almost surely, and moreover

max
j∈Nt

Xt(j)−mt −
√

2
2 logZ+

∞

converges in law to a Gumbel random variable, where mt =
√

2t− 3
2
√

2 log t.
We introduce the maximal and minimal displacements, i.e. the largest displacement in the

positive and negative direction:
M+
t := max

j∈Nt
Xt(j) and M−t := min

j∈Nt
Xt(j),

as well as the derivative martingale in the negative direction, which is the derivative martingale
of the BBM (−Xt(u), u ∈ Nt). In other words, we set

Z−t :=
∑
j∈Nt

(
√

2t+Xt(j))e
√

2(Xt(j)+
√

2t)

and Z−∞ := limt→∞ Z
−
t . As far as we are aware, the joint convergence in distribution of

(M+
t ,M

−
t ) had not been considered until now.

Theorem 1.1. There exists a constant c? such that for all y, z ≥ 0 almost surely

lim
s→∞

lim
t→∞

P
(
M+
t −mt ≤ y,−M−t −mt ≤ z

∣∣∣∣ Gs) = exp
(
−c?Z+

∞e
−
√

2y − c?Z−∞e−
√

2z
)
.

In other words,
(
M+
t −mt −

√
2

2 log
(
c?Z

+
∞
)
,−M−t −mt −

√
2

2 log (c?Z−∞)
)
converges in distri-

bution towards a pair of independent Gumbel random variables with scale parameter
√

2
2 .

As a consequence, conditionally on (Z+
∞, Z

−
∞) the probability that the direction of the furthest

particle at a large time is in the positive direction is proportional to Z+
∞.

Corollary 1.2. We have

lim
s→∞

lim
t→∞

P
(
M+
t > −M−t

∣∣∣ Gs) = Z+
∞

Z−∞ + Z+
∞

a.s.

It is straightforward from the definition of the branching Brownian motion, that for all
θ ∈ Sd−1, its projection on the direction θ (the process (Xt(j) · θ, u ∈ Nt)) is a branching
Brownian motion in dimension one. Thus, for each θ ∈ Sd−1 we can define the derivative
martingale of X in direction θ as

Zt(θ) :=
∑
j∈Nt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t)
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and for each θ ∈ Sd−1, the limit limt→∞ Zt(θ) = Z∞(θ) exists a.s.
Coming back to the direction D(t) of the extremal particle, it is natural to think that, as in

dimension one, the random measure µ should give more mass to regions where Z∞(θ) is large.
In fact, µ should have a density given by the normalized version of θ 7→ Z∞(θ). That is, for
a measurable set B ⊂ Sd−1, we would expect µ(B) =

∫
B Z∞(θ)σ(dθ)/

∫
Sd−1 Z∞(θ)σ(dθ) , where

σ(dθ) stands for the surface measure of Sd−1.
However, the problem is that we do not have a.s. existence of the limit Z∞(θ) for all θ ∈ Sd−1

simultaneously and so the above integrals are not a priori well defined. Observe for instance
that by (1.1) one has

inf
θ∈Sd−1

Zt(θ) ≤ −C(log t)t(d−4)/2 with high probability,

hence the derivative martingale may be very small in exceptional directions, at least in dimension
d ≥ 4. This is due to the fact that in higher dimensions particles travel farther away from 0 than
in dimension one, which has the effect of lowering the value of Zt(θ) in the (random) direction at
which these far away particles are located. As a result, one cannot hope for uniform convergence
to hold for the process (Zt(θ)). It is nonetheless the main object of this paper to show how
one can make sense of the limit of the function θ 7→ Zt(θ) in a weak sense. We also prove that
almost surely the limit of Zt(θ) actually exists for all θ in a set of full measure. Hence a rigorous
meaning can be given to the associated measure µ.

In this article we prove the weak convergence of (Zt(θ), θ ∈ Sd−1)t≥0, seen as a random
measure on the sphere. For two measurable functions f, g : Sd−1 7→ R we define

〈f, g〉 :=
∫
Sd−1

f(θ)g(θ)σ(dθ),

where σ is the Lebesgue measure on the sphere Sd−1. We sometimes write 〈f(θ), g(θ)〉 to clarify
how functions f and g depend on θ ∈ Sd−1.

The main result of this article is the following.

Theorem 1.3. Almost surely there exists a measurable subset Θ of Sd−1 of full measure, such
that Z∞(θ) := limt→∞ Zt(θ) exists for θ ∈ Θ, and for any bounded measurable function f

lim
t→∞
〈Zt, f〉 = 〈Z∞, f〉 a.s.,(1.2)

writing Z∞(θ) = 0 for all θ 6∈ Θ. Additionally, 0 < limt→∞〈Zt, 1〉 <∞ almost surely.

Although we only consider the case of a binary branching mechanism (particles always split
into two daughter particles), it would be straightforward to generalise our results to a situation
in which an independent random number L of children is produced at each branching event, at
least under the assumption E(L(logL)2+δ) < ∞ for some δ > 0. Note that it was shown by
Yang and Ren [21] that, in the case of the one-dimensional branching Brownian motion, the
limit of the derivative martingale is non-degenerate if and only if E(L(logL)2) <∞. This result
was then extended by Chen [8] to the case of branching random walks and recently Boutaud
and Maillard simplified and streamlined the proofs of these limit theorems in [4]. We believe
Theorem 1.3 would hold under similar optimal integrability conditions, but the proof would
require additional control on the law of a Brownian motion conditioned to stay below a curve.

Let us now formulate a conjecture regarding the full extremal point process, from which
the predicted behaviour of D(t) follows. This conjecture is a multidimensional version of the
description of the extremal point process of the one-dimensional branching Brownian motion
obtained by Arguin Bovier and Kistler [2], and Aïdékon, Berestycki, Brunet and Shi [1]. Recall
from [16, Theorem 1.1] that

rt :=
√

2t+ d− 4
2
√

2
log t

is, up to an O(1) error, the median of the maximal displacement of the d-dimensional branch-
ing Brownian motion. We also define the direction of a particle u at time t by Dt(u) :=
Xt(u)/‖Xt(u)‖ for t ≥ 0, u ∈ Nt.
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Conjecture 1.4. There exists c?d > 0 such that

lim
t→∞

∑
u∈Nt

δDt(u),‖Xt(u)‖−rt = L(dθ,dx) in law,

where L is a decorated Poisson point process that can be constructed as follows. Let (θj , ξj)j≥1

be the atoms of a Poisson point process with intensity c?dZ∞(θ)σ(dθ)e−
√

2xdx and (Dj , j ≥ 1)
be i.i.d. point processes on R with common distribution D. Then

L =
∑
j≥1

∑
x∈Dj

δθj ,ξj+x.

To be more explicit, the decoration point measure D above can be constructed as the weak
limit of

∑
u∈Nt δ‖Xt(u)‖−Rt (the extremal process of moduli seen from the largest displacement)

conditioned on Rt ≥ rt+ 3
2
√

2 log t (c.f. [19] for a general result of convergence towards decorated
Poisson point processes). In particular, D only charges (−∞, 0].

Let us discuss briefly some implications that would follows from Conjecture 1.4. Firstly, an
easy Poisson point process computation would yield that

lim
t→∞

P(Rt − rt ≤ x) = E
[
exp

(
−c?d〈Z∞, 1〉e−

√
2x
)]
.

This is the multidimensional version of [13] that gives the convergence in law of the maximum
of the branching Brownian motion. Similarly, it would imply the following convergence for the
law of the direction of the furthest particle at time t:

lim
s→∞

lim
t→∞

P (D(t) ∈ B | Gs) = 1
〈Z∞, 1〉

∫
B
Z∞(θ)dθ a.s. , B ⊆ Sd−1.

2. Proof strategy

Let us now review briefly how these results are usually proved in dimension d = 1. The idea
is to get rid of all particles that ever reach level

√
2t + A at some time t (this is sometimes

referred to as a shaving argument). However, as we push the barrier away by letting A → ∞
the probability that any particle ever hits the barrier decreases to zero. More formally, one
introduces the martingale

ZAt :=
∑
j∈NAt

(
√

2t+A−Xt(j))e
√

2(Xt(j)−
√

2t),

where NA
t = {j ∈ Nt : Xs(j) ≤

√
2s+A, s ≤ t}. This martingale is non-negative (and uniformly

integrable) and therefore converges to some ZA∞. As in dimension one
sup
t≥0

sup
j∈Nt
|Xt(j)| −

√
2t <∞ almost surely,

hence taking A large enough ensures that no particle is killed with high probability. This proves
that the derivative martingale converges and that almost surely Z∞ = limA→∞ Z

A
∞. In larger

dimensions, however, one has
sup
t≥0

sup
j∈Nt
‖Xt(j)‖ −

√
2t =∞,

and this is the moment where the standard argument breaks.
To overcome this difficulty we need to introduce a different way of removing particles that

fly too high. This is done by killing particles that reach a curved boundary
√

2t+ (φ(t)∨A) at
some time t, with φ a well-chosen non-decreasing function. In particular, if φ grows fast enough,
we can ensure that no particle will be removed with high probability by letting A → ∞. The
difficulty is then to find an analogue of the martingale ZA for this curved boundary.

The outline of the paper is as follows: In Section 3 we study the standard Brownian mo-
tion killed when hitting the barrier t 7→ φ(t) ∨ A. We prove in particular existence of some
function Rφ allowing us to describe the Brownian motion conditioned to stay below φ ∨ A as
a Doob h-transform. Then in Section 4 we prove that with high probability all particles of
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the multidimensional BBM do not escape a ball of an increasing radius, construct a family of
martingales that we use to approximate (Zt(θ))θ∈Sd−1 , study their asymptotic behaviour, and
prove Theorem 1.3. Finally, in Section 5 we treat the one-dimensional case and look at the joint
law of the leftmost and rightmost particles in the branching Brownian motion.

3. Brownian motion conditioned to avoid φ(t)

To prove Theorem 1.3, as explained in Section 2, we will need some estimates on the one-
dimensional Brownian motion conditioned to stay below a curve. In this section we gather
several results on this process, using Doob’s h-transform theory.

Let φ be a continuous function [0,∞) → R such that φ(t) = o(t1/2−ε) for some ε > 0. We
start by studying the Brownian motion conditioned not to hit the function φ until some finite
time t. As the fluctuations of Bt, which are of order t1/2, are much larger than φ(t), we expect
that for 1 � s � t the process B on [0, s] conditioned on not hitting φ until time t behaves
roughly like a Bessel process (a Brownian motion conditioned not to hit 0).

More precisely, we introduce the relevant non-negative h-transform function Rφ in Lemma
3.3. Defined as the renormalized probability of avoiding φ, it makes

(Rφ(Bt, t)I{∀s<t,Bs≤φ(s)})t≥0

a martingale. In other words, Rφ is a harmonic function for the Markov process (Bt, t) confined
to {(x, t) : x ≤ φ(t)}. The Doob h-transform obtained then describes a Brownian motion
conditioned to stay below φ; we are going to denote the corresponding measure as Pφ. It will
also be important to show that there exists C > 0 such that Rφ(x, t) ≈ −Cx as x → −∞, as
this will entail the ‘Bessel-like’ behaviour we want.

The function Rφ will then be used to define approximations of the derivative martingale of the
one-dimensional branching Brownian motion. Indeed, we wish to define a uniformly integrable
martingale that approximates the derivative martingale

Zt =
∑
j∈Nt

(
√

2t−Xt(j))e
√

2(Xt(j)−
√

2t),(3.1)

that would be of the form ∑
j∈Nφt

H(Xt(j)−
√

2t, t)e
√

2(Xt(j)−
√

2t)(3.2)

where H is some function and N φ
t = {j ∈ Nt : Xs(j) ≤

√
2s + φ(s), ∀s ≤ t} (so that the sum

in (3.2) is taken only over the particles that did not hit the boundary
√

2s + φ(s)). Assuming
that (3.2) is a martingale is equivalent to assuming that (H(Bt, t)I{∀s<t,Bs≤φ(s)})t≥0 is itself a
martingale. Hence, setting H(x, t) = C−1Rφ(x, t) gives the desired approximation of (3.1).

The rest of the section is organised as follows. In Lemma 3.4 we characterise the measure
Pφ as a limit of conditional distributions. In Lemma 3.5 we define a new measure PV , that
corresponds to a Girsanov transform adding a drift

√
2 applied to a process with law Pφ. That

is, we can interpret PV as a measure of a Brownian motion with a drift
√

2t conditioned on never
hitting

√
2t+φ(t). In Lemma 3.6 we formalize the ‘Bessel-like’ behaviour under Pφ. Finally, in

Lemma 3.11 we study asymptotics of Rφ(x, t).

3.1. Brownian motion and non-linear barriers. For any continuous function φ : [0,∞)→
R set τφ = inf{u > 0 : Bu ≥ φ(u)}. The aim of this section is to give a precise asymptotic of the
quantity Px(τφ > t) as t→∞ for φ in a certain class. We are also interested in the dependence
of this probability on the shift of φ, i.e. we are going to consider functions φt(u) := φ(t+ u).

It is well-known that if φ grows slower than t1/2 as t → ∞, in a sense to be made precise
soon, then τφ < ∞ a.s. and P(τφ > t) decays as t−1/2. More precisely, Uchiyama proved the
following upper bound.
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Theorem 3.1 ([20], Proposition 3.1. (i)). Let φ be a C1-class increasing function such that
φ(0) = 0 and limt→∞ φ(t)t−1/2 = 0. If

φ(u)− u

t
φ(t) ≥ 0 for 0 < u < t,

then there exists a constant C such that for all x ∈ R and t > 1

Px(τφ > t) ≤ 1 + |x|
t1/2

exp
(√

2π
4

∫ t

1

φ(u)
u3/2 du+ C

∫ t

1

φ(u)2

u2 du
)
.(3.3)

Novikov [17] obtained a precise asymptotic of P(τφ > t) as t→∞, expressed as a function of
the law of Bτφ .

Theorem 3.2 ([17], Theorem 2). If φ is a continuous non-decreasing function such that∫∞
1 φ(t)t−3/2dt <∞ and φ(0) > 0, then

lim
t→∞

√
tP(τφ > t) =

√
2
π
EBτφ <∞.

We apply these two theorems to define and give the first property of the aforementioned
function Rφ, which will be a key object of interest in the rest of the article. We will restrict
ourselves to functions φ satisfying the following assumptions:

(H) φ increasing, concave, C1-class with φ(0) > 0,

and there exists α ∈ (0, 1/2) such that lim
t→∞

φ(t)
tα

= 0,

that we refer to as assumption (H).

Lemma 3.3. Let φ be a function satisfying (H). Then the following limit exists for all t ≥ 0
and x ∈ R:

Rφ(x, t) :=
√
π

2 lim
s→∞

√
sPx(τφt > s).(3.4)

Moreover, there exists C > 0 such that for all t ≥ 0 and x ≤ φ(t),

Rφ(x, t) ≤ C(1 + (φ(t)− x)).

Finally,
(
Rφ(Bt, t)I{τφ>t}

)
t≥0

is a martingale.

The idea of using the renormalized survival probability to define an h-transform is classical.
Here we draw inspiration from [3] (in which the law of a random walk conditioned to stay
positive was constructed). There, as in the present work, we condition a random process not
to hit some region (in our case the process of interest is (Bt, t)t≥0 and the region to avoid is
defined by J = {(x, t) : x ≥ φ(t)}).

In this setting the probability that the process (Bt, t)t≥0 never hits J is equal to 0, irre-
spectively of its starting position (x0, t0). As a result, to define the h-transform allowing the
definition, in the sense of Doob, of the Brownian motion conditioned never to hit J , it is rea-
sonable to renormalise the probability not to hit the region J for t units of time by t1/2 so
that the limit, that we denote by Rφ(x0, t0), is non-degenerate. It remains to check that the
function Rφ which we defined is indeed a harmonic function for (Bt, t) on the domain Jc, i.e.
that

(
Rφ(Bt, t)I{τφ>t}

)
t≥0

is a martingale.

Proof. The assumptions on φ guarantee that Theorem 3.1 and Theorem 3.2 can be applied to
the function φt for all t ≥ 0. We note that for all t ≥ 0, s ≥ 0 and x ≥ φ(t), we have

Px(τφt > s) = 0.
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Applying Theorem 3.2 to the function φt, we deduce that for all x, t such that x < φ(t),

Rφ(x, t) = E
(
Bτφt−x

)
∈ (0,∞),

which proves that Rφ is well-defined and finite. Additionally, using that φ is concave, and hence
that φ(t+ u)− φ(t) ≤ φ(u)− φ(0), we observe that for all x ∈ R, t ≥ 0 and s > 0, we have

√
sPx(τφt > s) =

√
sPx−φ(t)

(
τφt−φ(t) > s

)
≤
√
sPx−φ(t)

(
τφ−φ(0) > s

)
.

Using Theorem 3.1, and observing that the exponential term in bound (3.3) is increasing in t,
and hence may be bounded from above by its limit as t→∞, we obtain for x ≤ φ(t) and s ≥ 0,

√
sPx−φ(t)

(
τφ−φ(0) > s

)
≤ C(1 + (φ(t)− x)),(3.5)

where C > 0 is a constant that does not depend on x, t, s.
Thanks to this bound, we can now prove that (Rφ(Bt, t)I{τφ>t}, t ≥ 0) is a martingale using

the dominated convergence theorem. Indeed, using the Markov property, note that it is enough
to prove that for all t, s ≥ 0 and x ≤ φ(t),

Rφ(x, t) = Ex
[
Rφ(Bs, t+ s)I{τφt>s}

]
.

Observe that by the Markov property of the Brownian motion, for all r ≥ 0

Px(τφt > s+ r) = Ex
[
I{τφt>s}PBs(τφt+s > r)

]
.(3.6)

By definition, we have
√
rπ/2Px(τφt > s+ r)→ Rφ(x, t) as r →∞, and similarly, we have

lim
r→∞

√
rπ/2PBs(τφt+s > r) = Rφ(Bs, t+ s) a.s.

We now observe that by (3.5) we can bound
√
rPBs(τφt+s > r) uniformly in r ≥ 0 by C(1 +

|Bs| + |φ(t + s)|). This quantity being integrable, letting r → ∞, and applying Lebesgue’s
dominated convergence theorem in (3.6) we get

Rφ(x, t) = Ex
[
Rφ(Bs, t+ s)I{τφt>s}

]
,

which completes the proof. �

As mentioned above, the function Rφ can be used to construct the Brownian motion condi-
tioned to stay below φ in the sense of Doob, as a process with law Pφ defined by

dPφ

dP

∣∣∣∣∣
Ft

:= Rφ(Bt, t)
Rφ(0, 0) I{τφ>t},

using the fact that Rφ(Bt, t)I{τφ>t} is a non-negative martingale with mean Rφ(0, 0). Law Pφ
corresponds to the limit of the law of the Brownian motion on the time interval [0, t] conditioned
on τφ > s when s→∞. More precisely, it can be characterized in the following way.

Proposition 3.4. Assume that φ satisfies (H). For any t > 0 and A ∈ Ft,

Pφ(A) = lim
s→∞

P(A | τφ > s).

The proof of Proposition 3.4 is inspired by ideas from the proof of Theorem 1 in [3].

Proof. Let A ∈ Ft. We observe that

P(A | τφ > s) = P(A, τφ > s)
P(τφ > s) =

E(IAI{τφ>t}PBt(τφt > s− t))
P(τφ > s) .

Then by (3.4), we have that lims→∞
√
sπ2P(τφ > s) = Rφ(0, 0) and

lim
s→∞

√
s
π

2PBt(τφt > s− t)) = Rφ(Bt, t) a.s.
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Moreover, using (3.5), we can apply Lebesgue’s dominated convergence theorem to obtain

lim
s→∞

√
s
π

2E(IAI{τφ>t}PBt(τφt > s− t)) = E(IAI{τφ>t}R
φ(Bt, t)).

As a result, we have

lim
s→∞

P(A | τφ > s) = 1
Rφ(0, 0)E(IAI{τφ>t}R

φ(Bt, t)) = Pφ(A),

by definition. �

To complete the section, note that one can make a Girsanov-type change of measure to give
the Brownian motion we consider a linear drift. This additional change of measure will be
used when working with a multidimensional BBM. In particular, in Lemma 4.5 we describe a
decomposition of the size-biased law of the BBM with a spine particle that behaves similarly to
a Brownian motion with drift

√
2 conditioned not to hit

√
2t+ φ(t) for all t ≥ 0.

More precisely, we introduce the hitting time
τ̃φ := inf{u > 0 : Bu ≥

√
2u+ φ(u)}

and the process

Vt := Rφ(Bt −
√

2t, t)
Rφ(0, 0) I{τ̃φ>t}e

√
2Bt−t.

The following result then holds.

Lemma 3.5. Assuming that φ satisfy (H), (Vt, t ≥ 0) is a mean one martingale. Defining PV

by dPV

dP
∣∣
Ft := Vt, PV is a probability measure corresponding to the law of a Brownian motion

with drift
√

2 conditioned to stay below
√

2t+φ(t) at all times t ≥ 0 (in the sense of Proposition
3.4).

Proof. Set Yt := e
√

2Bt−t. It is then well-known that Y is a P-martingale and that the law
P̃ = Y · P corresponds to the law of a Brownian motion with drift

√
2, by Girsanov’s theorem.

Observe that
dPV

dP

∣∣∣∣∣
Ft

=
Rφ(Bt −

√
2t, t)I{τφ>t}

Rφ(0, 0) e
√

2Bt−t =
Rφ(Bt −

√
2t, t)I{τ̃φ>t}

Rφ(0, 0)
dP̃
dP

∣∣∣∣∣
Ft

.

Using that under P̃, (Bt −
√

2t, t ≥ 0) is a Brownian motion, we obtain immediately from
Lemma 3.3 that (Rφ(Bt −

√
2t, t)I{τ̃φ>t}, t ≥ 0) is a non-negative P̃-martingale, and therefore

that V is a P-martingale.
Additionally, we have that

dPV

dP̃

∣∣∣∣∣
Ft

=
Rφ(Bt −

√
2t, t)I{τφ>t}

Rφ(0, 0) ,

hence by Proposition 3.4 we have that under PV , (Bt −
√

2t, t ≥ 0) is a Brownian motion
conditioned on not hitting the curve φ, which completes the proof. �

3.2. Behaviour of the conditioned process. We describe here the behaviour of the process
B under the law Pφ. We prove that for the Brownian motion conditioned to stay below φ, the
process localizes at time t at position −t1/2+o(1). In other words, for any ε ∈ (0, 1/2), for all t
large enough one has t1/2−ε < −Bt < t1/2+ε Pφ-a.s. This result is similar to what happens with
the Bessel process, i.e. as the Brownian motion typically has

√
t fluctuation, conditioning it to

stay below 0 or o(t1/2−ε) does not make a difference, asymptotically.

Lemma 3.6. Let φ be a function satisfying (H). We have

lim
t→∞

log(−Bt)
log t = 1

2 Pφ − a.s.,

i.e. Bt = −t1/2+o(1) as t→∞, Pφ-a.s.
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We split this lemma into several pieces. We begin with an upper bound for the probability
for B to be close to φ(t) at time t under the law Pφ.

Lemma 3.7. Let φ be a function satisfying (H). There exists C > 0 such that for all t, x ≥ 0
we have

Pφ(Bt ≥ φ(t)− x) ≤ C
( 1 + x

(1 + t)1/2

)3
.

Proof. Let x ≥ 0 and t ≥ 1. Using the definition of Pφ we have

Pφ(Bt ≥ φ(t)− x) = E
(
R(Bt, t)I{Bt≥φ(t)−x,τφ>t}

)
≤ sup

z∈[0,x]
R(φ(t)− z, t)P (Bt ≥ φ(t)− x, τφ > t)

≤ C(1 + x)P(Bt ≥ φ(t)− x, τφ > t),

by (3.5). By the Markov property at time t/2, we have

P(Bt ≥ φ(t)− x, τφ > t)
≤ P(τφ > t/2) sup

z∈R
Pz(Bt/2 ≥ φ(t)− x,Bs ≤ φ(t/2 + s), s ≤ t/2)

≤ Ct−1/2 sup
z∈R

Pz(Bt/2 ≥ φ(t)− x,Bs ≤ φ(t), s ≤ t/2),

using Theorem 3.1.
We now use time-reversal of the Brownian motion, observing that under Pz, B̂s := Bt/2 −

Bt/2−s is a Brownian motion started from 0. We use it to estimate

sup
z∈R

Pz(Bt/2 ≥ φ(t)− x,Bs ≤ φ(t), s ≤ t/2)

= sup
z∈R

Pz(B̂t/2 + z ≥ φ(t)− x, B̂t/2 + z − B̂s ≤ φ(t), s ≤ t/2)

≤ sup
z∈R

Pz(B̂t/2 ≥ φ(t)− z − x, B̂t/2 + z ≤ φ(t), B̂s ≥ −x, s ≤ t/2)

= sup
z′∈R

P(B̂t/2 ∈ [z′, z′ + x], B̂s ≥ −x, s ≤ t/2)

≤ P(B̂s ≥ −x, s ≤ t/4) sup
z∈R

P(B̂t/4 ∈ [z, z + x]),

using the Markov property at time t/4. Then, using again Theorem 3.1, there exists C > 0
such that for all x ≥ 0 and t ≥ 1,

P(B̂s ≥ −x, s ≤ t/4) ≤ C(1 + x)/t1/2.

Additionally, we have P(B̂t/4 ∈ [z, z + x]) ≤
√

2
πtx for all z ∈ R, noting that the density of B̂t/4

is bounded by
√

2
πt . Finally, we obtain the existence of C > 0 such that for all t, x ≥ 0

Pφ(Bt ≥ φ(t)− x) ≤ C (1 + x)3

(1 + t)3/2 . �

We now use this result to bound from below the asymptotic behaviour of log(−Bt)
log t .

Lemma 3.8. Given φ a function satisfying (H), we have

lim inf
t→∞

log(−Bt)
log t ≥ 1

2 a.s.

Proof. To prove this result, we begin by using the Borel-Cantelli lemma to show that almost
surely, for all γ < 1/2,

(3.7) lim inf
n→∞

log(−Btn)
log tn

≥ γ a.s.
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along a well-chosen sequence tn growing to ∞. We then use the observation that with high
probability the Brownian motion between times tn and tn+1 stays within a distance O(tn+1 −
tn)1/2 from Btn . Therefore, as long as (tn+1−tn)1/2/tγn → 0, we can extend (3.7) to any sequence
growing to ∞, which completes the proof.

Let γ < 1/2. We assume without loss of generality that γ is close enough to 1/2, such that
φ(t) = o(tγ). Using Lemma 3.7 we have

Pφ(Bt ≥ −tγ) ≤ Ct3(γ−
1
2).

As a result, setting tn = n
5

6(1−2γ) , we have

(3.8) Pφ
( log(−Btn)

log tn
≤ γ

)
≤ Cn−5/4,

hence, by the Borel-Cantelli lemma,

lim inf
n→∞

log(−Btn)
log tn

≥ γ a.s.

To complete the proof we now need to bound the maximal displacement of the Brownian
motion in the time intervals [tn, tn+1]. Write A = 5

6(1−2γ) so that tn = nA and compute for
n ∈ N

Pφ
(

sup
s∈[tn,tn+1]

Bs ≥ −tγn/2, Btn ≤ −tγn

)

= E
(
Rφ(Btn+1 , tn+1)I{τφ>tn+1,Btn≤−t

γ
n}I{sups∈[tn,tn+1]Bs≥−t

γ
n/2}

)
.

We can decompose this quantity depending on whether Btn+1 is smaller or larger than −t2/3n+1.
Observe that for all t ≥ 1 we have

E
(
Rφ(Bt, t)I{Bt<−t2/3}

)
≤ CE

(
(1 + |Bt|+ |φ(t)|) I{Bt<−t2/3}

)
≤ CE

(
|Bt|I{Bt<−t2/3}

)
≤ Ce−

t4/3
2t ,

using that |φ(t)| = o(t2/3) as t → ∞ and integrating with respect to the Brownian density.
Thus, there exists C > 0 such that for all n ∈ N

E
(
Rφ(Btn+1 , tn+1)I{Btn+1<−t

2/3
n+1}

)
≤ C exp

(
−t1/3n+1/2

)
.

Hence, using that there exists C > 0 such that Rφ(x, tn+1) ≤ Ct2/3n+1 for all x ≥ −t2/3n+1,

(3.9) E
(
Rφ(Btn+1 , tn+1)I{τφ>tn+1,Btn≤−t

γ
n}I{sups∈[tn,tn+1]Bs≥−t

γ
n/2}

)
≤ Ct2/3n+1P

(
τφ > tn+1, sup

s∈[tn,tn+1]
Bs ≥ −tγn/2, Btn ≤ −tγn

)
+ C exp

(
−t1/3n+1/2

)
.

We now bound P
(
τφ > tn+1, sups∈[tn,tn+1]Bs ≥ −tγn/2, Btn ≤ −tγn

)
. Using the Markov prop-

erty at time tn we have

P
(
τφ > tn+1, sup

s∈[tn,tn+1]
Bs ≥ −tγn/2, Btn ≤ −tγn

)
≤ E

(
Gn(Btn)I{τφ>tn}I{Btn≤−tγn}

)
,

where Gn(x) := Px
(
I{sups≤tn+1−tn Bs≥−t

γ
n/2}

)
. As Gn(x) is non-decreasing in x, using the

Brownian scaling, for all x ≤ −tγn we have

Gn(x) ≤ Gn(−tγn) = P−1

 sup
s≤(tn+1−tn)/t2γn

Bs ≥ −1/2

 .
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By definition of A and tn we note that

tn+1 − tn
t2γn

= (n+ 1)A − nA

n2Aγ ∼ AnA−1−2γA = An−1/6 as n→∞.

As the maximum of a Brownian motion on [0, s] is distributed as the absolute value of a Gaussian
random variable with parameter s, and using standard Gaussian estimates, we have

P−1

 sup
s≤(tn+1−tn)/t2γn

Bs ≥ −1/2

 ≤ P
(

sup
s≤CAn−1/6

Bs ≥ 1/2
)

≤ 1√
πCAn−1/6

exp
(
− 1

8CAn−1/6

)
.

Thus we deduce that for all x ≤ −tγn we have Gn(x) ≤ Ce−cn
1/6 . Since tn has polynomial

growth, we therefore obtain from (3.9) that there exists C, δ > 0 such that

E
(
Rφ(Btn+1 , tn+1)I{τφ>tn+1,Btn≤−t

γ
n}I{sups∈[tn,tn+1]Bs≥−t

γ
n/2}

)
≤ Ce−nδ .

We now conclude, using (3.8), that∑
n∈N

Pφ( sup
s∈[tn,tn+1]

Bs ≥ −tγn/2)

≤
∑
n∈N

Pφ(Btn ≥ −tγn) +
∑
n∈N

Pφ
(
Btn ≤ −tγn, sup

s∈[tn,tn+1]
Bs ≥ −tγn/2

)

≤C
∑
n∈N

n−5/4 +
∑
n∈N

e−n
δ
<∞,

which completes the proof, by the Borel-Cantelli lemma. �

A similar simpler proof also gives an upper bound for log(−Bt)/ log t under the law Pφ.

Lemma 3.9. Given φ a function satisfying (H), we have

lim sup
t→∞

log(−Bt)
log t ≤ 1

2 a.s.

Proof. Let α > 1/2. We observe that for all n ∈ N we have

Pφ( inf
s∈[n,n+1]

Bs ≤ −nα) ≤ 1
Rφ(0, 0)E(Rφ(Bn+1, n+ 1)I{infs∈[n,n+1]Bs≤−nα})

≤ Ce−cn2α−1
,

using that Rφ(x, n + 1) grows at most linearly in −x, and the Gaussian concentration of
infs∈[n,n+1]Bs. As a result, by the Borel-Cantelli lemma we conclude that

lim sup
t→∞

log(−Bt)
log t ≤ α a.s.

We complete the proof by letting α→ 1/2. �

The proof of Lemma 3.6 is then a combination of Lemmas 3.8 and 3.9.

3.3. Linear growth. In this section we prove the key property of Rφ: the function grows
linearly in −x uniformly in t. We begin with the following lower bound on Rφ, which is a
straightforward consequence of the definition in Theorem 3.2.

Lemma 3.10. Let φ be a function satisfying (H), then for all t ≥ 0 and x ≤ φ(t),

Rφ(x, t) ≥ φ(t)− x.
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Proof. Recall that for all s ≥ 0 we have φt(s) = φ(t + s) ≥ φ(t), as φ is increasing. Therefore,
by Theorem 3.2 we have τφ <∞ a.s. and

Rφ(x, t) = EBτφt−x ≥ φ(t)− x,

completing the proof. �

To obtain a uniform upper bound on Rφ, we need to add an assumption on the growth rate
of the derivative of φ.

Lemma 3.11. Let φ be a function satisfying (H), and assume additionally that φ′(t) = o(t−1/2−ε)
for some ε > 0. Then for all δ > 0 and D > 0 there exists t0 > 0 such that

(3.10) ∀t ≥ t0, ∀x ∈ [φ(t)−Dt, φ(t)−Dt0], Rφ(x, t) ≤ (φ(t)− x)(1 + δ).

Proof. Observe that by the assumption on the function φ, there exists γ < 1/2 and A > 0 such
that for all t ≥ 0 we have 0 ≤ φ′(t) ≤ Aγtγ−1. By integration we immediately obtain that for
all s, t ≥ 0

φ(t+ s)− φ(t) ≤ ψ(t+ s)− ψ(t),
where we have set ψ(t) = Atγ . It is then straightforward to note that for all s, t ≥ 0 and
x ≤ φ(t)

Px (Bu ≤ φ(t+ u), u ≤ s) ≤ Px (Bu ≤ ψ(t+ u)− ψ(t) + φ(t), u ≤ s) .
As a result, by Theorem 3.2 and using that Rφ(x, t) = 0 for x ≥ φ(t), we obtain that

Rφ(x, t) ≤ Rψ(x+ ψ(t)− φ(t), t)(3.11)

for all x ∈ R and t ≥ 0. Therefore, we shall work with Rψ which will simplify some arguments,
and use (3.11) to prove (3.10).

For t, x ≥ 0 set
Sψ(x, t) := Rψ(ψ(t)− x, t)− x = E−x(Bτψt−ψ(t)).

Observe that as ψ is concave, for all s ≥ 0 we have that ψt(s) − ψ(t) is decreasing with t.
Therefore t 7→ Sψ(x, t) is decreasing, hence for all D > 0 one has Sψ(x, t) ≤ Sψ(x, x/D) as long
as x ≤ Dt. We shall show that for any D > 0 we have Sψ(Dt, t)/t→ 0 as t→∞.

Fix D > 0. For all λ, t > 0 define

ψλ(t) := 1
λ

(ψ(λ+ λ2t)− ψ(λ)),

and observe that by the scaling property of the Brownian motion we have

(3.12) Sψ(λD, λ)
λ

= 1
λ
E−λD(Bτψλ−ψ(λ)) = E−D(Bτ

ψλ
).

Observe that (ψλ, λ > 1) decreases to 0 as λ → ∞. We can also note that the convergence is
monotone outside of a compact set. Indeed, for all u > 0,

1
A

dψλ(u)
dλ = d

dλ

( 1
λ

(
(λ+ uλ2)γ − λγ

))
= 1
λ2

(
(1− γ)λγ − (1− 2γ)(λ+ uλ2)γ − γλ(λ+ uλ2)γ−1

)
.

In particular, it appears there exists λ0 > 0 such that for all u > 1 and λ > λ0 we have that
dψλ(u)

dλ < 0. Therefore, setting ψ̄λ(u) := ψλ(u ∨ 1), we have

0 ≤ E−D(Bτ
ψλ

) ≤ E−D(Bτ
ψ̄λ

)→ 0 as λ→∞,

by the monotone convergence theorem, using that ψ̄λ decreases to 0 when λ → ∞. Therefore,
(3.12) yields

lim
t→∞

Sψ(Dt, t)/t = 0.
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Choose δ > 0. There exists t0 > 0 such that for all t > t0 we have Sψ(Dt, t) ≤ δDt. Then,
recalling (3.11), for all Dt0 ≤ y ≤ Dt we have

Rφ(φ(t)− y, t) ≤ Rψ(ψ(t)− y, t) = y + Sψ(y, t) ≤ y + Sψ(y, y/D) ≤ (1 + δ)y,

which, setting x := φ(t)− y, completes the proof. �

4. Multidimensional Branching Brownian Motion and uniformly integrable
approximations of the martingale

In this section we prove Theorem 1.3, showing that the derivative martingale almost surely
converges in almost every direction simultaneously. As we mentioned in the introduction, the
techniques are based on a shaving argument: removing all particles that travel too far away from
the origin, and therefore carry most of the fluctuations of Z. It turns the derivative martingale
into a uniformly integrable martingale. We use here the results obtained in the previous section
to construct a shaving argument with a function satisfying (H).

Before moving to the multidimensional setting, we are going to define the martingale Zφ in
dimension 1, that will serve as a uniformly integrable approximation of the derivative martingale
Z. To be precise, set

N φ
t := {j ∈ Nt : Xs(j) ≤

√
2s+ φ(s), s ≤ t}.

The martingale Zφ is then defined in the following way.

Proposition 4.1. Let φ be a function satisfying (H). We set Rφ as in (3.4). Then the process
defined for all t ≥ 0 by

Zφt :=
∑
j∈Nφt

Rφ(Xt(j)−
√

2t, t)e
√

2(Xt(j)−
√

2t)

is a non-negative martingale with mean Rφ(0, 0).

Proof. We first note that by definition, EZφ0 = Rφ(0, 0), and that for all t, x, we have Rφ(x, t) ≥
0. We thus only need to check that Zφt is a martingale. By the branching property, for all
s, t ≥ 0 we have

E(Zφt+s | Ft) =
∑
j∈Nφt

Gs(Xt(j)),

where we have set

Gs(x) := E

 ∑
j∈N

√
2t+φt−x

s

Rφ(Xs(j) + x−
√

2(t+ s), t+ s)e
√

2(Xs(j)+x−
√

2(t+s))



= e
√

2(x−
√

2t)E

 ∑
j∈N

√
2t+φt−x

s

Rφ(Xs(j) + x−
√

2(t+ s), t+ s)e
√

2(Xs(j)−
√

2s)


= e
√

2(x−
√

2t)esE
(
Rφ(Bs + x−

√
2(t+ s), t+ s)

· e
√

2Bs−2sI{∀u≤s,Bu+x−
√

2t≤
√

2u+φt(u)}

)
,

by the many-to-one lemma (a corollary of Lemma 1 in [11]). Thus by Lemma 3.5 we obtain

Gs(x) = e
√

2(x−
√

2t)Rφ(x−
√

2t, t),

from which we deduce that E(Zφt+s | Ft) = Zφt a.s., completing the proof. �
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4.1. Construction of (Zφt (θ), t ≥ 0): radial shaving. We may now turn to our main object
of interest : the d-dimensional branching Brownian motion Xt = (Xt(i), i ∈ Nt). Recall that
this is a d-dimensional branching particle system in which particles move according to i.i.d.
Brownian motions and split into two at rate one. For a direction θ ∈ Sd−1 recall that

Zt(θ) =
∑
j∈Nt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t).

We now introduce the shaved martingale Zφ, where the shaving is done along a curve φ
satisfying (H). Set N φ,θ

t = {j ∈ Nt : Xs(j) · θ ≤
√

2s+ φ(s), s ≤ t} for t ≥ 0 and φ ∈ Sd−1.
We now set

Zφt (θ) :=
∑

j∈Nφ,θt

Rφ(Xt(j) · θ −
√

2t, t)e
√

2(Xt(j)·θ−
√

2t).(4.1)

The function φ will be chosen to grow fast enough to guarantee that

lim
A→∞

P
(
∀t ≥ 0,∩θ∈Sd−1N φ∨A,θ

t = Nt
)

= 1.

We will show in Section 4.2 that choosing φ growing faster than d−1
2
√

2 log t as t→∞ is enough.
In Section 4.3 we prove (using classical spinal decomposition techniques along the lines of [12]

and [18]) that for all measurable bounded functions f the process (〈Zφt , f〉, t ≥ 0) is a uniformly
integrable martingale. We then use convergence of these martingales in Section 4.4 to show that
limt→∞ Z

φ
t (θ) exists for almost all θ ∈ Sd−1 almost surely. Finally, we complete the proof of

Theorem 1.3 by using that with high probability Z and Zφ coincide asymptotically as t→∞,
for which we shall apply Lemma 3.11.

4.2. Bounds on the maximal displacement of the BBM. We prove here that with high
probability all particles in the multidimensional BBM are at all times t within a ball of radius√

2t+ d−1
2
√

2 log(t+ 1) +A. First, recall the following lemma due to Mallein:

Lemma 4.2 ([16], Lemma 3.1). Let

rt,ys :=
√

2s+ d− 1
2
√

2
log(s+ y)− 3

2
√

2
log t+ 1

t− s+ 1 + y.

Then there exists C > 0 such that for any t ≥ 1 and y ∈ [1,
√
t]

P
(
∃j ∈ Nt, ∃s ≤ t : ||Xs(j)|| ≥ rt,ys

)
≤ Cye−

√
2y.

We use Lemma 4.2 to prove the following result.
Lemma 4.3. Let r̃(s) :=

√
2s+ d−1

2
√

2 log(1 + s). For any ε > 0 there exists Cε such that

P (∃t ≥ 0,∃j ∈ Nt : ||Xt(j)|| ≥ r̃(t) + Cε) ≤ ε.

Proof. Observe first that by Lemma 4.2, for any y > 0 and t ≥ 0, we have

P
(
∃s ≤ t,∃j ∈ Ns : ||Xs(j)|| ≥

√
2s+ d− 1

2
√

2
log(s+ y) + y

)
≤ P

(
∃s ≤ t,∃j ∈ Ns : ||Xs(j)|| ≥ rt,ys

)
≤ Cye−

√
2y.

Hence, choosing y large enough such that Cye−
√

2y < ε and letting t→∞, we deduce that

P(∃s ≥ 0, j ∈ Ns : ||Xs(j)|| ≥
√

2s+ d− 1
2
√

2
log(s+ y) + y) ≤ ε.

To complete the proof, it is therefore enough to choose Cε as

sup
t≥0

d− 1
2
√

2
log(t+ y) + y − d− 1

2
√

2
log(t+ 1) <∞. �
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4.3. Uniform integrability of (Zφt , t ≥ 0). Let f be a non-negative function such that∫
Sd−1 f(θ)σ(dθ) = 1. By Fubini’s theorem, it is a straightforward calculation to verify that
the process defined by

〈Zφt , f〉 =
∫
Sd−1

Zφt (θ)f(θ)σ(dθ)

is a non-negative martingale. To prove its uniform integrability we use a spinal decomposition
method. This technique, pioneered by Lyons, Pemantle and Peres [15] for studying Galton-
Watson processes, and adapted by Lyons [14] to spatial branching settings, consists in an
alternative description of the law of the branching Brownian motion biased by the martingale
〈Zφt , f〉. More precisely, we define

dPf

dP

∣∣∣∣∣
Gt

:= Rφ(0, 0)−1〈Zφt , f〉.

The spinal decomposition consists in a construction of the BBM under the law Pf , where
a distinguished particle, called the spine, moves and reproduces differently to typical BBM
particles. The offspring of that spine particle then start independent copies of the original
BBM with law P, from their birth time and position.

Before presenting the spinal decomposition for the branching Brownian motion, we introduce
the law of the multi-dimensional Brownian motion biased by a martingale similar to the one
introduced in Lemma 3.5. This will allow us to describe the trajectory of the spine under the
biased law Pf .

Let B be a Brownian motion in Rd. For all θ ∈ Sd−1 we define a non-negative martingale
(Vt(θ), t ≥ 0) as

Vt(θ) := Rφ(Bt · θ −
√

2t, t)
Rφ(0, 0) I{τφ(θ)>t}e

√
2Bt·θ−t,

where τφ(θ) := inf{u > 0 : Bu · θ −
√

2u ≥ φ(u)}. Writing B(1) = B · θ and B(2) for the
projection of B on θ⊥, we note that these are two independent Brownian motions. Applying
Lemma 3.5 to B(1), we deduce that under the law defined as

dPV (θ)

dP

∣∣∣∣∣
Gt

:= Vt(θ)

the process B is a d-dimensional Brownian motion with drift
√

2θ, conditioned on Bt · θ ≤√
2t+ φ(t) for all t ≥ 0 (in the sense of Doob).
The key point of Theorem 1.3 is to consider several directions at the same time. To do so,

we will consider integrated versions of the martingale V (θ). Given f a non-negative function
satisfying

∫
Sd−1 f(θ)σ(dθ) = 1, we set

Ut := 〈Vt, f〉

and we define the measure PU by

dPU

dP

∣∣∣∣∣
Gt

:= Ut.

Lemma 4.4. Let f be a non-negative function with
∫
Sd−1 f(θ)σ(dθ) = 1, then the process U is

a non-negative martingale. Moreover, setting θ0 a random variable in Sd−1 with law f(θ)σ(dθ)
and writing (Bt) for a process with law PV (θ0) conditionally on θ0, the process (Bt, t ≥ 0) has
law PU .

Proof. The process U is a martingale using Fubini’s theorem. Additionally, for all t ≥ 0 and
G ∈ Gt we have

PU (G) =
∫
G
〈Vt, f〉dP =

〈∫
G
VtdP, f

〉
=
∫
Sd−1

PV (θ)(G)f(θ)dθ,

which justifies the description of B under the law PU . �
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Observe that one can decompose
〈Zφt , f〉 = Rφ(0, 0)

∑
j∈Nt

Ut(j)e−t,

where

Ut(j) :=
〈
Rφ(Xt(j) · θ −

√
2t, t)

Rφ(0, 0) I{∀u<t,Xu(j)·θ−
√

2t<φ(u)}e
√

2Xt(j)·θ−t, f

〉
.

Thanks to this decomposition we can describe the BBM under the law Pf in terms of a spinal
decomposition, which follows e.g. from [10, Lemma 6.7].
Lemma 4.5. Let f be a non-negative function with

∫
Sd−1 f(θ)σ(dθ) = 1. The law of the BBM

under Pf can be constructed as follows
(1) we pick a direction θ0 according to a random variable on Sd−1 with density f(θ)σ(dθ);
(2) conditionally on this direction we sample a trajectory (Ξt) with law PV (θ0) that will be

followed by the spine particle;
(3) the spine particle creates offspring at rate 2;
(4) every child of the spine then starts an independent standard BBM with law P.

An analogous decomposition in dimension one was given in [7] or in [12]. We are now ready
to present the key lemma that states the uniform integrability of Zφt .
Lemma 4.6. Let φ be a function satisfying (H). For any bounded measurable function f the
martingale

(
〈Zφt , f〉

)
t≥0

is uniformly integrable.

Before we present the proof of Lemma 4.6, note that applying it in dimension one with the
binary function f (i.e. f(−1) = 0 and f(1) = 1) we obtain the following corollary.

Corollary 4.7. For any θ ∈ Sd−1,
(
Zφt (θ)

)
t≥0

is a uniformly integrable martingale.

Proof of Lemma 4.6. Note first that without loss of generality we may assume that f ≥ 0 and
that

∫
Sd−1 f(θ)σ(dθ) = 1, as otherwise we may write f as a linear combination of functions

satisfying these assumptions and consider each of these functions separately.
Set Z := lim supt→∞〈Z

φ
t , f〉 (which is also equal to limt→∞〈Zφt , f〉 P-a.s. because 〈Z

φ
t , f〉 is a

non-negative martingale). Recall the following measure theoretic dichotomy (see e.g. Theorem
5.3.3. in [9]):
Theorem 4.8. Let (Fn) be a filtration, and let F∞ be the smallest σ-field containing all Fn.
Let P,Q be two probability measures on (Ω,F∞). Assume that for any n, Q|Fn � P|Fn and let
Xn := dQ|Fn

dP|Fn
and X := lim supn→∞Xn which is P-a.s. finite. Then

Q(A) = E(XI{A}) + Q(A ∩ {X =∞}), ∀A ∈ F∞.

From Theorem 4.8 we obtain that

Pf
( Z
Rφ(0, 0) <∞

)
= 1 ⇐⇒

∫ Z
Rφ(0, 0)dP = 1,

thus instead of proving that EZ = 1, we shall prove that under Pf , Z is almost surely finite.
To show that, we are going to use the spinal decomposition from Lemma 4.5.

Let F∞ be the filtration generated by the movement and the branching of the spine Ξ, and
Bt be the set of branching times of the spine until time t. From the decomposition mentioned
above and the martingale property from Proposition 4.1 we see that

Pf [〈Zφt , f〉|F∞] =
〈∑
s∈Bt

Rφ(Ξs · θ −
√

2s, s)e
√

2(Ξs·θ−
√

2s), f

〉

+
〈
Rφ(Ξt · θ −

√
2t, t)e

√
2(Ξt·θ−

√
2t), f

〉
.
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To complete the proof it is enough to show that

lim sup
t→∞

Pf [〈Zφt , f〉 | F∞] <∞,(4.2)

as by Fatou’s lemma we have

Pf [lim inf
t→∞

〈Zφt , f〉 | F∞]

≤ lim inf
t→∞

Pf [〈Zφt , f〉 | F∞]

≤ lim sup
t→∞

Pf [〈Zφt , f〉 | F∞] <∞,

which implies that Pf -a.s., lim infs→∞〈Zφt , f〉 < ∞. Recalling the definition of Pf , (〈Zφt , f〉)−1

is a non-negative Pf -supermartingale, hence it converges to a finite limit Pf almost surely. This
implies that Pf almost surely

lim inf
s→∞

〈Zφt , f〉 = lim sup
s→∞

〈Zφt , f〉,

from which we would deduce that limt→∞〈Zφt , f〉 <∞ Pf -a.s.
It remains to show (4.2). We first upper bound ||Ξt|| = supθ Ξt · θ. Fix the direction θ0

in which the movement of the spine is altered. Observe that we can decompose the spine as
Ξt = ξtθ0 + Yt where ξt and Yt are independent processes such that ξt is a Brownian motion
with drift

√
2t conditioned on never hitting

√
2t+φ(t) and Yt is a (d−1)-dimensional Brownian

motion living in the space θ⊥0 . Thus

||Ξt|| =
√
|ξt|2 + ||Yt||2.

By Lemma 3.6 almost surely for any δ > 0 there exist C1, t0 such that for all t ≥ t0,
|ξt| ≤

√
2t− C1t

1/2−δ. Similarly, by e.g. the law of the iterated logarithm, for any δ′ > 0 there
exists C2 such that up to enlarging t0, for all t ≥ t0, ||Yt|| ≤ C2t

1/2+δ′ . Choose δ, δ′ such that
δ + 2δ′ < 1/2, then for t large enough,

||Ξt|| ≤
√

2t2 + C2
1 t

1−2δ − 2
√

2C1t3/2−δ + C2
2 t

1+2δ′

≤
√

2t2 + (C1/2)2t1−2δ − 2
√

2(C1/2)t3/2−δ

=
√

2t− C1/2t1/2−δ.(4.3)

Let Cf = supSd−1 f(θ). By Lemma 3.3 we know that for some C ≥ 0, Rφ(x, t) ≤ C(1+|x|+φ(t))
for all x ∈ R, t ≥ 0, thus since the spine particle has zero contribution in the limit,

lim sup
t→∞

Pf [〈Zφt , f〉 | F∞]

≤ C
〈 ∑
s∈B∞

(1 + |
√

2s− Ξs · θ|+ φ(s))e
√

2(Ξs·θ−
√

2s), Cf

〉

≤ Pd−1CCf
∑
s∈B∞

(1 +
√

2s+ ||Ξs||+ φ(s))e
√

2(||Ξs||−
√

2s),

where Pd−1 is the surface area of a d dimensional sphere. Combining it with (4.3) we obtain
that almost surely there exists a constant C1 such that

lim sup
t→∞

Pf [〈Zφt , f〉 | F∞] ≤ Pd−1CCf
∑
s∈B∞

(1 + 2
√

2s+ φ(s))e−s1/2−δC1/2,

which is almost surely finite, as B is a Poisson point process with intensity 2. The proof is now
complete. �
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4.4. Simultaneous limits on the sphere. The main aim of this section is the proof of the
following proposition, which shows that (Zt(θ)) converges a.s. both on a random set of full
Lebesgue measure, and as a random measure.

Proposition 4.9. Let φ be a function satisfying (H). Then almost surely there exists Θ ⊂ Sd−1

of full Lebesgue measure such that for all θ ∈ Θ, Zφ∞(θ) := limt→∞ Z
φ
t (θ) exists, and for any

bounded measurable function f ,

lim
t→∞
〈Zφt , f〉 = 〈Zφ∞, f〉 a.s.

Moreover, the limit is almost surely finite.

Proof. Without loss of generality we may and will assume that f ≥ 0 and
∫
Sd−1 f(θ)σ(dθ) = 1.

The integrated martingale 〈Zφt , f〉 is non-negative, hence it converges a.s. to some limit, and we
set Z := limt→∞〈Zφt , f〉. Furthermore, by Lemma 4.6 this martingale is uniformly integrable,
thus

EZ = E〈Zφ0 , f〉 = Rφ(0, 0).

We want to show that

Z = 〈 lim
t→∞

Zφt , f〉

but a priori we don’t even know that the right hand side is well defined.
As Zφt (θ) ≥ 0 a.s., we observe that by Fatou’s lemma

Z = lim inf
t→∞

〈Zφt , f〉 ≥ 〈lim inf
t→∞

Zφt , f〉.(4.4)

Note that lim inft→∞ Zφt (θ) exists simultaneously for all θ ∈ Sd−1.
On the other hand, by the uniform integrability of 〈Zφt , f〉 (Lemma 4.6) and Fubini’s theorem,

EZ = lim
t→∞

E〈Zφt , f〉 = lim
t→∞
〈EZφt , f〉.

Since the distribution of Zφt (θ) does not depend on θ (used in the first equality), and again
using the uniform integrability, but of Zφt (θ), and also Fubini’s theorem, we obtain that

lim
t→∞
〈EZφt , f〉 = 〈 lim

t→∞
EZφt , f〉 = 〈E lim

t→∞
Zφt , f〉

= 〈E lim inf
t→∞

Zφt , f〉 = E〈lim inf
t→∞

Zφt , f〉.

Thus we have shown that

EZ = E〈lim inf
t→∞

Zφt , f〉,

and recalling (4.4) this means that almost surely

Z = 〈lim inf
t→∞

Zφt , f〉.

By Fubini’s theorem

E〈lim sup
t→∞

Zφt , f〉 = 〈E lim
t→∞

Zφt , f〉 = E〈lim inf
t→∞

Zφt , f〉,

hence almost surely for almost all θ

lim sup
t→∞

Zφt (θ) = lim inf
t→∞

Zφt (θ).

Therefore, almost surely limt→∞ Z
φ
t (θ) exists simultaneously for all θ besides a random set of

measure 0, and

lim
t→∞
〈Zφt , f〉 = 〈 lim

t→∞
Zφt , f〉.

�
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4.5. Proof of Theorem 1.3. We start with the following technical lemma:

Lemma 4.10. Let φ be a function satisfying (H). If the function φ additionally satisfies
limt→∞ φ(t) − d−1

2
√

2 log(1 + t) = ∞ and φ′(t) = o(t−1/2−ε), then for any bounded measurable
function f ,

(4.5) lim
t→∞

〈 ∑
j∈Nφ,θt

(
√

2t−Xt(j) · θ + φ(t))e
√

2(Xt(j)·θ−
√

2t), f

〉

=
〈

lim
t→∞

∑
j∈Nφ,θt

(
√

2t−Xt(j) · θ + φ(t))e
√

2(Xt(j)·θ−
√

2t), f

〉

almost surely and the limit is finite with probability one.

Note that there are two differences between Lemma 4.10 and Theorem 1.3: firstly, we don’t
take a sum over all particles, and secondly we have an additional term φ appearing. We solve
both of these issues in the remainder of this section.

Proof of Lemma 4.10. Recall the definition (4.1). Since

lim
t→∞

φ(t)− d− 1
2
√

2
log(1 + t) =∞,

from Lemma 4.3 we obtain that

lim
t →∞

inf
j∈Nt

(√
2t− ||Xt(j)||+ φ(t)

)
= +∞

and

lim sup
t→∞

sup
θ∈Sd−1,j∈Nt

1
t
(
√

2t−Xt(j) · θ) = 2
√

2

almost surely. We are now going to make use of the asymptotic behaviour of Rφ(x, t): we apply
Lemma 3.11 with D > 2

√
2 and an arbitrarily small δ to obtain that almost surely

〈Zφ∞, f〉 = 〈 lim
t→∞

∑
j∈Nφ,θt

(
√

2t−Xt(j) · θ + φ(t))e
√

2(Xt(j)·θ−
√

2t), f〉.(4.6)

From Proposition 4.9 we know that

〈Zφ∞, f〉 = lim
t→∞
〈Zφt , f〉.

and again, applying Lemma 3.11 with D > 2
√

2 and an arbitrarily small δ, we obtain that

〈Zφ∞, f〉 = lim
t→∞

〈 ∑
j∈Nφ,θt

(
√

2t−Xt(j) · θ + φ(t))e
√

2(Xt(j)·θ−
√

2t), f

〉
.(4.7)

Combining (4.6) and (4.7) completes the proof. �

We now get rid of the term involving φ in (4.5):

Lemma 4.11. Let φ be such that φ(t) = o(t1/2−ε) for some ε > 0. Then

lim
t→∞

φ(t)
〈∑
j∈Nt

e
√

2(Xt(j)·θ−
√

2t), 1
〉

= 0

almost surely.

Proof. Without loss of generality assume that φ(t) is an increasing, concave, C1-class function
such that limt→∞ φ(t) − d−1

2
√

2 log(1 + t) = ∞ and φ′(t) = o(t−1/2−ε). Set ψ(t) := t1/2−ε/2 and
observe that by Lemma 4.3, for any δ > 0 we can choose Aδ such that with probability 1 − δ
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none of the particles ever hit the sphere of an increasing radius
√

2t+ d−1
2
√

2 log(1 + t) +Aδ, thus
conditioning on this event

lim sup
t→∞

〈 ∑
j∈Nψ+Aδ,θ

t

(Xt(j) · θ −
√

2t)I{Xt(j)·θ≥
√

2t}e
√

2(Xt(j)·θ−
√

2t), 1
〉

≤ lim sup
t→∞

〈 ∑
j∈Nψ+Aδ,θ

t

(φ(t) +Aδ)I{Xt(j)·θ≥
√

2t}e
√

2(Xt(j)·θ−
√

2t), 1
〉

≤ lim sup
t→∞

φ(t) +Aδ
ψ(t) +Aδ

〈 ∑
j∈Nψ+Aδ,θ

t

(ψ(t) +Aδ)e
√

2(Xt(j)·θ−
√

2t), 1
〉
.

(4.8)

Consider the following decomposition:
√

2t−Xt(j) · θ + ψ(t) +Aδ = (
√

2t−Xt(j) · θ)I{Xt(j)·θ≥
√

2t}

+ (
√

2t−Xt(j) · θ)I{Xt(j)·θ≤
√

2t}

+ ψ(t) +Aδ.

(4.9)

Note that only the first term on the right-hand side of (4.9) is negative. Since by Lemma
4.10

lim
t→∞

〈 ∑
j∈Nψ+Aδ,θ

t

(
√

2t−Xt(j) · θ + ψ(t) +Aδ)e
√

2(Xt(j)·θ−
√

2t), 1
〉

(4.10)

exists almost surely, from (4.9), (4.8) and limt→∞
φ(t)+Aδ
ψ(t)+Aδ = 0 we deduce that the limit

lim sup
t→∞

〈 ∑
j∈Nψ+Aδ,θ

t

(ψ(t) +Aδ)e
√

2(Xt(j)·θ−
√

2t), 1
〉

is finite with probability 1−δ: if it wasn’t finite with probability larger than δ, then by (4.8) and
(4.9), with positive probability (4.10) would diverge to infinity, as its negative part is negligible
in comparison to the positive one.

Since limt→∞
φ(t)
ψ(t) = 0, this implies further that with probability 1− δ

lim
t→∞

(φ(t) +Aδ)
〈 ∑
j∈Nφ+Aδ,θ

t

e
√

2(Xt(j)·θ−
√

2t), 1
〉

= 0.

Taking Aδ arbitrarily large completes the proof. �

We are now ready to present the last step of the proof of Theorem 1.3. Recalling Lemma
4.10 we show that in fact we can sum over all the particles and we can still swap integration
with taking the limit. As was mentioned before, this is the step where we consider a sequence
of functions φ ∨A for A ∈ N.

Proof of Theorem 1.3. Set φ = t1/2−ε for some ε ∈ (0, 1). By combining Lemma 4.10 with
Lemma 4.11 we obtain that almost surely for all A ∈ N

(4.11) lim
t→∞

〈 ∑
j∈Nφ∨A,θt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t), f

〉

=
〈

lim
t→∞

∑
j∈Nφ∨A,θt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t), f

〉
.
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By Lemma 4.3 for any δ we can choose Aδ such that the event defined by Bδ := {∀s >
0, u ∈ Ns : ||Xs(j)|| ≤

√
2s + φ(s) ∨ Aδ} happens with probability P(Bδ) ≥ 1 − δ. Therefore,

conditioning on Bδ and taking A ≥ Aδ in (4.11), we obtain that

(4.12) lim
t→∞

〈∑
j∈Nt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t), f

〉

=
〈

lim
t→∞

∑
j∈Nt

(
√

2t−Xt(j) · θ)e
√

2(Xt(j)·θ−
√

2t), f

〉
.

holds almost surely on Bδ. Taking δ arbitrarily small we conclude that (4.12) holds with
probability one, which proves (1.2).

Finally, to show that 〈Z∞(θ), 1〉 > 0 we observe that by Fubini’s theorem

0 =
∫
Sd−1

P(Z∞(θ) = 0)σ(dθ) = E
[∫

Sd−1
I{Z∞(θ)=0}σ(dθ)

]
,

which completes the proof. �

5. Direction of the largest displacement in dimension one

In this section we prove Theorem 1.1 but we start by showing how Corollary 1.2 follows from
Theorem 1.1. Set

G+
t :=

√
2(M+

t −mt −
√

2
2 logZ∞)

and G−t :=
√

2(−M−t −mt −
√

2
2 logZ−∞).

Then we can rewrite

P
(
M+
t > −M−t

∣∣∣ Fs) = P
(
G+
t + logZ∞ > G−t + logZ−∞

∣∣∣∣ Gs) .
Theorem 1.1 tells us that (G+

t , G
−
t ) conditioned on Gs converges in the double limit, first letting

t → ∞ and then s → ∞, to a pair of independent standard Gumbel random variables. Thus
the proof of Corollary 1.2 is a consequence of the following lemma.

Lemma 5.1. Let G1, . . . , Gn be independent standard Gumbel-distributed random variables.
Then for any a1, . . . , an,

P
(
G1 + a1 ≥ max(a2 +G2, . . . , an +Gn)

)
= ea1∑n

i=1 e
ai
.

Proof. Recall that the pdf of the standard Gumbel distribution is given by e−(x+e−x), and the
cdf is given by e−e−x . Then by simple computations, setting K := log(1+

∑n
i=2 e

ai−a1), we have

P
(
a1 +G1 ≥ max(a2 +G2, . . . , an +Gn)

)
=
∫
R
e−(g1+e−g1 )

n∏
i=2

ee
−(a1+g1−ai)dg1

=
∫
R
e−g1−e−g1(1+

∑n

i=2 e
ai−a1)dg1

= e−K
∫
R
e−(g1−K)−e−(g1−K)dg1

= 1
1 +

∑n
i=2 e

ai−a1
= ea1∑n

i=1 e
ai
. �

We now prove the main theorem of this section.

Proof of Theorem 1.1. Let y, z ≥ 0. Note that for all 0 ≤ s ≤ t we have

(5.1) P
(
M+
t −mt ≤ y,−M−t −mt ≤ z

∣∣∣ Gs) =
∏
j∈Ns

νs,t(Xs(j), y, z)
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by the branching property, where we have set

νs,t(x, y, z) := P
(
M+
t−s −mt ≤ y − x,−M−t−s −mt ≤ z + x

)
.

We now bound νs,t from above and from below to obtain an asymptotically tight estimate for
the joint cdf of (M+

t ,M
−
t ) given Gs. We begin by computing a lower bound. Observe first that

since mt−mt−s =
√

2s+ 3
2
√

2 log t−s
t , from the inequality x/(x+ 1) ≤ log(1 + x) ≤ x we obtain

that
√

2s− 3
2
√

2
s

t− s
≤ mt −mt−s ≤

√
2s− 3

2
√

2
s

t
.(5.2)

Therefore, noting that for any events F,G one has P(F ∩ G) ≥ 1 − P(F c) − P(Gc), we obtain
that

νs,t(x, y, z) ≥ 1− P
(
M+
t−s −mt−s ≥ y − (x−

√
2s)− 3

2
√

2
s

t− s

)
− P

(
−M−t−s −mt−s ≥ z + (x+

√
2s)− 3

2
√

2
s

t− s

)
.

(5.3)

From [6, Theorem 1] we know that P(M+
t −mt ≥ x) converges uniformly as t → ∞ to ω(x),

which further satisfies
1− ω(x) ∼ c?xe−

√
2x as x→∞.

Hence, (5.3) yields

lim inf
t→∞

∏
j∈Ns

νs,t(Xs(j), y, z)

≥
∏
j∈Ns

[
1− ω(

√
2s−Xs(j) + y)− ω(

√
2s+Xs(j) + z))

]
≥

∏
j∈Ns

[
1−

{
c?(
√

2s−Xs(j) + y)e
√

2(Xs(j)−
√

2s−y)

+ c?(
√

2s+Xs(j) + z))e
√

2(−Xs(j)−
√

2s−z))
}

(1 + ε(s))
]
,

where s 7→ ε(s) is a random process such that lims→∞ ε(s) = 0 a.s., where we used that
lim infs→∞minj∈Ns

{√
2s− |Xs(j)|

}
=∞ a.s. This result follows plainly from the fact that the

additive martingale converges to 0 a.s. which can be found in [13].
Therefore, since for any numbers ai ∈ (0, 1)n

n∏
i=1

(1− ai) ≥ e
−
∑n

i

ai
1−ai ≥ e−

1
1−max ai

∑n

i
ai ,

and recalling also that

lim
s→∞

max
j∈Ns

{
|
√

2s−Xs(j)|e
√

2(Xs(j)−
√

2s)
}

= 0

almost surely, we obtain from (5.1) that

lim inf
s→∞

lim inf
t→∞

P
(
M+
t −mt ≤ y,−M−t −mt ≤ z

∣∣∣ Fs)
≥ lim inf

s→∞
exp

(
− c?

∑
j∈Ns

(y − (Xs(j)−
√

2s))e−
√

2(y−(Xs(j)−
√

2s))

− c?
∑
j∈Ns

(z + (Xs(j) +
√

2s))e−
√

2(z+(Xs(j)+
√

2s))
)
.
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Using again that the additive martingale
∑
j∈Ns e

√
2(Xs(j)−

√
2s) converges to 0 a.s. we eventually

obtain that

(5.4) lim inf
s→∞

lim inf
t→∞

P
(
M+
t −mt ≤ y,−M−t −mt ≤ z

∣∣∣ Fs)
≥ exp

(
−c?Z∞e−

√
2y − c?Z−∞e−

√
2z
)
.

To obtain a similar upper bound, we use that for any pair of events F,G, P(F ∩ G) =
1− P(F c)− P(Gc) + P (F c ∩Gc), hence recalling (5.2),

νs,t(x, y, z) ≤ 1− P
(
M+
t−s −mt−s ≥ y − (x−

√
2s)− 3

2
√

2
s

t

)
− P

(
−M−t−s −mt−s ≥ z + (x+

√
2s)− 3

2
√

2
s

t

)
+ ζs,t(x, y, z),

where

ζs,t(x, y, z) := P
(
M+
t−s −mt−s ≥ y − (x−

√
2s)− 3

2
√

2
s

t
,

−M−t−s −mt−s ≥ z + (x+
√

2s)− 3
2
√

2
s

t

)
.

Note that

ζs,t(x, y, z) ≤ P
(
M+
t−s −mt−s ≥ y ∧ z +

√
2s− 3

2
√

2
s

t

)
,

hence
lim sup
t→∞

ζs,t(x, y, z) ≤ ω(y ∧ z +
√

2s).

As a result, with similar computations as in the proof of the lower bound, there exists a process
ε(s) converging a.s. to 0 as s→∞ such that,

lim sup
t→∞

∏
j∈Ns

νs,t(Xs(j), y, z)

≤
∏
j∈Ns

[
1−

{
c?(
√

2s−Xs(j) + y)e
√

2(Xs(j)−
√

2s−y)

+ c?(
√

2s+Xs(j) + z))e
√

2(−Xs(j)−
√

2s−z)

− c?(
√

2s+ y ∧ z)e
√

2(−
√

2s−y∧z)
}

(1 + ε(s))
]
.

Using that for any numbers ai < 1,
∏n
i=1(1− ai) ≤ e−

∑n

i
ai , and noting that for any C ∈ R

lim
s→∞

∑
j∈Ns

(
√

2s+ C)e
√

2(−
√

2s−C) = 0

almost surely, we obtain that
lim sup
s→∞

lim sup
t→∞

P(M+
t −mt ≤ y,−M−t −mt ≤ z | Fs)

≤ exp(−c?Z∞e−
√

2y − c?Z−∞e−
√

2z),

which, together with (5.4), completes the proof. �

Remark 5.2. With similar computations to the ones made in the proof of Theorem 1.1 we would
be able to prove joint convergence in distribution of∑

j∈Nt
δXt(j)−mt ,

∑
j∈Nt

δ−Xt(j)−mt
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towards a pair of decorated Poisson point processes with random intensities c?Z∞e−
√

2xdx
and c?Z−∞e−

√
2xdx respectively, and such that these processes are independent conditionally on

(Z∞, Z−∞). This result can be thought of as a unidimensional version of Conjecture 1.4.
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