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Comparing Phylogenetic Approaches to
Reconstructing Cell Lineage from Microsatellites

with Missing Data
Anne-Marie Lyne, Leı̈la Perié

Abstract—Due to the imperfect fidelity of DNA replication, somatic cells acquire DNA mutations at each division which record their
lineage history. Microsatellites, tandem repeats of DNA nucleotide motifs, mutate more frequently than other genomic regions and by
observing microsatellite lengths in single cells and implementing suitable inference procedures, the cell lineage tree of an organism
can be reconstructed. Due to recent advances in single cell Next Generation Sequencing (NGS) and the phylogenetic methods used to
infer lineage trees, this work investigates which computational approaches best exploit the lineage information found in single cell NGS
data. We simulated trees representing cell division with mutating microsatellites, and tested a range of available phylogenetic
algorithms to reconstruct cell lineage. We found that distance-based approaches are fast and accurate with fully observed data.
However, Maximum Parsimony and the computationally intensive probabilistic methods are more robust to missing data and therefore
better suited to reconstructing cell lineage from NGS datasets. We also investigated how robust reconstruction algorithms are to
different tree topologies and mutation generation models. Our results show that the flexibility of Maximum Parsimony and the
probabilistic approaches mean they can be adapted to allow good reconstruction across a range of biologically relevant scenarios.

Index Terms—Cell lineage, phylogenetic reconstruction, microsatellites, mutation, single cell
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1 INTRODUCTION

THE ability to reconstruct cell lineage relationships on
a single-cell basis is central to developmental biology,

to the understanding of differentiation processes such as
hematopoiesis, and underpins efforts to decipher the pathol-
ogy of many diseases including cancer.

Until recently, almost all fate mapping experiments pro-
ceeded via prospective labeling ( [1]) i.e., by the incorpo-
ration of heritable tags in progenitor cells that are later
detected in their cell progeny. With the advent of next gener-
ation sequencing technologies, new methods with single cell
resolution and significantly higher throughput have been
developed. For example, sparse retroviral transduction of
a library of DNA oligonucleotides can be used to infect
progenitor cells with unique and heritable tags, detected
in downstream cells via sequencing (e.g. [2], [3], [4], [5]).
The most recently developed techniques avoid ex vivo viral
infection by using in vivo genetic recombination, which
can be induced in a time- and tissue-specific manner, to
label progenitor cells. For example, CRISPR-Cas9 genome-
editing, the translocation of a transposon element or the
recombination of a series of loxP sites, can be used to mark
individual progenitor cells with unique DNA signatures
which are inherited by cell progeny (e.g. [6], [7], [8], [9],
[10], [11]).

These techniques have revisited and revised the differ-
entiation hierarchy in hematopoiesis ( [4], [10], [12]) and
have enabled semi-automated cell lineage reconstruction
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on a whole-organism scale ( [6], [8]). However, they all
rely on genetic modification to mark progenitor cells, and
are therefore not readily transferable to humans. The only
notable exception is the mapping of integration sites in
gene-therapy treated patients ( [13]), but this is restricted
to transplantable tissues in specific types of patient.

A more widely applicable method for reconstructing
lineage relationships is to use retrospective lineage tracing.
This class of methods reconstructs lineage a posteriori from
information present in cells without any prospective cell
labelling. It uses naturally occurring mutations, which occur
during DNA replication in cell division. If frequent enough,
these mutations accumulate during divisions and ideally
distinguish the cell progeny within and across lineages.
They then act as an intrinsic tag that reflects the familial
history of cells. Reconstruction methods, usually phyloge-
netic algorithms, are then applied to the information of the
intrinsic tags to reconstruct lineage relationships between
cells.

A number of different types of mutation can be used
for these purposes: single nucleotide variants, copy number
variation, retrotransposons and microsatellites (e.g. [14],
[15], [16], [17]). In this paper, we choose to concentrate
on microsatellites for the following reasons: 1. They have
the highest mutation rate (∼ 10−5 per locus per division
( [18])). 2. They are highly abundant in the human and
mouse genomes (more than 1 million loci ( [19])). 3. Mu-
tations in microsatellites are largely functionally neutral as
variable loci tend to be found in non-coding regions ( [20]).
Microsatellites are generally defined to be tandem repeats
of 1-6 nucleotide motifs of at least 12 base pairs in length
e.g. CACACACACACA or (CA)6 ( [19]). A mutation in a
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microsatellite corresponds to the insertion or deletion of one
or more repeat units, e.g. (CA)6 becomes (CA)5 or (CA)7,
due to misalignment of the repetitive strands during DNA
replication. By observing the number of repeats at dozens
of loci, microsatellites have been used to reconstruct cell
lineage in the study of stem cell dynamics in the mouse
colon ( [21]), relapse mechanisms in acute leukaemia ( [22]),
a mouse lymphoma tumour ( [23]), the female germline (
[24]), mouse fibroblasts ( [25]) and mouse cells from various
organs ( [26]).

The reconstruction method, as well the number of divi-
sions and the mutation rate, have an impact on the accu-
racy of the lineage relationship inference. Previous works
have used both simulation studies and experimental data
with known outcomes to compare the Neighbour Joining
algorithm and Bayesian-based methods to reconstruct cell
lineage using microsatellites ( [25], [27]). However, signifi-
cant improvement has been made in Bayesian-based phylo-
genetic software since these early works ( [28], [29], [30]),
and there is therefore a need to revisit which method is
most appropriate, incorporating more realistic models of
microsatellite mutations and state-of-the-art phylogenetic
inference methods.

For tree reconstruction, sequencing of single cells is
required, as the information of the status of multiple loci
for each cell is necessary. Single cell data contains a larger
amount of missing data than bulk data. Missing data arises
because of allele drop-out during the preparation of the
sample (whole genome amplification, subsequent PCR am-
plification) or simply due to a detection limit (sequencing or
capillary detection). The impact of missing data on lineage
reconstruction from multiple-loci microsatellite length data
has largely not been evaluated. The only exception is the
work of [31] which modelled allelic dropout in their inves-
tigation of the impact of sequencing quality and depth on
the accuracy of lineage reconstruction. However, they only
tested one reconstruction algorithm with two missing data
scenarios, so the full impact on reconstruction accuracy and
indeed on the choice of reconstruction method has not been
investigated.

In this paper, we use simulation to produce trees similar
to those likely to be observed in vivo, taking hematopoiesis
as an example. We consider which metrics can be used to
assess how well a tree has been reconstructed. We then
carry out a comprehensive comparison of the available
phylogenetic methods, using multiple mutation rates and
numbers of microsatellites. Additionally, we investigate the
impact of missing data on these reconstruction methods, the
impact of trees with different structures and explore how
uncertainty in the mutation model impacts reconstruction.

2 RESULTS

2.1 Comparing reconstruction methods with complete
data

We simulated trees representing cell division using the Gille-
spie algorithm. Each simulation starts with one cell, and at
each reaction cells divide or die with a given probability,
with these probabilities constant within trees, but changed
across trees. The simulated trees have around 150 living cells

at the final time point and an average tree depth of 10 divi-
sions. The initial cell is assigned a number of microsatellites
with a distribution of repeat numbers, and at each reaction,
cells have a fixed probability to mutate, according to a sym-
metric multistep mutation model ( [19]) unless otherwise
stated. After simulation of the microsatellite mutations, we
add error in the form of PCR stutter to the living cells,
as microsatellite loci are prone to length changes during
amplification. When comparing reconstruction methods or
scenarios, we compute the effect size as well as a plausible
range for the effect size. Full simulation and comparison
details are provided in the Methods section 4.

Throughout the paper, unless otherwise stated, results
are presented for Tree 1, depicted in Fig. 1. Results for two
other trees, Trees 2 and 3 (Supplementary Figs. 1 and 2),
are given in Supplementary Figs. 5 to 8 and show very
similar trends. The simulations presented below model mi-
crosatellites observed on a male X chromosome, i.e., where
there is only one allele observed at each locus. We also
present results in the Supplementary (as described in the
Methods Section 4) for simulations modelling autosomal
microsatellites, where in practice, it can be difficult to assign
accurately lengths observed at a given locus to the maternal
or paternal allele.

Fig. 1. Simulated Tree 1. Tree 1, with 125 living cells simulated by
the Gillespie algorithm. At each reaction, cells have a 0.8 probability of
dividing and a 0.2 probability of dying (in this realisation, 0.19 reactions
were deaths). The top panel shows all cells produced, including dead
cells in red. The bottom panel shows only cells which are alive at the final
time point. The tree is plotted with nodes spaced evenly between the root
and the final cells for clarity, although during the simulation the reactions
occurred at random times as is usual with the Gillespie algorithm.

The mutation rate of microsatellites has been estimated
to be between 10−3 and 10−6 per locus per division depend-
ing on the locus ( [18]). [25] found, however, that the key
parameter to predict the accuracy of the reconstruction is
the expected number of mutations per cell division, i.e. that
a lower mutation rate can be compensated for by observing
a larger number of microsatellites. We observed a similar
result in our simulations (Supplementary Figs. 3 and 4)
where, for example, the reconstruction of a tree with 100
microsatellites and a mutation rate of 10−3, is of a similar
accuracy to that with 1000 microsatellites and a mutation
rate of 10−4. As lower mutation rates mean that more
microsatellites need to be observed in order to reconstruct
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the tree accurately and this results in longer computation
time, particularly for the Bayesian inference, we choose to
use a mutation rate of 10−3 to enable repeat simulations of
the more computationally intensive reconstruction methods.
We also simulate a maximum of 5000 microsatellites for the
same reason.

We compared two distance-based methods, Neighbour
Joining (NJ) and Balanced Minimum Evolution (BME),
Maximum Parsimony and two probabilistic approaches,
Maximum Likelihood and Bayesian inference, for phy-
logeny reconstruction (details in the Methods section). In
the Bayesian inference, the prior distribution used for the
tree is a constant-rate birth-death process which matches
how the trees were simulated. To quantify how well the
simulated tree was reconstructed, we defined a similarity
score in which the percentage of bipartitions present in
the original tree also present in the reconstructed tree is
computed (described in more detail in Methods Section 4.4).
If the two trees are identical, the score will be 100% as all of
the bipartitions observed in the original tree will also be in
the reconstructed tree.

For the two distance-based methods, Neighbour Joining
( [32]) and Balanced Minimum Evolution ( [33]), the L1

(Manhattan), L2 (Euclidean) and Cosine distances were
compared. No difference was observed between the per-
formance of Neighbour Joining and Balanced Minimum
Evolution for a given distance and microsatellite number
(all comparisons have <2% difference in sample mean and
0% in the plausible interval) with the exception of theL2 dis-
tance (Fig. 2, and Supplementary Figs. 5 and 6). For the L2

distance and 5000 microsatellites, BME performs 4.4± 1.4%
better, however this is not informative for choosing the
best method as L2 is the worst performing distance at this
setting. As there is otherwise no difference in performance
between the two methods, Neighbour Joining is preferable
as it is faster (see Supplementary Fig. 9). Looking just at
Neighbour Joining and comparing the three distances, at
100 and 500 microsatellites the distances perform more or
less the same with <2% difference in the sample means and
a 0% in the plausible range for all comparisons. However,
there are differences at higher microsatellite numbers, with
L1 performing 4.6±3.0% and 1.8±3.1% better than L2 and
Cosine respectively at 1000 microsatellites, and 7.3 ± 1.2%
and 1.3± 1.0% better at 5000 microsatellites (Fig. 2).

Having, therefore, selectedL1 as the best overall distance
for complete data, we next compared NJ to Maximum
Parsimony and the probabilistic inference methods. In Fig. 3
(and Supplementary Figs 7 and 8), we see that with fully
observed data, there is little difference in the performance
of the methods (<2% difference in the sample means and
0% in the plausible range for all comparisons with a given
microsatellite number). Distance-based methods such as
Neighbour Joining are, therefore, the best choice due to
their computational efficiency (as suggested previously by
[27], and see run time comparison in Supplementary Fig. 9).
Maximum Parsimony is also very computationally efficient,
taking 10s or less to run depending on the number of
microsatellites. For one tree reconstruction with a mutation
rate of 0.001 and 5000 microsatellites, Bayesian inference
takes almost three hours to run, whereas the distance-based
approaches take less than one second. We also note that the

Fig. 2. Comparison of distance-based methods, fully observed data.
Percentage of bipartitions in the true tree observed in reconstructed
trees for distance-based methods, Neighbour Joining (NJ) and Balanced
Minimum Evolution (BME), using L1, L2 and cosine distances. Boxplots
are based on 60 independently simulated microsatellite mutation pat-
terns on a fixed tree with a mutation rate of 0.001.

number of microsatellites observed is critical. Our simula-
tions suggest that for a mutation rate of 10−3, 1000s of loci
need to be observed to reconstruct the tree accurately. This is
higher than was previously suggested based on modelling
mutations in polyguanine repeat sequences ( [25]) due to the
lower mutation rate use in this study (a factor of 10 lower).

Fig. 3. Comparison of phylogenetic methods, fully observed data.
Percentage of bipartitions from the true tree observed in reconstructed
trees for Neighbour Joining (NJ), Maximum Parsimony, Maximum Like-
lihood and Bayesian methods with differing numbers of microsatellites.
Boxplots are based on 60 independently simulated microsatellite muta-
tion patterns on a fixed tree with a mutation rate of 0.001.

2.2 Comparing reconstruction methods with missing
data

We now introduce missing data into our simulations to
mimic single cell analysis of microsatellite loci. Mutations
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were simulated as before and then 10, 20 and 30% of the
data was assigned uniformly at random as missing data,
in line with estimates for missing data suggested by [24]
and [34]. For the Neighbour Joining and Balanced Minimum
Evolution methods, we tested several options for computing
distances when values are missing. We either impute the
missing values using the mean or the modal value for each
microsatellite locus or compute distances using only the
microsatellites jointly observed in a given pair of cells. For
the latter approach, we tested the effect of rescaling the
distance to correct for the total number of loci included in
the distance.

Again, Neighbour Joining and Balanced Minimum Evo-
lution methods perform similarly for a given distance
and microsatellite number, with Balanced Minimum Evolu-
tion performing slightly better (Supplementary Figs. 10-12).
Fig. 4 shows the reconstruction accuracy of BME with full
data and with different missing data strategies for 10, 20 and
30% missing data. The picture is complex, and depends on
the amount of missing data, the number of microsatellites
and the missing data strategy. At low microsatellite num-
bers, imputing yields more accurate reconstruction than
using observed values (e.g. at 500 microsatellites, imputing
the mean is 1.0 ± 2.4%, 4.3 ± 2.1% and 4.6 ± 1.5% better
than the best alternative using observed values, with 10, 20
and 30% missing data respectively). However, with 5000 mi-
crosatellites, L1 distance using observed values outperforms
imputation at all proportions of missing data with rescaling
having little impact (6.2± 1.9%, 7.6± 2.5% and 6.5± 2.8%
better than the best imputation approach, with 10, 20 and
30% missing data respectively). This can be explained by
the lineage information redundancy when large numbers of
microsatellites are observed; even without observing all of
the data some parts of the reconstruction can be completed
accurately as there is sufficient information in the data
that is present. When using imputation, however, wrongly
imputed values can cause incorrect reconstruction. As with
complete data, increasing the number of microsatellite loci
and hence the quality of the reconstruction makes differ-
ences between the L1 and L2 distances more apparent, with
distance L1 performing better (Fig. 4).

Next we compared the best distance-based approaches
(Neighbour Joining and BME with unscaled L1 distance
using only observed microsatellite loci) with Maximum Par-
simony, and the probabilistic approaches (full details in the
Methods section). Both the Maximum Parsimony and like-
lihood methods have inbuilt ways of handling incomplete
data which do not use imputation. Maximum Parsimony in
PAUP* assigns the most parsimonious state to the missing
locus given the cell’s placement on the tree; therefore each
cell’s final position on the tree is determined only by the
parsimony contribution of the observed loci ( [35]). The
likelihood methods, both implemented in RevBayes, inte-
grate over all possible character states for missing ‘leaf’
characters, i.e. they are treated the same way as unknown
internal node characters. These respective approaches do
not discard any data and do not use any unobserved,
imputed data. In Fig. 5 (and Supplementary Figs. 13 to
14) we see that as the proportion of missing data increases
accuracy drops off more quickly for some approaches than
others. For all microsatellite numbers, the drop in accuracy

Fig. 4. Comparison of BME with different distances, missing data.
Percentage of bipartitions from the true tree observed in reconstructed
trees for BME using a variety of distances to deal with the missing data:
imputing missing values using the mean/mode of observed values, L1

or L2 distances using observed values, unscaled or scaled. Boxplots are
based on 60 independently simulated mutation patterns with a mutation
rate of 0.001.

for Maximum Parsimony and the likelihood approaches is
less than the drop for distance-based methods; at 1000 and
5000 microsatellites, the average reconstruction accuracy of
Maximum Parsimony and the likelihood methods with 30%
missing data is higher than the average accuracy of the
distance methods with 20% missing data (Fig. 5). Use of
either Maximum Parsimony or likelihood methods results
in a 3-5%, 7-11% or 7-20% reconstruction improvement over
the distance-based methods at 500, 1000 or 5000 microsatel-
lites respectively (Fig. 5). There is little difference between
the accuracy of Maximum Parsimony and the likelihood
methods (<2% difference in the sample means and 0%
in the plausible range for all comparisons with a given
microsatellite number and missing data percentage).

As discussed above, Maximum Parsimony and the prob-
abilistic methods have inbuilt ways of dealing with missing
data, therefore performing better than the distance-based
methods. However, this generally comes with the price
of increased computational time (Supplementary Fig. 9).
Maximum Parsimony takes considerably longer to run than
the distance-based methods, and the run time increases as
the proportion of missing data increases, although it always
remains under two minutes. In contrast the computational
time for the distance-based methods is hardly impacted.
The run times for the probabilistic methods are one or
two orders of magnitude higher than Maximum Parsimony,
irrespective of the proportion of missing data. Therefore, if
computational resources are limited, Maximum Parsimony
would be recommended over the probabilistic approaches
given their accuracies are similar. Note, that whilst the
likelihood approaches are considerably more computation-
ally intensive, they also yield much more information than
the other options such as the posterior distributions of
parameters of interest. They can also be used to compare
various mutation models, and so if an understanding of
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the generation process is a main goal of the study and the
computational power is available, these methods will be of
interest.

Fig. 5. Comparison of phylogenetic methods with missing data. Per-
centage of bipartitions from the true tree observed in reconstructed trees
for distance-based (Neighbour Joining (NJ) and Balanced Minimum
Evolution (BME)), Maximum Parsimony, Maximum Likelihood (ML) and
Bayesian methods. Boxplots are based on 60 independently simulated
microsatellite mutation patterns on one fixed tree with either 0, 10, 20 or
30% missing data and a mutation rate of 0.001.

An alternative to leaving missing values in the input ma-
trix is to impute values based on those observed. Unlike the
distance-based methods, the input matrices to Maximum
Parsimony and the probabilistic approaches require integers
as the allowed transitions are between integer values, so the
simplest option is to impute the modal value for each locus.
As can be seen from Supplementary Figs. 15-17, it is almost
always better to leave values as missing than to impute the
mode, particularly for larger numbers of microsatellites and
missing data percentages (with 100 microsatellites, there is
very little difference in the means and a difference of 0%
is always in the plausible range). Based on our results,
we would therefore recommend leaving missing values
rather than imputing when using Maximum Parsimony or
a likelihood method.

The loss of performance as the proportion of missing
data increases begs the question of whether it is better to
retain or exclude microsatellite loci for which some obser-
vations are missing. Comparing, for example, the rows for
500 and 1000 microsatellites in Fig. 6, we see that the recon-
struction with 1000 microsatellites and 30% missing data is
worse than that with 500 fully observed microsatellites but
better than that with 500 microsatellites and 10% missing.
Therefore, the decision to include or exclude microsatellite
loci from the analysis depends on the pattern of missing
data. If certain loci have large amounts of missing data, it is
better to exclude them and reduce the percentage of missing
data. Conversely, if the missing data is spread evenly across
loci, then removing all loci with missing values would result
in a large decrease in the number of loci which would
strongly adversely affect the reconstruction.

Using multiplexed PCR to genotype microsatellites, [24]
estimated allelic dropout to be around 30% for one allele,

Fig. 6. Median reconstruction accuracy of Bayesian approach.
Heatmap showing the percentage of bipartitions from the true tree
observed in reconstructed trees for the Bayesian method with differing
numbers of microsatellites and amounts of missing data. Simulations
were carried out on one fixed tree with a mutation rate of 0.001 and
median percentage is shown in each box.

corresponding to 15% missing data in this study, and [34]
identified microsatellite genotypes at around 90% of their
target loci using CRISPR-Cas9 fragmentation followed by
sequencing. We conclude from our simulations that with
these levels of missing data, it is better to include loci with
missing data in the reconstruction rather than to remove
them. In regimes where many microsatellites are observed
e.g., the row with 5000 microsatellites, even 30% missing
data has relatively little negative impact on the reconstruc-
tion (Figs 6, Supplementary Figs. 18, 19) and it therefore
better to retain loci with a small percentage of missing data
rather than lose many loci from the inference.

2.3 Comparing reconstruction methods with autoso-
mal microsatellites
In order to make use of all the microsatellites in the genome,
and indeed to apply the technique to females, we explore
the performance of the various reconstruction methods on
autosomal microsatellites, i.e., loci with two copies of each
microsatellite. Reads aligning to the same genome location
from two alleles can only be distinguished if there is a
heterozygous polymorphism close to the microsatelilte, or
if the repeat number of the two alleles is very different.

We model this scenario by grouping microsatellites into
pairs (thereby keeping the number of microsatellites the
same as in earlier sections) and initialising microsatellite
lengths and within-locus length differences using distribu-
tions based on the data in [20] (described in full detail in the
Methods, Section 4). Microsatellites mutate independently
as before, PCR stutter error is added, and then, for the
inference, we assume that the shorter of the two lengths in
each pair would be assigned to one allele and the longer to
the other. If the initial lengths of the two alleles are very
different, the alleles will be correctly assigned, however
if the initial lengths are the same or similar, drift in the
microsatellite lengths may cause misassignment.
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Supplementary Figs. 20 and 21 show that the trend
and accuracy of the various methods are the same as for
the X chromosome simulations (compare to Figs. 4 and 5).
Whilst it is likely that misassignments negatively impact the
reconstruction, they are rare in our simulations due to the
relatively low tree depth and mutation rate used here.

2.4 Robustness of the inference for trees containing
cells with different division rates

Thus far, we have simulated trees in which all cells have
the same constant probability to divide or die. This is a
realistic scenario for reconstructing lineage relations within
cells of the same cell type. We would also like to compare
reconstruction method for systems with hierarchical organ-
isation, in which for example stem cells divide infrequently
and can self-renew, and more differentiated cells divide
more frequently. For this purpose, we next simulated trees
with two types of cells: stem-like cells that have a low
probability of dividing and a high probability to self-renew,
and differentiated cells that divide more frequently and
don’t self-renew. In this section, results are presented for
Tree 4, which is shown in Fig. 7 (depiction including dead
cells is shown in Supplementary Fig. 22). We use the same
inference methods as for Tree 1 to see if its topology impacts
the accuracy of lineage reconstruction, however we now use
a flat prior for the tree topology in the Bayesian inference
i.e., a priori all trees have equal probability, so as to not have
a mismatch between the assumptions of the inference and
the model assumed when generating the tree.

Fig. 7. Simulated Tree 4. Tree with 172 living cells simulated by the
Gillespie algorithm. This tree contains two cell types, stem cells and dif-
ferentiated cells, and after an initial self-renewal phase, at each reaction
stem cells and differentiated cells had a 0.5 probability to differentiate
or die respectively, otherwise the cell ‘self-renews’. Differentiated cells
divide at 100 times the rate of stem cells. The tree is plotted with nodes
spaced evenly between the root and the final cells for clarity, although in
reality division occurred at random times as is usual with the Gillespie
algorithm.

When comparing distances and methods in the fully
observed data scenario, a similar pattern of results were
attained to those for the earlier trees (Supplementary Fig. 23
and Fig. 8), although the reconstruction works better than
for the trees with one constant division rate (Trees 1-3). This
is likely due to the fact that the majority of cells in Tree 4
are differentiated cells which have a greater depth than the
average depth in Trees 1-3, and which have therefore accu-
mulated more mutations aiding the reconstruction. When
missing data was introduced, the overall conclusions are
the same as for Trees 1-3, but the drop-off in performance
was less severe at 1000 and 5000 microsatellites (compare
Fig. 8 to Fig. 5, e.g., for Maximum Parsimony the mean was
25.6 ± 3.0% lower with 30% missing data for Tree 1 versus

16.8±1.8% lower for Tree 4 with 1000 microsatellites), which
is also likely due to the increased amount of information,
and hence redundancy, from accumulated mutations. These
results suggest that the inference methods tested here can
be used to reconstruct lineage trees containing a variety of
cell types with different division/death rates as long as the
assumptions of the inference are not violated, such as those
encoded in the tree prior for Bayesian inference.

Fig. 8. Comparison of phylogenetic methods with missing data,
Tree 4. Percentage of bipartitions from the true tree observed in recon-
structed trees for distance-based (Neighbour Joining (NJ) and Balanced
Minimum Evolution (BME)), Maximum Parsimony, Maximum Likelihood
(ML) and Bayesian methods. Boxplots are based on 60 independently
simulated microsatellite mutation patterns on one fixed tree with either
0, 10, 20 or 30% missing data and a mutation rate of 0.001.

2.5 Robustness of the inference for different mutation
models
Here we will explore the impact of different mutation gen-
eration models on several methods of reconstruction. Of
particular interest is how discrepancies in the mutation gen-
eration model and the models assumed in the likelihood of
the probabilistic methods and the transition matrix in Maxi-
mum Parsimony impact the inference accuracy. Many mod-
els of varying complexity describing microsatellite mutation
dynamics have been formulated ( [36]). In the simplest and
most commonly used model, the Stepwise Mutation Model
(SMM, [37]), microsatellites symmetrically change length by
increments of one motif. [38] found that most microsatellite
variation takes place under this model, however, length
changes of more than one motif have been observed ( [39],
[40]). An extension of the SMM, the Multistep Mutation
Model (MMM), therefore allows microsatellites to change
length by more than one motif but with a decreasing proba-
bility for larger jumps ( [41], [42]). There are also alternative
models in which microsatellites preferentially increase in
length ( [40], [43]), and the Asymmetric Multistep Mutation
Model (AMMM) allows microsatellites to change length by
one or more motif with a larger probability to increase in
length than to decrease ( [43]).

Thus far, the assumptions of probabilistic inference
methods have matched the mutation generation model in
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the simulations, with both using the MMM. Here, we took
Tree 1 (Fig. 1) and a fixed overall mutation rate of 0.001, and
simulated mutations using the SMM, MMM and AMMM
(full details in the Methods section). We then tested the same
tree reconstruction methods as in the previous sections i.e.,
the probabilistic approaches still assume a MMM. We also
simulated mutations with the MMM and then assumed the
SMM for the reconstruction with probabilistic inference.

From Fig. 9, we see that the reconstruction accuracy
is not strongly impacted by the type of model used to
simulate the mutations and that for a given microsatel-
lite number and method, 0% is always in the plausible
effect size range for each comparison. Surprisingly, this is
also the case for the probabilistic approaches even when
there is a mismatch between the generation and inference
models. This is probably due to the specific models tested
in which jumps of more than one repeat are considerably
less likely than jumps of one repeat meaning that the data
simulated under the MMM is not appreciably different than
data simulated under the SMM. Based on our results, we
conclude that the inference methods tested are relatively
robust to slight variations in the true generation process
and to the choices researchers must make when choosing
a probabilistic model for inference. We cannot exclude that
a very large discrepancy between generation and inference
model would have a negative impact, and also note that the
types of parameters inferred as well as their values will be
affected by the model used in inference.

Fig. 9. Comparison of phylogenetic methods for different microsatel-
lite mutation models. Percentage of clades from the true tree observed
in reconstructed trees for distance-based (Neighbour Joining (NJ) and
Balanced Minimum Evolution (BME)), Maximum Parsimony, Maximum
Likelihood and Bayesian methods. Boxplots are based on 60 inde-
pendently simulated microsatellite mutation patterns on one fixed tree
with a mutation rate of 0.001. Mutations were generated using one of
three models: Stepwise Mutation Model (SMM), the Multistep Mutation
Model (MMM), or the Asymmetric Multistep Mutation Model (AMMM).
Abbreviations: sim = mutations simulated with this model, inf = mutation
model used in likelihood-based inference methods.

3 DISCUSSION AND CONCLUSION

There is great interest in the ability to reconstruct cell
lineage without the need for prospective tagging. This can

be achieved by observing mutations which occur during
cell division on a single cell basis and then using phyloge-
netic algorithms to reconstruct relationships between cells.
We focus here on mutations in microsatellites as they are
abundant in the human genome and have a higher mutation
rate than the other types of mutations. We note, however,
that some of the methods investigated here have also been
applied in other contexts, for example, Maximum Parsi-
mony ( [6]) and agglomerative clustering (similar to NJ) (
[8]) have been used to reconstruct lineage trees from genetic
recombination data. Recent experimental progress has led to
a marked increase in the number of microsatellite loci which
can be observed in parallel in individual cells. [44] have
developed a pipeline in which 10,000s of pre-selected mi-
crosatellites can be genotyped in single-cell whole genome
amplified DNA using molecular inversion probes. [34] used
CRISPR-Cas9 targeted DNA fragmentation followed by se-
quencing to observe 2,000 loci in bulk DNA, but it seems
plausible that this approach can be extended to single cell
data. There has also been recent progress in terms of the
software available to implement state-of-the-art likelihood-
based phylogenetic inference. It is, therefore, a good time to
reassess which reconstruction algorithms will optimise the
interpretation of single cell datasets.

We tested a range of phylogenetic algorithms including
computationally fast distance-based algorithms, Maximum
Parsimony and computationally intensive likelihood-based
approaches. In the situation where the data is fully ob-
served, we found little difference in performance between
the various reconstruction methods. However, both Maxi-
mum Parsimony and the probabilistic approaches require
considerably more computational time than the distance-
based approaches. For trees with even a moderate number
of cells, more than around 20, it is not possible to exhaus-
tively search the tree space, and hence heuristic searches
need to be carried out which require increasingly more
computation as the number of cells increases. In addition,
as the tree becomes larger and/or the model more complex,
the likelihood computation itself becomes more demanding.
In this study, running the probabilistic inference took up
the vast majority of the computational time. Therefore, in
situations with low levels of missing data (< 10%), distance-
based approaches can be used in conjunction with distances
adapted to take account of the missing data. We found
the L1 distance to work well using only the loci jointly
observed.

However, recently developed single cell NGS tech-
niques, which have already been used for lineage tracing
( [45], [46]) and which have much potential for future
development, result in uneven genome coverage, and hence
in more sparse data matrices than those found through the
more targeted approaches previously used ( [24], [25]). Two
questions of interest, therefore, are whether it remains pos-
sible to reconstruct lineage trees from this type of data, and
whether the Maximum Parsimony and likelihood methods,
which have inherent means for dealing with missing data,
will perform better in this type of scenario.

Our results show that, although, as would be expected,
there is some loss in accuracy as data is removed from the
inference, lineage trees can still be reconstructed from ob-
servations with missing values, and that, indeed, Maximum
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Parsimony and the likelihood methods lose less accuracy
than the distance-based approaches for the same amount of
missing data. This suggests that microsatellite data collected
using new single cell experimental techniques would benefit
from interpretation with the state-of-the-art likelihood algo-
rithms used in phylogenetic studies. The price to pay for
this increased accuracy comes in the form of increased com-
putation time. This may become a problem as experimental
progress leads to increases in both the number of cells and
the number of microsatellites genotyped. However, with the
use of parallel computing, Bayesian inference can be scaled
up considerably beyond its use in this paper.

We anticipate that by harnessing the power of state-of-
the-art phylogenetic likelihood methods, lineage inference
from recently developed single cell sequencing technologies
can be optimised to answer questions of long-standing
interest about differentiation and developmental processes.

4 METHODS

4.1 Simulating trees

Trees were simulated using the Gillespie algorithm starting
from a single cell. The Gillespie algorithm was developed
to simulate trajectories of stochastic equations describing
chemical reactions. In this paper, ‘reactions’ are either cell
division or cell death, and these two possibilities have a
constant probability given a reaction across the tree. Trees
were simulated with different death probabilities to cover a
range of biological situations e.g. probabilities of 0, 0.2 and
0.3 of death given a reaction.

To produce the tree with stem-like and differentiated-like
cells (Tree 4), the starting stem cell was initially expanded
using only self-renewal, and then differentiation of stem
cells and division and death of differentiated cells was intro-
duced. Differentiated cells divided at a rate 100 times higher
than stem cells as estimated for multipotent progenitor cells
versus stem cells in [47]. Table 1 shows the simulation used
to produce the trees used in the paper.

The simulated trees have around 150 living cells at the
final time point, which is towards the upper end of currently
published experimental work ( [21], [25], [44]). We expect the
throughput in terms of cell numbers to increase dramatically
in the near future, but in order to run reconstructions on
repeat simulations using the likelihood approaches, we keep
to this relatively low number of cells. We conservatively take
the average tree depth to be 10 divisions, and we expect that
in some experimental settings a greater number of divisions
may take place, accumulating more mutation making the re-
construction easier. The figures throughout this paper show
results for one specific tree (Fig. 1) to allow for comparison
across situations, but results for other trees showed very
similar trends and are shown in the Supporting Information.

4.2 Simulating mutations

To simulate changes in microsatellite lengths on the male X
chromosome, the initial stem cell was assigned a set of M
microsatellites which were then allowed to mutate with a
given probability, p, per cell division.

The initial length distribution of the microsatellites is
defined over repeat numbers 10-20, as [20] observe that

TABLE 1
Summary of trees for which results are presented

Tree P (death|reaction) Simulation
Tree 1 0.2 constant-rate birth-death process
Tree 2 0 constant-rate birth-death process
Tree 3 0.3 constant-rate birth-death process
Tree 4 0.5 birth-death process with two cell types

Description of Gillespie simulation of each tree for which results are
presented.

there is little variation in microsatellites with fewer than 10
repeats and we assume that it will be rare to observe mi-
crosatellites of repeat number greater than 20 in short NGS
reads. We model [20]’s counts of 10-20 repeat microsatellites
as a truncated geometric distribution, such that

P (L = l) =
0.7l∑20

m=10 0.7m
for l in 10, ..., 20.

The parameter of the geometric distribution was esti-
mated from the data in [20], and averaged across di, tri,
tetra and penta loci.

In the case of autosomal microsatellites, we group the
microsatellites into pairs, one for each of the maternal and
paternal alleles. The lengths of the maternal alleles were set
as above for the X chromosome. [20] found that around half
of the 10-20 repeat microsatellite loci were homozygous, so
for half the loci we set the initial paternal allele length equal
to the maternal length. We then modelled their distribution
of repeat number difference as a geometric distribution

P (D = d) = (1− p)d−1p for d in 1, 2, ...

with p = 0.4, again estimated from the data in [20].
For the majority of the paper, mutations were simu-

lated using a variant of the Multistep Mutation Model
(MMM). Given a mutation takes place, mutations increase
or decrease the length of a microsatellite with a symmetric
probability of 0.5, and can change length by one, two or
three repeats. The probability distribution for length change
is a truncated geometric distribution

P (K = k) =
q(1− q)k−1

1− (1− q)3
,

with q = 0.8. We also compare the reconstruction when
the mutations are simulated using two other models. The
Stepwise Mutation Model (SMM) is the simplest model,
with one probability of mutation, which is symmetric in
direction and can only cause a change of one repeat unit. The
Asymmetric Multistep Mutation Model (AMMM) relaxes
the assumption that length changes are symmetric, and we
take the probability that mutation increase the length of a
microsatellite to be 0.6, with the same truncated geometric
distribution used to model the size of the jump.

4.3 Simulating PCR stutter error and allele ambiguity
The high mutability which makes microsatellite loci useful
for reconstructing cell lineage also results in the acquisition
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of noise during PCR amplification. Known as PCR stutter, it
primarily results in signal at N-1 repeats for a true allele
with N repeats [48]. In general, amplification of normal
amounts of DNA results in stutter signal which is less than
15% of the allele peak, however when PCR amplification
starts from a very small amount of initial template, slippage
in early cycles can lead to larger stutter peaks and even
result in the wrong allele being called ( [49]). To model this,
based on the low template simulations in [49], we assume
a prior distribution for the stutter ratio, r, of uniform on
[0.1, 0.3]. Each microsatellite locus will therefore yield a pool
of NGS reads in which the ratio of reads with N repeats to
those with (N-1) repeats is (1-r)/r. We then make the simple
assumption that 10 reads are sampled from this pool at each
locus and compute the probability that we incorrectly call
the length as N-1 rather than N, i.e. the probability that the
number of reads with the stutter length, Nstutter, is greater
than the number of reads with the true length.

P (calling N − 1) = P (Nstutter > 5)

=

∫
P (Nstutter > 5|r)P (r)dr

=

∫ 0.3

0.1

10∑
k=6

(
10

k

)
rk(1− r)10−kdr

≈ 0.0024,

with the integration done numerically using the trapez-
ium rule. To add this source of noise in our simulations, we
simply output N-1 rather than N with a probability 0.0024
and do the reconstruction using these values rather than the
true values.

We also model the error due to the ambiguity of allelic
origin for autosomal microsatellites in NGS data. To under-
stand why autosomal microsatellite are more problematic
than X chromosome microsateliltes, it is helpful to consider
the form of the input to each reconstruction method, which
for autosomal data is a matrix of dimension ‘Number of
cells’ × ‘2 × Microsatellite number’. For each locus, the
two observed alleles need to be assigned to the appropriate
column in the matrix, and errors can occur here if the two
alleles have similar lengths and if there is no nearby het-
erozygous polymorphism to distinguish them. We assume
that practitioners would take a simple approach and assign
the shorter length at each locus to the maternal allele and
the longer to the paternal allele. We replicate this experi-
mental situation by simulating microsatellite mutations and
stutter error independently for each allele, and then, before
inference, allocating the smaller length of each pair to the
maternal allele and the larger to the paternal.

4.4 Measuring tree similarity

The most commonly used distance between trees is the
Robinson-Foulds (RF) distance ( [50]), which is based on
similarity of tree bipartitions. Cutting an internal tree branch
partitions the leaves into two sets, and the bipartition re-
sulting from cutting each internal branch is unique. The RF
distance counts the number of bipartitions observed in one
tree but not the other. The drawbacks to this type of distance

are that moving one leaf can change the distance consider-
ably if many clades are changed, and that the maximum
value depends on the size of the tree making interpretation
difficult.

To aid interpretation and enable comparisons across
trees, we defined a similarity score based on the idea of
the RF distance in which the percentage of bipartitions
present in the original tree also present in the reconstructed
tree is computed. If the two trees are identical, the score
will be 100% as all of the clades observed in the original
tree will also be in the reconstructed tree. Most of the
reconstruction methods output unrooted trees (other than
the distance-based clustering methods) and therefore both
the reconstructed trees and the true tree are unrooted (using
the ‘unroot’ function from the ape package in R ( [51]))
before the percentage of common bipartitions is computed.

Other tree comparison metrics, such as the tree align-
ment score ( [52]) or the Maximum Agreement Subtree (
[53]), are available and were also computed, but as the
trends were similar across approaches, and the percentage
approach is the easiest to interpret, we only show the
percentage of shared bipartitions score.

4.5 Comparing scenarios

In order to compare the reconstruction accuracy of various
scenarios, we concentrate primarily on the effect size rather
than on p-values. This reflects our primary interest in how
much each method or setting impacts our reconstruction,
but also the fact that, unlike an experimental setting where
money and time can be prohibitive, in a simulation study
one can always achieve a desired significance by increasing
the number of repeats ( [54], [55], [56]).

For each setting, generally one box-and-whisker in a
figure, we compute the sample mean, x̄, of the 60 inde-
pendent repeats and also a 95% confidence interval (CI)
of the mean assuming the data is normally distributed,
using x̄ ± 1.96σm, where σm is the standard error of the
mean. When we compare two scenarios, we compute the
effect size by subtracting the means, and then we find a
plausible range for the effect size by computing the largest
and smallest possible difference using the boundary values
of the confidence intervals, as suggested by [57].

4.6 Tree reconstruction

We use directly, or adapt for our purpose, several tools
from evolutionary phylogenetics designed to reconstruct
relationships between species. Neighbour joining (NJ) is a
distance-based clustering method which builds a tree using
a matrix of pairwise evolutionary distances, which can be
defined in a number of ways ( [32]). NJ iteratively selects a
taxon pair, builds a new subtree and agglomerates the pair,
greedily minimising a weighted tree length ( [58]). Distance-
based methods are quick and therefore suitable for problems
such as ours where we hope to reconstruct trees with large
numbers of cells.

Balanced minimum evolution (BME) is another distance-
based method for phylogeny reconstruction based on NJ (
[33]). BME minimises the same weighted tree length as NJ,
but it isn’t a greedy algorithm. Instead, the BME method
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rearranges the tree multiple times, computes the weighted
tree length, and outputs the tree with the minimum.

NJ ( [32]) and BME ( [33]) were implemented in the R
software suite ( [59]) using the Phangorn ( [60]) and Ape
( [51]) packages respectively. In the ‘fastme.bal’ function
used to implement BME, all rearrangement options were
set to TRUE. Both methods take as input a distance matrix
which was computed in advance using either Manhattan
(L1), Euclidean (L2) or cosine distance. The cosine distance
between two vectors a and b was computed

1− a.b

||a|| ||b||
,

where ||a|| is the Euclidean norm of the vector a.
Maximum Parsimony selects the tree which minimises

the number of mutations required to explain the data. For a
given tree, a parsimony score which counts the number of
mutational changes required is computed (computationally
fast) and then the space of possible trees is searched to
find the tree with the lowest score (computationally slow).
The tree space can only be exhaustively searched for very
small trees, and therefore, the normal strategy is to input a
‘sensible’ starting tree e.g. the output of a NJ algorithm, and
then search for trees close by.

Maximum Parsimony was implemented in PAUP* (
[35]). Ordered characters were used which means that when
the parsimony score is computed for any given tree, it is
assumed that microsatellite length changes must proceed
progressively through the numbered repeats (similar to
the assumptions of the Stepwise Mutation Model). The
following parameters were set when running the inference:
‘condense collapse = NO’ (branches with zero length not
collapsed so as to output a binary tree), ‘addseq = random’
(the starting tree was build using a random sequence of
addition of cells), ‘nreps = 5’ (5 runs with different random
starting trees), ‘swap = tbr’ (Tree Bisection and Reconnection
used to rearrange the tree each iteration) and ‘rearrlimit =
106’ (106 tree rearrangements tried).

Maximum Likelihood and Bayesian methods require
a probabilistic model of the process which produced the
pattern of microsatellite lengths; the tree itself is a parameter
in the model. These ‘state-of-the-art’ methods allow knowl-
edge of the mutation process to be incorporated into the
inference process, and are very flexible as many different
models can be formulated. However, as with Maximum
Parsimony, these methods require a lot of computation as
it is generally not possible to maximise the likelihood (or
posterior in the Bayesian case) analytically across all the
possible trees, and so a heuristic search in tree space is
required.

The likelihood approaches were implemented in the
RevBayes software ( [28], [61]) for Bayesian phylogenetic in-
ference. Microsatellite mutation is modelled as a continuous
time Markov model characterised by its instantaneous-rate
matrix. We assume that the rate matrix, Q, is symmetric and
that the transition rates, α, β and γ, between numbers of
repeats depend only on the magnitude of the change

Q =

∗ α β γ
α ∗ α β
β α ∗ α
γ β α ∗

 .
We set priors on each of the transition rates of an ex-

ponential distribution with a mean of 1. For Trees 1-3, the
prior for the tree is a constant-rate birth-death process with
the turnover and diversification given lognormal priors as
described in Chapter 12 of the full RevBayes manual (Basic
Diversification Rate Estimation http://revbayes.github.io/
tutorials.html). Following these suggestions, the prior mean
for the diversification and turnover rates was set as the
number of observed cells and the standard deviation was
set to cover two orders of magnitude.

Markov chain Monte Carlo was used to sample trees
and parameter values from the posterior distributions. To
enable repeat simulations to be carried out, a relatively low
number of MCMC iterations were used in simulations: 2000
burn-in iterations during which the proposal distributions
were tuned followed by 8000 samples. This low number of
iterations was chosen to allow the inference to be repeated
60 times for each setting. The tree with the highest likelihood
was used as the estimate of the Maximum Likelihood tree,
and the tree with the maximum posterior probability was
used as the Bayesian tree.
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