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ABSTRACT 1 

Electronic polarization effects have been suggested to play an important role in proton binding to titratable 2 

residues in proteins. In this work, we describe a new computational method for pKa calculations, using 3 

Monte Carlo (MC) simulations to sample protein protonation states with the Drude polarizable force field 4 

and Poisson-Boltzmann (PB) continuum electrostatic solvent model. While the most populated protonation 5 

states at the selected pH, corresponding to residues that are half-protonated at that pH, are sampled using 6 

the exact relative free energies computed with Drude particles optimized in the field of the PB implicit 7 

solvation model, we introduce an approximation for the protein polarization of low-populated protonation 8 

states to reduce the computational cost. The highly populated protonation states used to compute the 9 

polarization and pKa's are then iteratively improved until convergence. It is shown that for lysozyme, when 10 

considering 9 of the 18 titratable residues, the new method converged within two iterations with computed 11 

pKa's differing only by 0.02 pH units from pKa's estimated with the exact approach. Application of the 12 

method to predict pKa’s of 94 titratable sidechains in 8 proteins shows the Drude-PB model to produce 13 

physically more correct results as compared to the additive CHARMM36 (C36) force field (FF). With a 14 

dielectric constant of two assigned to the protein interior the Root Mean Square (RMS) deviation between 15 

computed and experimental pKa's is 2.07 and 3.19 pH units with the Drude and C36 models, respectively, 16 

and the RMS deviation using the Drude-PB model is relatively insensitive to the choice of the internal 17 

dielectric constant in contrast to the additive C36 model. At the higher internal dielectric constant of 20, 18 

pKa's computed with the additive C36 model converge to the results obtained with the Drude polarizable 19 

force field, indicating the need to artificially overestimate electrostatic screening in a nonphysical way with 20 

the additive FF. In addition, inclusion of both syn and anti orientations of the proton in the neutral state of 21 

acidic groups is shown to yield improved agreement with experiment. The present work, which is the first 22 

example of the use of a polarizable model for the prediction of pKa’s in proteins, shows that the use of a 23 

polarizable model represents a more physically correct model for the treatment of electrostatic contributions 24 

to pKa shifts in proteins. 25 

 26 

 27 

 28 

 29 

 30 
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INTRODUCTION 1 

 Titratable sites are abundant in proteins1 and play an essential role in the structure, function and 2 

stability.2 Thus, it is essential to reliably predict proton dissociation constants, pKa's, and to understand 3 

factors that modulate them.3 A large multitude of methods to predict proton binding affinities in proteins 4 

have been developed over the last decades.4 However, the accurate prediction of pKa's of protein titratable 5 

sites is still a major challenge and an active area of research.4b Accurate pKa prediction faces several 6 

challenges including the need to consider protein conformational changes associated with the changes in 7 

protonation states, solvent contributions and interactions between titratable sites, which depend on each 8 

particular configuration of bound protons. Also contributing is the complex electronic response of the 9 

heterogeneous protein/solvent environment to changes in protonation states.5 10 

 A number of pKa prediction methods rely on continuum dielectric models to describe the solvent 11 

degrees of freedom.2a, 6 In these methods, frequently the protein in solution is treated using the continuum 12 

dielectric approximation based on the Poisson or Poisson-Boltzmann (PB) model7 or generalized Born (GB) 13 

model in the context of an additive force field, with the GB model having the advantage of being more 14 

computationally efficient.8 Bashford and Karplus were first to develop and apply the PB model using 15 

detailed 3D structural information for pKa calculations and taking into account interactions between 16 

titratable sites as defined by a particular arrangement of bound protons.9 17 

 The number of possible protonation states of the protein grows exponentially with the number of 18 

titratable sites. The exact calculation of all accessible protonation states is not feasible for proteins 19 

containing a large number of titratable residues and different approximations have been introduced to 20 

overcome this challenge.7b, 9-10 The early method of Tanford & Roxby introduced an approximation in the 21 

energy function which effectively reduces an ensemble of protonation micro-states to one.10b In this method 22 

a titratable residue interacts with protonated and deprotonated forms of all other residues weighted based 23 

on their pKa's and the targeted pH value. However, it was shown that this approximation is inaccurate for 24 

strongly interacting sites.10b, 10c Later methods include different site-reduction methods9-10, 10c and hybrid 25 

methods.11 With site-reduction methods, most of configurations of bound protons are eliminated, for 26 

example based on precalculated occupancies or distances between titratable sites.10a Arguably, a more 27 

precise method is to perform Monte-Carlo (MC) simulations since, in principle, all protonation states can 28 

be sampled.7b With additional approximations, MC methods can be used together with a limited protein 29 

flexibility, for example, allowing for discrete side-chain conformational sampling with a rigid protein 30 

backbone.7c, 8a 31 
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 For computational efficiency, all these methods normally rely on the ability to decompose the free 1 

energy of the protein in a particular protonation state into energy contributions that depend only on the 2 

protonation states of individual residues or pairs of residues.10c This is possible as the field or potential 3 

determined by the Poisson equation is additive.6a The energy components can be precomputed and stored 4 

for subsequent free energy calculations performed during sampling of protonation states. However, with 5 

polarizable force fields the free energy cannot be represented in the pair-wise form, since the electronic 6 

state of the protein and, therefore, the free energy is defined by the protonation state of all titratable sites. 7 

To overcome this an effective approximation is needed to implement a polarizable model, such as the 8 

Drude-PB model, in constant-pH Monte Carlo simulations. 9 

 In this work, we present a new computational method to resolve the need to explicitly treat the 10 

polarization of a protein during pKa calculations. While the calculation of pKa’s for small molecules with a 11 

polarizable force field has been performed previously,12 the present study represents their first application 12 

towards the estimation of pKa’s in proteins. The approach is based on our previous study where we 13 

implemented and parametrized an implicit PB solvent model in conjunction with the Drude force field; 14 

similar work has been done with the AMOEBA polarizable force field.13 In the new method, the most 15 

populated protonation states at the target pH, as defined by those residues that titrate in the region of the 16 

target pH, are sampled using the relative free energies that include a self-consistent field (SCF) calculation 17 

of the Drude particles in the field of the PB implicit solvation model. The states used to compute the 18 

electronic polarization and pKa's are iteratively improved until convergence. In addition, to facilitate the 19 

calculations, the interactions between titrating groups are calculated for a single electronic structure for 20 

each ionization state of each residue, with that approximation explicitly validated. The model was tested to 21 

predict the pKa’s of 94 titratable sidechains in 8 proteins for which experimental pKa's are available. 22 

 23 

METHODS 24 

Classical electrostatic pKa calculations with additive force fields 25 

The classical theory of pKa calculations of a titratable residue group in the protein environment 26 

using the pKa of the model compound in solvent is based on the thermodynamic cycle shown in Figure 1.  27 
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 1 

Figure 1. Thermodynamic cycle for proton binding. RH and R represent protonated and deprotonated 2 

forms of the residue, respectively, in the solvent environment as a model compound (upper) or in the 3 

protein environment (lower). The superscripts are used to highlight that the polarization of residue R/RH 4 

is different in the protein and solvent. With the additive force fields these polarizations are the same. 5 

It is assumed that the proton binding affinity difference of a titratable residue in the protein and a model 6 

compound in solvent is only due to the electrostatic interactions. For a protein containing one titratable 7 

residue: 8 

p𝐾a
protein

= p𝐾a
model + ∆∆𝐺/ln(10)/𝑅𝑇,  [Eq 1] 9 

where p𝐾a
model is the pKa of a model compound in solvent; R is the gas constant; T the temperature and 10 

∆∆𝐺 is a double difference of the electrostatic free energy associated with the residue being in the protein 11 

environment. It is further assumed that the electrostatic field is governed by the macroscopic Poisson (or 12 

Poisson-Boltzmann) equation: 13 

∇𝜀(�̅�)∇𝜑(�̅�) = −4𝜋𝜌(�̅�),  [Eq 2] 14 

where 𝜑 is the electrostatic potential, 𝜌 is the charge density and 𝜀 is the dielectric constant. This equation 15 

can be numerically solved, for example on a cubic lattice by finite difference methods, to give the charging 16 

free energy, 𝑊, of a set of protein atomic charges: 17 

𝑊 =
1

2
∑ 𝑄𝑖

𝑃𝜑(�̅�𝑖)𝑖  ,  [Eq 3] 18 

where the summation is done over the protein atomic charges, 𝑄𝑖
𝑃; 𝜑(�̅�𝑖) is the electrostatic potential that 19 

satisfies Equation 2 and computed at the position �̅�𝑖 of the atomic charge 𝑄𝑖
𝑃. 20 

 For a macromolecule containing more than one titratable site, the protonation state of a residue, 𝜇, 21 

is affected by the charge state of all other titratable residues. In this case, the fraction of molecules, 𝜃𝜇, 22 
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protonated at site µ at a particular pH value is given by the Boltzmann average of all microstates where this 1 

residue is protonated: 2 

〈𝜃𝜇〉 = (∑ 𝑥𝑖,𝜇 exp(−∆𝐺(𝑥�̅�, pH)/𝑅𝑇){�̅�} )/(∑ exp (−∆𝐺(𝑥�̅�, pH)/𝑅𝑇){�̅�} ),  [Eq 4] 3 

where the summation is done over all possible protonation microstates {�̅�}; 𝑥�̅� is a vector that defines 4 

protonation microstate i; 𝑥𝑖,𝜇 is a 𝜇-th element of the vector 𝑥�̅� and is 1 or 0 if residue 𝜇 is protonated or 5 

deprotonated, respectively, in the microstate i; ∆𝐺(𝑥�̅�, pH) is the relative free energy of protonation of 6 

microstate 𝑥�̅�, and within the context of additive force fields can be expressed as follows: 7 

∆𝐺(𝑥�̅�, pH) = 𝐸(𝑥�̅�, pH ) + ∑ (∆𝐺Born,𝜇(𝑥𝑖,𝜇) + ∆𝐺back,𝜇(𝑥𝑖,𝜇))𝜇 +
1

2
∑ 𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈)𝜇≠𝜈 , [Eq 5] 8 

where ∆𝐺𝐵𝑜𝑟𝑛,𝜇 is the relative Born energy of a titratable residue located in the protein environment and 9 

related to its desolvation electrostatic free energy; ∆𝐺back,𝜇 is due to interactions with the background 10 

charges on non-titratable residues; 𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈) is electrostatic interaction energy between two titratable 11 

residues µ and ν being in protonation states 𝑥𝑖,𝜇 and 𝑥𝑖,𝜈 respectively. 𝐸(𝑥�̅�, pH ) is a contribution from 12 

solvent pH and reference model compounds: 13 

𝐸(𝑥�̅�, pH) = ∑ 𝐸(𝑥𝑖,𝜇 , pH)𝜇 = ∑ (𝑥𝑖,𝜇 𝑅𝑇 ln(10) (pH − pK𝑎,𝜇
model) − 〈𝐸𝜇

model(𝑥𝑖,𝜇)〉)𝜇  , [Eq 6] 14 

where 〈𝐸𝜇
model(𝑥𝑖,𝜇)〉 is the average electrostatic free energy of the reference model compound for residue 15 

𝜇 being in protonation form 𝑥𝑖,𝜇 in solvent computed using the same force field model. For the convention, 16 

in summations we will use letters from the Latin alphabet to designate protein particles (atoms, Drudes, 17 

lone-pairs) and protein microstates, while Greek letters to denote residues in the protein. The 〈𝜃𝜇〉 are 18 

evaluated at a discrete number of pH values to obtain a titration curve for site µ. p𝐾a,𝜇 of a titratable residue 19 

µ in the protein is then defined as the pH value where the titratable residue is half-protonated. 20 

 In practice calculations of titration curves directly using Equation 4 are limited to macromolecules 21 

containing only a few titratable residues since it requires sampling of a large number of protonation 22 

microstates that grows exponentially (2N) with the number of titratable residues. To solve this problem MC 23 

simulations are performed to sample only relevant protonation states, while high-energy states that do not 24 

contribute significantly in Equation 4 are not visited. To perform MC simulations, energies appearing in 25 

Equation 5 must be precomputed and stored in the first step. Relative free energy of the protein in a 26 

particular protonation state is then recovered from the energy matrices as a simple sum of energy terms in 27 

the MC simulations. 28 
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The Poisson-Boltzmann method for pKa calculations with a polarizable force field and multiple 1 

titratable sites 2 

 In the case of polarizable force fields, ∆𝐺Born,𝜇, ∆𝐺back,𝜇 and 𝑊𝜇𝜈 in Equation 5 depend on the 3 

electronic state, or polarization, of all protein atoms. In particular, with the Drude force field ∆𝐺𝐵𝑜𝑟𝑛,𝜇, 4 

∆𝐺back,𝜇 and 𝑊𝜇𝜈 are functions of the position of the Drudes on all atoms including titratable residues. In 5 

turn, the positions of all Drudes, including on protein backbone atoms, depend on the protonation states of 6 

all residues. In the case of polarizable force fields the relative free energy ∆𝐺(�̅�, pH) contains additional 7 

contributions. In the context of the additive force field, these contributions do not depend on the protein 8 

protonation state �̅�, and thus do not contribute in Equation 5. These energy terms include (i) a contribution 9 

from interactions between background charges with background charges, since polarization of background 10 

atoms depends on the protonation state; (ii) the Born energy of background atoms, which now depends on 11 

the polarization affected by the protonation state of all residues; and (iii) the polarization work needed to 12 

polarize titratable and non-titratable groups of atoms from the polarization in solvent to the polarization in 13 

a protein. We will use 𝐺BB(�̅�) to denote the sum of the first two terms (i) and (ii), and the term (iii) will be 14 

included in 𝐺BB(�̅�), 𝐺Born,𝜇(�̅�), and 𝐺back,𝜇(�̅�). The term (iii) is computed within the Drude force field as 15 

the bond energy contributed by the atomic core-Drude particle bonds (i.e. self-polarization energy term or 16 

polarization work), which is different due to the different polarization in solvent and protein as well as 17 

being coupled to the protein protonation state. Thus, the total relative free energy of a microstate within the 18 

Drude polarizable force field is calculated using the following formula: 19 

∆𝐺(�̅�, pH) = 𝐸(�̅�, pH) + ∆𝐺BB(�̅�) + ∑ (∆𝐺Born,𝜇(𝑥𝜇 , �̅�) + ∆𝐺back,𝜇(𝑥𝜇 , �̅�))𝜇 +
1

2
∑ 𝑊𝜇𝜈(𝑥𝜇 , 𝑥𝜈 , �̅�)𝜇≠𝜈 , 20 

[Eq 7] 21 

where �̅� is, as above, a vector with element 𝑥𝜇 defining the protonation state of residue µ; and the argument 22 

�̅� in functions 𝐺Born,𝜇(𝑥𝜇 , �̅�), 𝐺back,𝜇(𝑥𝜇 , �̅�) and 𝑊𝜇𝜈(𝑥𝜇 , 𝑥𝜈 , �̅�) is repeated to emphasize that in contrast 23 

to Equation 5, these terms depend on the protonation state of all residues including titratable residues µ and 24 

ν. 25 

 In contrast to additive force fields, 𝐺(�̅�, pH) given by Equation 7 is not a residue-pairwise function. 26 

This means that the free energy of all protein protonation microstates cannot readily be recovered in MC 27 

simulations. Accordingly, in what follows, we present an approximate MC method suitable for the 28 

polarizable Drude force field in the context of a constant pH formalism. We first note that to define p𝐾a,1/2 29 

of a titratable residue only the point on the titration curve where pH = p𝐾a,1/2 needs to be identified. Thus, 30 

the approach just needs to reproduce exactly the free energies of microstates highly populated at 31 
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pH~ p𝐾a,1/2 that contribute significantly in Equation 4. In the method presented later in this section, free 1 

energies of the most populated states for the protonated and deprotonated forms of a residue are computed 2 

exactly using minimization of the position of the Drudes particles (i.e. performing the polarization SCF 3 

calculation) in the field of the implicit solvent. Thus, polarization effects for the most populated microstates 4 

are taken into account exactly, while free energies of less populated microstates perturbed by the 5 

polarization response to the change of the protonation state are computed less accurately during the MC 6 

simulation. To calculate ∆𝐺BB(�̅�), ∆𝐺Born,𝜇(𝑥𝜇 , �̅�), ∆𝐺back,𝜇(𝑥𝜇 , �̅�) and 𝑊𝜇𝜈(𝑥𝜇 , 𝑥𝜈 , �̅�) in Equation 7 the 7 

position of all Drude particles should be defined. In the method, the highly populated protonation states at 8 

pH = p𝐾a,𝜇 are used to calculate these energies for the protonated and deprotonated forms of residue µ. 9 

pKa calculations with the Drude force field and Poisson-Boltzmann model 10 

In this section the calculation protocol of the new method is given. A flow chart of the computational 11 

protocol is presented in Scheme 1. Protonation states for all residues are predefined in the initial calculation 12 

of energy terms appearing in Equation 7, with titratable residues assigned neutral protonation states. These 13 

predefined states will be refined iteratively in subsequent steps. The method starts with molecular 14 

mechanics (MM) and Poisson-Boltzmann calculations of free energies needed to perform MC simulations: 15 

Step 1. Calculate protein free energies for both ionization states of all titratable residue with the 16 

remaining titratable residues assigned neutral protonation states. For each protonation state of titratable 17 

residue µ, neutral protonation states are used for all other titratable residues giving the vector defining the 18 

protonation microstate �̅�𝑖. These protonation microstates �̅�𝑖 are used to optimize the Drude particles. The 19 

free energies of the protein in each of these protonation microstates is calculated as 𝐺𝑖 = 𝐺(�̅�𝑖), based on 20 

the system MM energy and the PB implicit solvation energy, with these energies including the polarization 21 

energy following the Drude SCF calculation. 22 

Step 2. Interaction free energies between titratable residues, which include MM electrostatic 23 

interactions and the solvent contribution, are calculated. This involves individually calculating the 24 

electrostatic potential for each titratable residue 𝜇, by zeroing the charges on all atoms in the protein 25 

(including lone pairs and Drude particles) except those on the residue 𝜇. The positions of Drude particles 26 

optimized in step 1 and corresponding to selected protein protonation microstates for residues 𝜇 and ν are 27 

used, so no optimization of Drude particles is needed at this step. To avoid the problem of artificial 28 

contributions arising when interaction energies are computed between neighboring residues due to 1,2 and 29 

1,3 dipole-dipole interactions included in the Drude model, the contribution to the interaction energy from 30 

solvent is computed using the PB model and combined with the MM energy to obtain the total interaction 31 

free energy between residues. The PB equation is solved to obtain the electrostatic potential 𝜑𝑅𝜇(𝜀𝑒𝑥𝑡 =32 
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𝜀𝑤 , 𝜀𝑖𝑛𝑡 = 𝜀𝑝), due to the charges of residue 𝜇 being in the protonation state 𝑥𝜇. Calculations are repeated 1 

using the protein dielectric constant for the protein exterior to obtain the electrostatic potential 𝜑𝑅𝜇(𝜀𝑒𝑥𝑡 =2 

𝜀𝑝, 𝜀𝑖𝑛𝑡 = 𝜀𝑝). The electrostatic potential is used to calculate the electrostatic interaction 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
 between 3 

the titratable residues µ and ν being in protonation state 𝑥𝜇 and 𝑥𝜈, respectively, according to 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
=4 

1/2 ∑ 𝑞𝑖𝑞𝑗/𝜀𝑝/𝑟𝑖𝑗𝑖𝑗 + ∑ 𝑞𝑗𝑗 (𝜑𝑅𝜇𝑗
(𝜀𝑒𝑥𝑡 = 𝜀𝑤 , 𝜀𝑖𝑛𝑡 = 𝜀𝑝)- 𝜑𝑅𝜇𝑗

(𝜀𝑒𝑥𝑡 = 𝜀𝑝, 𝜀𝑖𝑛𝑡 = 𝜀𝑝)), where 𝑞𝑖 and 𝑞𝑗 5 

are charges of residues 𝜇 and ν, respectively. Note that in principle 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
≠ 𝑊𝜈𝜇

𝑥𝜈,𝑥𝜇∗
, and these 6 

interaction energies are different from those appearing in Equation 7 since the polarization used for residues 7 

µ and ν corresponds to different protein protonation microstates. We use an asterisk to distinguish these 8 

energies from the interaction energies in Equation 7. 9 

Step 3. For each free energy, 𝐺𝑖 computed in step 1 it is possible to write Equation 7 as follows: 10 

𝐺𝑖 = 𝐺BB(�̅�𝑖) + ∑ (∆𝐺Born,𝜇(𝑥𝑖,𝜇 , �̅�𝑖) + ∆𝐺back,𝜇(𝑥𝑖,𝜇 , �̅�𝑖))𝜇 +
1

2
∑ 𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈 , �̅�𝑖)𝜇≠𝜈  , [Eq. 8]  11 

The latter expression does not form a closed system of linear equations relative to the terms 12 

∆𝐺Born/back,𝜇(𝑥𝑖,𝜇 , �̅�𝑖) = ∆𝐺Born,𝜇(𝑥𝑖,𝜇 , �̅�𝑖) + ∆𝐺back,𝜇(𝑥𝑖,𝜇 , �̅�𝑖), since the latter terms are different for 13 

different protonation microstates �̅�𝑖. To recover 𝐺𝑖 later in MC simulations, instead of using Equation 8 we 14 

introduce a system of linear equations: 15 

∑ 𝐺
Born/back,𝜇

𝑥𝜇
1

𝜇

+ 𝐺BB = 𝐺1 −
1

2
∑ 𝑊𝜇𝜈

𝑥𝜇
1,𝑥𝜈

1∗

𝜇≠𝜈

 16 

∑ 𝐺
Born/back,𝜇

𝑥𝜇
2

𝜇

+ 𝐺BB = 𝐺2 −
1

2
∑ 𝑊𝜇𝜈

𝑥𝜇
2,𝑥𝜈

2∗

𝜇≠𝜈

 18 

 … [Eq 9] 17 

where 𝐺BB is again due to interactions between background atoms with themselves, but invariant relative 19 

to the protonation state of titratable residues; 𝑊𝜇𝜈

𝑥𝜇
1,𝑥𝜈

1∗
is the interaction energy between residues 𝜇 and 𝜈 20 

computed in step 2; 𝐺
Born/back,𝜇

𝑥𝜇
𝑖

 and 𝐺BB can be regarded as unknowns that satisfy the system of equations. 21 

The right hand expressions in the system are calculated in steps 1 and 2. The system of linear equations can 22 

be resolved to find all 𝐺
Born/back,𝜇

𝑥𝜇
𝑖

 and 𝐺BB. 23 

We note that 𝐺
Born/back,𝜇

𝑥𝜇
𝑖

 are not calculated directly in step 1 as was performed in the original constant-24 

pH MC method. This is due to the need to calculate free energies from step 1 in the MC simulations as 25 
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required to identify the most likely protonation microstates for each titratable residue as a function of pH 1 

when residues titrate (at pH = p𝐾a,𝜇) rather than 𝐺
Born/back,𝜇

𝑥𝜇
𝑖

 energies. In other words, G1, G2 … Gn are 2 

used in MC simulations to sample probabilities of protonated and deprotonated states and, thus are required 3 

to calculate the titration curves. It should be emphasized that in MC simulations with the Drude force field 4 

it is prohibitively expensive to calculate the free energies of all protein microstates in contrast to the 5 

calculations with additive force fields; instead, we recover free energies of the most important states using 6 

the above method. 7 

It may happen that the most likely protein microstates are identical for protonation states of different 8 

residues at the pH where they are half-protonated. In this case, equations for the protonation states of these 9 

residues are identical in the system of equations 9, and the system is not complete as required to define 10 

𝐺
Born/back,𝜇

𝑥𝜇
𝑖

 and 𝐺BB. To complete the system we introduce additional equations in the free energy Gl 11 

computed with zero charges on all titratable residues except residue µ. The additional equation added to the 12 

system of equations 9 is: 𝐺
Born/back,𝜇

𝑥𝜇
1

+  𝐺BB = 𝐺𝑙. 13 

Step 4. Perform MC simulations. During the MC simulations at the pH corresponding to the p𝐾a,𝜗 of 14 

residue θ, the free energy of microstates is computed according to: 15 

𝐺(�̅�) = 𝐺BB + ∑ 𝐺
Born/back,𝜇

𝑥𝜇
𝜇 +

1

2
∑ 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
𝜇≠𝜈  [Eq. 10] 16 

In Equation 10, 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
 are the same energies used in the system of equations 9 and 𝐺

Born/back,𝜇

𝑥𝜇
 and 𝐺BB 17 

are the solutions. For the most populated microstate �̅�𝑖, selected in Step 1, this equation should give exactly 18 

𝐺𝑖. Thus, this approximation allows the free energies to be recovered in the MC simulations computed with 19 

the correct polarization (e.g. SCF Drudes). It should be noted that 𝐺BB is a constant for all microstates and 20 

thus, cancels out when relative free energies of microstates are computed in the MC simulations. The 21 

dependence of 𝐺BB(�̅�) on the protonation state does not appear in Equation 10 explicitly. However, for the 22 

most populated states it is included in 𝐺
Born/back,𝜇

𝑥𝜇
, as they are solutions of the system of equations 9. 23 

MC simulations are performed in the range of pH values between -10 to 30 with a step of 0.5 pH unit 24 

to obtain a titration curve for each titratable residue. The contribution 𝐸(�̅�, pH) computed by Equation 6 is 25 

added to Equation 10 to obtain relative free energies of protein microstates. During the MC simulations one 26 

randomly selected titratable residue protonation state is changed with acceptance or rejection of that change 27 

based on the Metropolis criteria. In 50% of the MC steps a second residue is allowed to change its 28 

protonation state. In the present study, 100,000 MC steps were performed for each titratable residue in the 29 
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system (eg. with 20 titratable residues 2·106 MC steps are performed). To test the convergence of MC 1 

simulations the number of MC steps was doubled, but the change in relative populations of protonated and 2 

deprotonated forms was less than 10-3 observed for residues in eight proteins. Finally, using the titration 3 

curves the set of p𝐾a,𝜇 values of all titratable residues can be defined based on the pH at which they are 4 

half-protonated.  5 

Step 5. MC simulations for each titratable residue µ and each of its protonation state 𝑥𝜇 are repeated at 6 

pH = p𝐾a,𝜇 determined in the previous step. In contrast to the MC simulations in step 4, the targeted 7 

titratable residue µ is fixed in the protonation state 𝑥𝜇 to find the most likely protonation states for all other 8 

titratable residues. Note that the most likely protonation states may be different for the protonated and 9 

deprotonated forms of the same residue µ. The same number of MC steps was performed as in step 4.  10 

Step 6. Steps 1-5 are repeated with the most likely states of each titratable residue obtained from step 11 

5. These iterations are required since initially in step 1 the most likely protonation states are not known but 12 

rather estimated based the neutral protonation state. Iterations over steps 1-5 are performed until the 13 

calculated p𝐾a,𝜇 of all the titratable residues and the states computed in step 5 converge. Overall, the 14 

protocol has two types of self-consistent iterations: (i) in step 1 the position of the Drudes and the PB 15 

solvent polarization are fully optimized and (ii) globally, steps 1-6 are repeated to converge the individual 16 

titratable residue p𝐾a,𝜇 values. 17 

 18 

 19 
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Scheme 1. Flow Chart of the computations performed with the Drude-PB method. Steps 1-5 are repeated until p𝐾a,𝜇 1 
and microstates converge. Initial microstates are updated using the computed microstates at the end of the previous 2 
iteration. 3 

To summarize, using this method the polarization effects are included without any approximation in 4 

free energies for the most populated protonation microstates of a protein when residues titrate (at pH =5 

p𝐾a,𝜇). Within this method, it is achieved at an additional computational cost to perform multiple iterations. 6 

It should be noted that polarization of less populated states is still incorrectly treated, since a surrogate of 7 

𝐺
Born/back,𝜇

𝑥𝜇
 and 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈∗
 corresponding to protonation states that differ from that of the less populated 8 

states is used. The latter error is expected to be small, since those microstates make small contributions to 9 

the titration curves at pH equal p𝐾a,𝜇. Notice, that in principle, one could consider exact free energies for a 10 

limited number of less occupied microstates in Equation 4, however, in this work we limit to one state per 11 

protonation and rotameric state of a residue. 12 

Proton binding sites and protein structure relaxation 13 

In the present study, only titratable protons are allowed to change their positions to preserve the 14 

dielectric boundary. Otherwise, the PB equation would need to be solved for each 𝑊𝜇𝜈 element, which is 15 

prohibitively expensive. It should be noted that different approximations have been proposed with the 16 

sacrifice of the exact protein boundary to allow limited flexibility of sidechains8a, 14, which will be explored 17 

in future studies with the Drude force field.  18 

In the case of the acidic aspartate and glutamate residues, we consider five protonation states: one 19 

ionized negative state and four neutral states with the proton on either oxygen and in the syn and anti 20 

orientations. Two rotamers were included for neutral tyrosine that differ by the orientation of the hydroxyl 21 

group, and three rotamers for the neutral lysine, distinguished by the dissociation of amino protons. 22 

Histidines had two possible neutral tautomers: protonated on Nε (pKa of the model compound 7.0) and Nδ 23 

(pKa of the model compound 6.5). In the implementation, the neutral tautomers of histidines are simply 24 

treated as "rotamers" with a different contribution to the pH dependent term due to the pKa difference of 25 

the Nε and Nδ sites. The total number of rotamers for neutral and ionized forms for titratable residues was 26 

chosen to be identical to avoid the problem of artificial biasing in MC simulations of protonation forms 27 

having a larger number of rotamers. 28 

Reference state 29 

Following the thermodynamic cycle shown in Figure 1, to calculate the protonation free energy in 30 

the protein the free energy of the model compound in solution, called the reference free energy, is 31 

subtracted. This free energy is estimated using the same force field model, which is needed for the 32 

cancelation of artefacts due to the employment of the empirical force field model. The force field term of 33 
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the reference free energy is estimated as the free energy of the model compound in solution averaged over 1 

all possible compound conformations. In this work, we neglect the contribution from the bonded terms not 2 

associated with the Drude particles, since a single conformation for the protein calculations is used. Thus, 3 

the reference free energy of a model compound with a titratable residue x in solvent is: 4 

𝐺𝑥
ref = 𝐸elec + 𝐸bond

Drude + 𝐺solv
PB , [Eq 11] 5 

where 𝐸𝑒𝑙𝑒𝑐 is the intramolecular electrostatic energy computed with the same dielectric constant 𝜀𝑝, which 6 

is used to calculate the solvation free energy  7 

𝐺solv
PB = 𝐺𝜀𝑒𝑥𝑡=80

PB − 𝐺𝜀𝑒𝑥𝑡=𝜀𝑝

PB . The same dielectric constant is also used for the protein calculations. 𝐸bond
Drude 8 

is the bond energy from the atomic core-Drude particle bonds (i.e. self-polarization energy term or 9 

polarization work).15 N-acetyl-x-N-methylamide with the corresponding titratable residue x was used as the 10 

model compound in solution. In this compound, charges involved in all 1-4 electrostatic interactions, 11 

including Drudes are identical to those charges in the protein system, leading to the cancelation of artefacts 12 

arising from the employment of the force field. To obtain pKa 's in the protein, the computed pKa shifts due 13 

to the protein environment were added to p𝐾a
model's given in Table S2. The experimental pKa shifts were 14 

computed as the difference between the pKa in the protein environment and the pKa of the corresponding 15 

model compound. 16 

To obtain average free energies in solvent we performed molecular dynamics (MD) simulations of 17 

the N-acetyl-x-N-methylamides immersed in a cubic solvent box. The minimum distance between the 18 

compound atoms and the edge of the system was 12 Å. Periodic boundary conditions were assumed. All 19 

long range electrostatic interactions were computed efficiently by the particle mesh Ewald method16 using 20 

a real space cutoff of 12 Å. The Lennard-Jones term was evaluated out to 12 Å with a force switch 21 

smoothing function from 10 to 12 Å. MD simulations were performed at a constant temperature of 298 K 22 

and pressure of 1 ATM after 20 ps of thermalization. During MD simulations the center of mass of the 23 

model compound atoms was weakly harmonically restrained to the origin of the system with a force 24 

constant of 1.0 kcal·mol-1·Å-2. For the model compounds the CHARMM36 (C36)17 and Drude18 protein 25 

force fields were used along with the CHARMM TIP3P19 and SWM4-NDP20 model for water for the 26 

additive and polarizable calculations, respectively. Simulations were done with the NAMD program.21 50 27 

nanoseconds of MD were performed at constant temperature and pressure for the compound containing 28 

each titratable residues. To calculate PB free energies, structures from the MD simulations were saved every 29 

100 ps. The final PB free energies were averaged over these structures. The convergence was confirmed by 30 

dividing the data into five blocks corresponding to 10 ns MD simulations and computing the standard 31 

deviation, which was lower than 0.1 kcal·mol-1 in all cases. 32 
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For the protonated form of the carboxylic acids, Asp and Glu, the syn and anti positions of the OH 1 

proton were simulated separately. The reference energy of the protonated form of Asp and Glu was 2 

Boltzmann-averaged over the free energies of the two forms. 3 

Internal dielectric constant 4 

As demonstrated and discussed in the work of Warshel et al, the dielectric constant ascribed to the 5 

protein medium is meant to represent physical contributions that are not considered explicitly.22 In the early 6 

model of Tanford and Roxby a protein was treated as a medium with a dielectric constant 𝜀𝑖𝑛𝑡 = 4 and 7 

solvent with a dielectric constant of 80, the experimental value. The protein dielectric constant of 4 is larger 8 

than the electronic polarizability estimate of 2, presumably to take into account the contribution due to the 9 

fluctuations of protein polar groups about their equilibrium positions.9, 23 In the model of Tanford and 10 

Roxby, the uniform continuum medium representing the interior of the protein, itself treated as a fixed 11 

object, was meant to implicitly incorporate the effects of the atomic fluctuations. This model is clearly an 12 

approximation. Obviously, the choice of the dielectric constant ascribed to the protein interior depends on 13 

the physical effects that are treated explicitly in the model.10a, 24 In this work, we do not treat fluctuations of 14 

protein atoms explicitly, which justifies the use of a higher dielectric constant for the protein interior (𝜀𝑖𝑛𝑡 >15 

1). However, since reorganizations in the protein electronic structure are treated explicitly in the polarizable 16 

model, the protein dielectric constant is expected to be smaller than in the model with the additive force 17 

field. This conjecture will be verified with practical examples below. Following our previous work, the 18 

ionic strength was set to 0 M.15 19 

Poisson-Boltzmann free energy calculations with the Drude Force field 20 

The Poisson-Boltzmann free energy with the Drude force field is calculated in accord with our 21 

previous work.15 In brief, we need to calculate the electrostatic free energy, 𝐺𝜀𝑒𝑥𝑡=𝜀𝑤,𝜀𝑖𝑛𝑡=𝜀𝑝
 of a solute with 22 

an internal dielectric constant of 𝜀𝑝 immersed in a dielectric medium with a high dielectric constant of 𝜀𝑤. 23 

The free energies computed using the potential obtained by numerically solving the Poisson-Boltzmann 24 

equation and Equation 3 contain the artificial contributions of the grid as well as from electrostatic 25 

interactions between 1-2 and 1-3 bonded atoms. These contributions in the PB model should be removed 26 

by subtraction. To correct the electrostatic component of the free energy we modify 𝐺𝜀𝑒𝑥𝑡=𝜀𝑤,𝜀𝑖𝑛𝑡=𝜀𝑝
 by the 27 

free energy computed with a uniform dielectric constant of 𝜀𝑝: 28 

𝐺𝜀𝑒𝑥𝑡=𝜀𝑤,𝜀𝑖𝑛𝑡=𝜀𝑝
= 𝐺𝜀𝑒𝑥𝑡=𝜀𝑤,𝜀𝑖𝑛𝑡=𝜀𝑝

− 𝐺𝜀𝑒𝑥𝑡=𝜀𝑝,𝜀𝑖𝑛𝑡=𝜀𝑝
+ 𝐺𝜀𝑒𝑥𝑡=𝜀𝑝,𝜀𝑖𝑛𝑡=𝜀𝑝

, [Eq 12] 29 

where 𝐺𝜀𝑒𝑥𝑡=𝜀𝑝,𝜀𝑖𝑛𝑡=𝜀𝑝
 is the contribution from the solute-solute interactions in a uniform dielectric medium 30 

with a dielectric constant of 𝜀𝑝 and is computed using 𝐺𝜀𝑒𝑥𝑡=𝜀𝑝,𝜀𝑖𝑛𝑡=𝜀𝑝
=

1

2
∑

𝑞𝑖𝑞𝑗

𝜀𝑝𝑟𝑖𝑗
𝑖≠𝑗 . The first two terms 31 
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are computed using the Poisson-Boltzmann equation using the same set of parameters including those that 1 

define the grid, except the external dielectric constant. In this case, the artificial contributions cancel out, 2 

since the internal dielectric constant in both calculations is the same. In these calculations the state with the 3 

uniform dielectric constant, 𝜀𝑝, is used as a reference state. To obtain the total free energy of a solute, the 4 

electrostatic component given by Equation 12 should be supplemented by self-polarization work, which is 5 

computed within the Drude force field as the bond energy contributed by the atomic core-Drude particle 6 

bonds. 7 

 An additional complication with a polarizable force field is that the interaction energy 8 

𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈) in Equation 7 includes the electronic energy of the entire system that includes the self-9 

polarization energy and the 1-2, 1-3 contributions from Drude particles. These terms disallow the 10 

calculation of 𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈) for two neighboring residues using only the Poisson-Boltzmann model. This 11 

is not the case for additive force fields where charges on the backbone atoms are normally fixed to the same 12 

values in the protonated and deprotonated forms, and thus these contributions cancel out for neighboring 13 

residues when the protonation free energy is computed. Thus, for the Drude force field the combination of 14 

the MM energy and PB solvation free energy are used to calculate the interaction energy, 𝑊𝜇𝜈(𝑥𝑖,𝜇 , 𝑥𝑖,𝜈), 15 

as described above. 16 

We use the solvation radii that were optimized in our previous work to reproduce experimental 17 

solvation free energies of a set of small molecules.15 The solvation radii were defined for all atom types 18 

except the deprotonated hydroxyl oxygen in tyrosine. The missing solvation radius of the O- oxygen was 19 

optimized to reproduce the experimental absolute solvation free energy of the deprotonated tyrosine as 20 

described in the Supplementary Information. 21 

PB free energy calculations were performed with the PBEQ module25 implemented in the CHARMM 22 

program.26 To include polarization effects explicitly the positions of Drude particles were optimized with 23 

the nuclear positions constrained in each protein microstate in step 1 using 50 steps of the Steepest Descent 24 

minimizer. Previously we showed that 20 steps of optimization was adequate for the minimization 25 

convergence for a set of protein complexes.15 As previously, dummy atoms were added to fill internal 26 

cavities not accessible by water molecules with a low dielectric medium.15 The protein PB energies were 27 

computed using the focusing method with a coarse grid of 0.8 Å resolution and fine grid with 0.4 Å 28 

resolution. The ion concentration was set to zero; we continue to call this method PB for the sake of 29 

simplicity, but use the finite-difference Poisson equation with no electrolyte present in the continuum 30 

solvent. The program to perform Monte-Carlo simulation for pKa calculations was written in C++. The 31 

system of linear equation 9 was solved using the Eigen library for linear algebra.27 32 
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Protein data set for pKa calculations 1 

The data set includes 94 titratable residues from eight proteins (Table S1, Supporting information). 2 

Protein structures were retrieved from the Protein Data Bank (PDB) and used for the position of heavy 3 

atoms in all calculations. Hydrogens were built using CHARMM,26 and optimized with a uniform dielectric 4 

constant of 4 and titratable residues set to the standard protonation states at pH 6.5 (carboxylic acids 5 

deprotonated; lysines and tyrosines protonated; histidines doubly protonated). In this work we consider 6 

Asp, Glu, His, Lys, and Tyr as titratable, while Arg residues were present only in the protonated form. The 7 

protein data set did not contain any titratable cysteines. The N- and C-termini were not considered as 8 

titratable and were fixed in the standard protonation state, i.e. the terminal amino group is protonated and 9 

terminal carboxylate group is deprotonated. Thus, the data set included 31 aspartic acids, 30 glutamic acids, 10 

10 tyrosines, 17 lysines and 6 histidines. Most of the experimental pKa values used in this study were 11 

compiled by Georgescu et al.14 The experimental pKa's for the SNase variant Δ+PHS were taken from 12 

Castaneda et al.3 13 

RESULTS 14 

Polarization effect on interaction free energies between titratable residues  15 

 We first examine the effect of polarization due to protonation of protein titratable sites on 16 

interaction free energies, 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 to test the approximation that these terms do not change significantly in 17 

the polarizable force field. Within classical additive force fields 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 are independent of protonation 18 

states of all residues except the protonation state 𝑥𝜇 and 𝑥𝜈 of the corresponding pair of residues 𝜇 and 𝜈. 19 

With polarizable force fields, in principle 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 depends on the protonation state of all protein titratable 20 

sites: 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈 = 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈(�̅�). To estimate the magnitude of this dependence we computed 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 for 21 

different pairs 𝜇 and 𝜈 in the eight proteins from the data set and random protein protonation states as 22 

follows. Random protonation states for each of the proteins were generated with the number of the 23 

generated random protonation states proportional to the number of titratable residues. The positions of the 24 

Drude particles were then fully optimized for each of these protonation states using the PB implicit solvent 25 

model for the complete protein structures. For these calculations, the dielectric constant of two was used 26 

for the protein interior. The interaction free energies, 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
, were then calculated yielding around 20 27 

values for each 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 interaction energy when all the randomly generated models were considered. These 28 

interaction free energies for a pair of residues are different due to the protonation states of other residues 29 

through induced polarization. Table 1 gives statistics of computed interactions. The average absolute 30 

difference in the interaction free energy over all pairs of titratable residues is just 5·10-4 kcal·mol-1 for the 31 
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protein 1a2p, and values of a similar magnitude were found for the other proteins in the data set. The 1 

maximum absolute difference in 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
due to the protein protonation state is less than or equal to 0.15 2 

kcal·mol-1 for all protein except SNase variant Δ+PHS (PDB reference code 3bdc) and ribonuclease A 3 

(PDB reference code 3rn3). In SNase the large effect on the interaction is observed for the pair Tyr91-4 

Glu75. This is explained by the fact that these residues directly interact with other titratable residues: Tyr91 5 

makes a hydrogen bond with Asp77, and Glu 75 interacts with Tyr93 and His121. Deprotonation of these 6 

residues has a strong effect on the polarization of Tyr91 or Glu75 due to strong and unfavorable electrostatic 7 

interactions. In fact, we expect this effect to be smaller if the protein flexibility is taken into account and 8 

these pairs are allowed to rearrange upon titration. The maximum variation in 𝑊𝜇𝜈

𝑥𝜇,𝑥𝜈
 in SNase excluding 9 

this pair is less than 0.1 kcal·mol-1. Overall, we find that the effect of the induced polarization on interactions 10 

between ionizable residues due to the protein protonation state to be negligible for the eight proteins in the 11 

data set thereby allowing this term to be calculated based on a single protonation state of the system. 12 

Table 1. Absolute difference in the interaction free energies due to randomly-generated variations in the 13 

protein protonation state. Calculations used the protein dielectric constant of two and the Drude force 14 

field. Energies are given in kcal·mol-1. 15 

Protein Abs. difference 

 Max Average 

1a2p 0.15 0.0005 

1pga 0.06 0.0006 

1ppf 0.02 0.0004 

2lzt 0.02 0.0001 

2trx 0.05 0.0003 

3bdc 0.34 0.0009 

3rn3 0.24 0.0003 

4pti 0.01 0.0001 

 16 

Contribution of the polarization on background atoms induced by titration  17 

 Next the polarization effect of background atoms due to changes in protonation state of titratable 18 

residues on computed pKa's was examined. This polarization contributes directly to interactions between 19 

titratable residues and background atoms, i.e. to the term 𝐺
Born/back,𝜇

𝑥𝜇
, as well as changes the interactions 20 

of background atoms with themselves 𝐺BB(�̅�). To test if 𝐺BB(�̅�) can significantly influence the population 21 

of the protonated versus deprotonated forms of a titratable residue we computed 𝐺BB(�̅�) with different 22 

protonation states of the protein as follows. First, the most likely protein protonation state �̅� was computed 23 

at the pH where a titratable residue is half protonated with a protein dielectric constant of 4. 𝐺BB(�̅�) were 24 
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then computed for all residues from the data set and all possible protonation states with the correct 1 

polarization, i.e. the polarization computed in the first step presented in the Methods section. The results 2 

are given in Table 2. As can be seen 𝐺BB(�̅�) depends on the protonation state of titratable residues only 3 

moderately. For all studied proteins, the average values of 𝐺BB(�̅�) are close to those obtained through 4 

solution of the system of equations 9. For example, for lysozyme (PDB 1a2p), the standard deviation of 5 

𝐺BB(�̅�) due to residue protonation states is just 0.3 kcal·mol-1. Further analysis demonstrated that the largest 6 

variations in 𝐺BB(�̅�) are associated with either interactions with arginines treated as background non-7 

titratable atoms in the present work or very unfavorable interactions with the background atoms, explained 8 

by the fact that no explicit relaxation is taken into account. Thus, the results in Table 2 indicate that the 9 

polarization of the background charges induced by titration can be neglected in the calculation of 𝐺BB(�̅�) 10 

for pKa calculations thereby avoiding recalculation of this term for all protonation states. 11 

Table 2. Average contribution of background charges, 𝐺BB(�̅�), to the calculated total free energy 12 

(kcal·mol-1).  13 

protein Aexact GBB BGBB
sol 

1a2p -467.3 (0.3) -467.3 

1pga -29.6 (0.2) -29.5 

1ppf -156.8 (0.1) -156.7 

2lzt -1092.6 (0.3) -1092.5 

2trx -117.8 (0.2) -117.8 

3bdc -443.3 (0.3) -443.3 

3rn3 -524.1 (0.9) -524.2 

4pti -465.1 (0.1) -465.2 

AThe average value of the exact 𝐺BB(�̅�) computed for the most populated protonation states for each 14 

titratable residue in the proteins; standard deviations are given in parenthesis; B𝐺BB(�̅�) obtained as a 15 

solution to the system of equations 9. 16 

pKa calculation with the Drude-PB model 17 

Comparison to the exact solution 18 

 Initially, the method for pKa calculations with the Drude model was tested on a simple system with 19 

fewer titration sites, for which the direct application of Equation 4 is still feasible. Lysozyme (PDB 20 

reference code 2LZT) was chosen as a test protein. To allow the application of Equation 4 only aspartates 21 

and glutamates were considered in the calculations as titratable and all other titratable residues were fixed 22 

in the standard protonation state at physiological pH, i.e. lysines and tyrosines protonated. Only one syn 23 

orientation for the proton in the protonated form was considered. With 7 aspartic and 2 glutamic acids, it 24 

gives 512=29 possible protonation states. The structures corresponding to all possible protonation states 25 

were generated, and Drude particles were fully optimized in the field of the PB implicit solvation model in 26 



19 

 

each of the structures. The internal dielectric constant of two was used. The total free energies were used 1 

to compute an average number of bound protons using Equation 4. pKa's were estimated as the pH where 2 

residues were half-protonated on average. pKa's were also calculated using the new method. 3 

 For the lysozyme system the new method converged within two self-consistent iterations as 4 

computed pKa's were invariant with more iterations. The results indicate that the computed pKa's with the 5 

new method and two iterations are practically identical to those estimated with the exact form of Equation 6 

4. The RMS deviation between pKa's computed with the two methods is just 0.02 pH units. pKa's computed 7 

with one iteration of the new method differ more from the ones computed with the exact statistical approach, 8 

by 0.07 pH units. 9 

 pKa calculations were performed with the protein dielectric constant of 4 and the Drude-PB model 10 

for all 8 proteins. The self-consistent iterations were repeated four times. The results for the pKa calculations 11 

versus the experimental values as well as subsequent iterations as a function of the number of iterations are 12 

given in Table 3. The RMS deviation between pKa's computed after the second iteration relative to those 13 

after the first iteration is 0.15 pH units, and reduces to 0.10 and 0.08 pH units after the third and the fourth 14 

iterations, respectively. However, that RMS deviation between computed and experimental pKa’s only 15 

changes insignificantly from 1.94 to 1.93 pH units after the second iteration and stays practically the same 16 

after the third and fourth iterations. The linear correlation between computed and experimental pKa's, R, 17 

does not improve. However, the computed pKa's slightly change as a function of the number of iterations. 18 

Importantly, the difference between the first and subsequent iterations is that the polarization is inconsistent 19 

in the first round of pKa calculations, but it is improved in the subsequent iterations. Though we find only 20 

a moderate change due to the consistent treatment of the polarization, it may be attributed, at least in part, 21 

to the lack of the protein flexibility in this work. In the following sections, all results of pKa calculations 22 

with the Drude-PB model will be presented using two iterations, since the computed pKa's change less than 23 

0.1 pH units with more iterations and the exact pKa's were reached within two iterations for the reduced 24 

lysozyme system. 25 

Table 3. Convergence of the pKa calculation method with the Drude-PB model. Calculations were done 26 

using the protein dielectric constant of 4. 27 

Iteration aRMSD bRMSD bcorrelation  bmax |error| 

1 - 1.94 0.71 5.53 

2 0.15 1.93 0.70 5.64 

3 0.10 1.93 0.70 5.64 

4 0.08 1.93 0.70 5.64 
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aRMS deviation between pKa's computed in this step and in the previous step; brelative to the experimental 1 

pKa's 2 

Comparison of the polariable Drude and additive C36 force fields. 3 

To test the dependence of the result on the internal dielectric constant, pKa calculations were 4 

performed with 𝜀𝑝 in the range between 1 and 20 with the Drude and C36 force fields. For the calculations 5 

with the Drude force field, the resulting pKa’s were taken after the second self-consistent iteration. For the 6 

calculations with C36, only one iteration is required as electronic polarization is included implicitly. The 7 

results are summarized in Table 4. The computed and experimental pKa shifts are given in Table S3, and 8 

absolute pKa's are given in Table S4 in the Supplementary Information. Figure 2 shows the dependence of 9 

the RMS deviation against the internal dielectric constant. The correlation is best with both models at the 10 

internal dielectric constant of two. However, in contrast to the results obtained with the C36 force field, 11 

with the Drude model the RMS deviation is characterized by a shallow minimum at ε in the range of 4-8. 12 

With the additive force field, the RMS deviation is improving monotonically in the tested range of ε. 13 

Overall, the Drude model demonstrates a better agreement with the experimental pKa's than the C36 model 14 

at low values of the dielectric constant. The RMS deviation between the experimental pKa's and pKa's 15 

computed using the protein dielectric of two is 2.07 and 3.19 units with the Drude and C36 force fields, 16 

respectively. With the protein dielectric constant of four, the RMS deviation is 1.93 and 2.58 units with the 17 

Drude and C36 force field, respectively. With the Drude-PB model, the RMS deviation between the 18 

experimental pKa's and pKa's computed with the protein dielectric constant of 20 is 1.93, which is very close 19 

to the result of 1.93 and 2.07 units computed with the protein dielectric constant of four and two, 20 

respectively. In contrast to the results with the additive C36 model, the RMS deviation computed with the 21 

Drude-PB model is substantially less sensitive to the choice of the internal dielectric constant. However, 22 

with the Drude model, the RMS deviation sharply increases with an internal protein dielectric constant 23 

𝜀𝑝 =1, and the linear correlation decreases to 0.46. A Drude-PB model with 𝜀𝑝 = 1 accounts only for the 24 

induced polarization, leaving out all contributions from structural fluctuations. The poor performance 25 

suggests that such a model does not represent the protein interior as sufficiently polarizable. Interestingly, 26 

the RMS deviation for the Drude model with 𝜀𝑝 = 1 is very similar to the RMS deviation for the additive 27 

force field with 𝜀𝑝 ≈ 1.7, a value that corresponds roughly to the expected dielectric constant associated 28 

with electronic induced polarization.  29 

Table 4. Performance of the methods for pKa calculations against experimental pKa‘s. RMS deviation and 30 

linear correlation coefficient between computed and experimental pKa shifts from the model compound 31 

reference values are given.  32 

Protein RMSD Correlation ASlope 
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dielectric, εp Drude C36 Drude C36 Drude C36 

1 3.57 4.62 0.46 0.71 1.8 3.6 

2 2.07 3.19 0.71 0.74 1.7 2.6 

4 1.93 2.58 0.70 0.73 1.5 2.0 

6 1.91 2.33 0.67 0.71 1.4 1.7 

8 1.90 2.21 0.64 0.68 1.3 1.5 

20 1.93 1.98 0.53 0.57 1.0 1.1 

AThe slope of the liner fit to the computed and experimental pKa shifts. 1 

 2 

Figure 2. RMS deviation between experimental and computed pKa’s. pKa’s with the Drude force field 3 

were calculated using two iterations to determine the most probable protonation microstates. 4 

 Figure 3 gives the comparison between experimental and predicted pKa shifts with the protein 5 

dielectric constant of two and the Drude and C36 models. As may be seen, with both Drude and C36 models 6 

computed pKa shifts are both systematically underestimated and overestimated relative to the experimental 7 

values, so that a linear fit has a constant positive slope. This slope is also given in Table 2 as a function of 8 

the protein dielectric constant. However, the pKa computed with the Drude model are systematically less 9 

over and underestimated in comparison with the results obtained with the C36 model. The slope with the 10 

internal dielectric constant of two is 1.7 and 2.6 with the Drude and C36 models, respectively. The slope is 11 

decreasing with the higher protein dielectric constant and with 𝜀int = 20 it is practically 1.0 with both 12 

models. Figure 3 also contains comparison of the absolute computed and experimental pKa values. The 13 

correlation coefficients for the absolute pKa’s were 0.93 and 0.91 for the Drude and C36 force fields, 14 

respectively. These values are higher than those for the pKa shifts reported in Table 4 due to the wider range 15 

of absolute pKa’s associated with the different classes of residues. 16 

 17 
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 1 

Figure 3. Experimental vs computed pKa shifts and absolute pKa's. Left panels: (upper) pKa shifts and 2 

(lower) absolute pKa's computed with the C36 force field; right panels: (upper) pKa shifts and (lower) 3 

pKa's computed with the Drude force field after iteration 2. In both calculations, the protein dielectric 4 

constant of two was used. The solid line shows the linear fit to the data; the dashed line shows the perfect 5 

match between computed and experimental pKa shifts or pKa's.  6 

Table 5 gives the comparison between pKa shifts computed with the Drude and C36 models. With 7 

the low internal dielectric constant of two, the RMS deviation between pKa shifts of the titratable residues 8 

in the eight proteins computed with the two methods is 1.78 units and decreases with the higher dielectric 9 

constant values. With 𝜀int = 20, the pKa shifts computed by the two methods are very close with the RMS 10 

deviation of just 0.34 units. The linear correlation between pKa shifts computed by the two methods is 0.92 11 

and 0.99 with 𝜀int = 2 and 𝜀int = 20, respectively. This further demonstrates that at the high internal 12 

dielectric constant pKa's computed with the C36 model converge to those obtained with the polarizable 13 

Drude model. This result may be understood by the fact that with the high dielectric constant, electrostatic 14 

interactions are screened strongly, and thus polarization contributions due to those interactions are expected 15 

to be smaller. In other words, with the high internal dielectric constant, protein polarization is close to that 16 

observed in individual residues in solvent, so the difference in polarization observed in solvent and in the 17 

protein plays a smaller role in pKa calculations in accordance with the thermodynamic cycle in Figure 1. 18 
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Table 5. Comparison between pKa shifts computed using the Drude and additive C36 models. RMS 1 

deviation and linear correlation coefficient between pKa shifts computed with the Drude and C36 model 2 

are given. pKa shifts computed with the Drude model were taken after two iterations in the method. 3 

Protein dielectric RMSD Correlation 

constant, εp   

2 1.78 0.92 

4 0.93 0.97 

6 0.68 0.98 

8 0.58 0.98 

20 0.34 0.99 

 4 

The agreement between experimental and computed pKa shifts for different residue types is given 5 

in Table 6. pKa's were computed using the C36 and Drude force fields and the dielectric constant of 2. For 6 

all residue types, the RMS deviation with the Drude force field is better than with the additive force field. 7 

The RMS deviation is 3.23 units for tyrosines with the Drude force field, which is higher than the RMS 8 

deviation obtained for the other types. A similar result was obtained with the C36 force field. This may be 9 

due to the need for larger conformational rearrangements of the protein to occur upon changes in the 10 

protonation state of tyrosines, since they are larger than other residues and are frequently buried in the 11 

protein. The poorer correlations for His and Lys with both force fields may indicate the need for larger 12 

conformation changes of those sidechains upon changes in protonation. Further studies are required to 13 

address these issues. 14 

Table 6. Performance of the methods for pKa calculations against experimental pKa‘s for different types 15 

of residues. RMS deviation and correlation coefficient between computed and experimental pKa shifts.  16 

Residue N sites RMSD Correlation 

  Drude C36 Drude C36 

Asp 31 2.10 3.40 0.66 0.78 

Glu 30 2.01 3.40 0.65 0.64 

His 6 1.18 1.41 0.18 0.27 

Tyr 10 3.23 4.25 0.73 0.69 

Lys 17 1.38 1.88 0.19 0.23 

 17 

Proton orientation in the protonated form of carboxylic acids 18 

 The majority of constant pH studies to date have limited treatment of the orientation of the proton 19 

in neutral carboxylic acids to the syn form,28 omitting consideration of the anti orientation, which is known 20 

to be accessible in condensed phase environments.29 To investigate if this approximation may be limiting 21 

the accuracy of the pKa estimates of acidic residues we undertook calculations of the carboxylic acid pKa 22 
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with and without consideration of the anti proton orientation in the protonated form of carboxylic acids. 1 

Calculations with the dielectric constant of two and only with the syn orientation of proton were performed 2 

and compared with the results of calculations considering both syn and anti positions of protons. The results 3 

were obtained using the Drude-PB model and after the second iteration. Results are summarized in Table 4 

7. The average population of the anti protonated form for all aspartates and glutamates in the protein data 5 

set at a very low pH of 0, where practically all carboxylic acids are protonated, is 27.6%; for aspartic acids, 6 

this population is 34.0% and 19.5% for glutamic acids. Accordingly, inclusion of the anti orientation leads 7 

to a large improvement in the predicted pKa's relative to the experimental values. For aspartates the RMS 8 

deviation is improved from 2.87 units considering only the syn orientations to 2.10 units when allowing 9 

both syn and anti rotamers. A similar improvement is observed for glutamates. In barnase (PDB reference 10 

code 1a2p), the large improvement with the anti orientation was found for residue Asp101. Both oxygens 11 

of Asp101 participate in hydrogen bond interactions with the backbone and sidechain of Thr105 and the 12 

sidechain of Thr99. These hydrogen bond interactions make energetically unfavorable the placement of 13 

proton in the syn orientation in the protonated form Asp101. Thus, the calculated pKa shift of Asp101 is -14 

6.7 pKa units if only the syn orientations are considered, and -3.8 pKa units if both syn and anti orientations 15 

are included. The latter value agrees better with the experimental value of -2.0 pKa units for Asp101. 16 

However, as Asp101 as well as other acid moieties may change their orientation upon protonation. The 17 

improvement in the pKa prediction needs to be addressed in future studies with methods that allow for 18 

conformational changes to occur upon changes in protonation state. 19 

Table 7. RMS deviation and correlation between computed and experimental pKa’s. Calculations were 20 

performed using the syn and anti rotamers or only the syn rotamers for the proton in the protonated form 21 

of carboxylic acids. The Drude-PB model was used with the protein dielectric constant of two.  22 

Residue N sites RMSD Correlation 

  syn/anti only syn syn/anti only syn 

Asp 31 2.10 2.87 0.65 0.68 

Glu 30 2.01 2.82 0.65 0.63 

All 94 2.07 2.60 0.67 0.69 

 23 

Comparison to other methods 24 

Assuming the null hypothesis,30 i.e. that all residues have their solution pKa in the protein 25 

environment, the RMS deviation with the experimental pKa's is 1.16 pH units, lower than the RMS deviation 26 

obtained with the C36 or Drude force field. This implies that increasing electrostatic screening, in principle 27 

would improve the RMS deviation, since absolute pKa shifts become smaller.  28 
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We first compare to the results of the H++ server, which uses a single-conformation version of the 1 

MEAD program for pKa calculations.31 The server only provides pKa's for the range between 0 and 12 pH 2 

units. Thus, the comparison will be limited to pKa's within this range (70 values total). In principle, H++ 3 

relies on the same method that we used for the calculations with the additive C36 force field, but uses the 4 

AMBER force field and van der Waals radii defined by Bondi.32 With the internal dielectric constant of 4 5 

and implicit salt concentration of 0, the RMS deviation between the experimental and computed pKa's using 6 

the H++ server is 1.55 pH units, and the linear correlation coefficient is 0.65. The RMS deviation for the 7 

same 70 pKa values computed using 𝜀int = 4 and the C36 force field and the radii specifically optimized 8 

previously for PB calculations33 is 2.08 pH units and the linear correlation coefficient is 0.59. However, the 9 

Bondi radii are significantly smaller than the Born radii derived by Nina et al33 that were optimized targeting 10 

explicit solvent molecular dynamics simulations with an internal dielectric constant of 1. For example, the 11 

radius of the OH oxygen of tyrosine is 1.85 Å and 1.5 Å in the Nina et al33 and Bondi sets, respectively. 12 

The radius of Nδ and Nε of the protonated form of histidine is 2.3 Å and 1.55 Å in Nina et al and Bondi 13 

sets respectively. With the C36 force field and Bondi radii and 𝜀int = 4 and the molecular surface as the 14 

dielectric boundary (the water probe radius of 1.4 Å), the RMS deviation with the experimental pKa's is 15 

1.06 with a linear correlation of 0.70. However, with the Bondi radii, the absolute solvation energies of 16 

small molecules are significantly overestimated. The RMS deviation between computed and experimental 17 

absolute solvation free energies for the set of small molecules that was used in our previous study15 to 18 

optimize the Drude PB radii is 4.1 kcal·mol-1, while with the optimized set of radii from Nina et al33 the 19 

RMS deviation is 2.5 kcal·mol-1. In the continuum dielectric model, the induced charges in the solvent 20 

continuum dielectric medium are located within an infinitesimal layer at the boundary of the solute volume. 21 

In contrast, the solvent charge density in an atomic model is distributed over a microscopic region of space 22 

of finite dimension.33 Thus, the PB model with the van der Waals radii and dielectric constant of one 23 

significantly overestimates solvation energies. The radii that were optimized specifically to reproduce 24 

results of molecular dynamics free energy simulations are significantly larger than the Bondi (van der 25 

Waals) radii. Similar to using the higher internal dielectric constant, using smaller atomic radii significantly 26 

increases solvent screening leading to smaller absolute pKa shifts and, thus giving a lower RMS deviation. 27 

The reported pKa's computed with the MCCE2 method7c were used to compare with the results of 28 

the current work. MCCE2 introduces the conformational relaxation and uses the Poisson-Boltzmann model 29 

for electrostatic calculations, which involves approximations to the protein-solvent boundary, and uses the 30 

PARSE charges and radii.34 The PARSE charges and radii were optimized to reproduce experimental 31 

solvation energies, but with the dielectric constant of two. Thus, like van der Waals radii, the PARSE radii 32 

are significantly smaller than the radii optimized with the internal dielectric constant of 1. For example, the 33 

radius of the OH oxygen of tyrosine is 1.85 Å and 1.5 Å in Nina et al33 and PARSE sets, respectively. The 34 
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radius of Nδ and Nε of the protonated form of histidine is 2.3 Å and 1.5 Å in Nina et al33 and PARSE sets, 1 

respectively. The RMS deviation computed for the MCCE2 results obtained with 𝜀int = 4 that do not 2 

include the SNase variant Δ+PHS protein and Tyr53 in Lysozyme is 0.75 pH units with the linear 3 

correlation of 0.78. With the C36 force field and Bondi radii and 𝜀int = 4 using the same titratable residue 4 

sets the RMS deviation is 1.42 pH units and the linear correlation is 0.73. With the Nina et al radii the RMS 5 

deviation is 2.36 pH units and the linear correlation is 0.68. Overall, this demonstrates that the PB model 6 

strongly depends on the atomic Born radii, which is entirely expected.33, 35 7 

Conclusion 8 

In this study, a new method to estimate pKa of titratable residues is presented that uses the 9 

polarizable Drude-PB model and constant-pH Monte Carlo simulations. The main challenge in using the 10 

polarizable Drude-PB model, as well as any other polarizable PB force field, is due to the dependence of 11 

the energy terms on the electronic polarization of the entire system, which in turn depends on the 12 

protonation state of all protein residues. As this represents a large computational increase in the calculation 13 

of energy matrices used in the constant-pH simulations an additional approximation is required to make the 14 

calculation feasible, which we propose and implement in the present work. In this approximation, only the 15 

polarization of the highly populated protein protonation microstates (ie. when the pH is equivalent to the 16 

pKa of the residue associated with those microstates) are treated explicitly using the corresponding protein 17 

protonation state in conjunction with optimization of the Drude particles as required to model the 18 

polarization response. The method necessitates self-consistent calculations of the most populated 19 

microstates and residue pKa's, since the pKa's are needed to define the most populated microstates and vice 20 

versa. A numerical test with a small protein, lysozyme, shows that the pKa's computed with the new method 21 

differ by only 0.02 pH units from the ones estimated with the exact statistical approach, demonstrating that 22 

polarization effects are correctly included in the MC simulations.  23 

The present method with the Drude-PB model considerably increases the computational cost 24 

relative to the calculations with the C36 additive force field. The extra cost is arising, first due to the need 25 

to compute the solute polarization, i.e. optimize the position of Drude particles for each protonation state 26 

of all residues. To optimize the position of the Drude particles, the solvent reaction field due to the PB 27 

implicit solvent model in the current implementation is allowed to fully relax after each minimization step 28 

to calculate solvent forces. In the previous work, we demonstrated that the optimization of the Drude 29 

particles converges within 50 minimization steps. Second, additional cost is due to the need to calculate the 30 

most populated microstates and pKa's iteratively. The self-consistent approach converged within two 31 

iterations with pKa’s computed after iteration 3 differing less than 0.1 pKa units from pKa’s after iteration 32 

2. Thus, the SCF protocol of the pKa calculation scheme increases the overall cost by two times. Overall, 33 
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the method for pKa calculations using the constant-pH simulations with the Drude force field takes an 1 

average of two orders of magnitude more CPU time than the standard protocol for the pKa calculation with 2 

an additive force field and the PB solvation model. For example, the pKa calculation for 3bdc, the protein 3 

with the largest number of titratable residues (44 residues) consumes approximately 2 CPU Hrs. with the 4 

additive force field versus 95 CPU Hrs. for the Drude force fields on an Intel Xeon E5-2630 type processor. 5 

A significant improvement for the predicted pKa's was observed with the Drude-PB model 6 

compared to results based on the additive force field C36 at low dielectric constants. Using the Drude-PB 7 

model with an internal protein dielectric constant of 2, the RMS deviation from the experimental pKa's is 8 

2.07 pKa units. In contrast, the C36 additive force field yields a RMS deviation of 3.19 pKa units with a 9 

dielectric constant of 2, and a RMSD of 2.58 pKa units with a dielectric constant of 4. The RMS is still 10 

higher than with the Drude-PB model with a dielectric of 2. Notably, the results with the Drude force field 11 

are less sensitive to the choice of internal dielectric constant, with a higher protein dielectric constant of 4 12 

and the Drude-PB model the RMS deviation is 1.93 pKa units, close to 2.07 pKa units obtained with 𝜀int =13 

2. We also observe that the pKa's computed with the high internal dielectric constant of 20 are very similar 14 

for the two force fields with an RMS deviation of just 0.36 units and the linear correlation of 0.99. These 15 

results indicate that a model accounting explicitly for the induced polarization represents a physically more 16 

correct model that decreases the empirical requirement to ascribe an excessively high dielectric constant to 17 

the protein interior. Given the heterogeneity of the protein interior, it is likely that simply assigning a high 18 

dielectric constant to the protein interior cannot accurately substitute for an explicit treatment of 19 

polarization during protonation/deprotonation events. 20 

An interesting observation was the better agreement with experimental pKa’s when the anti 21 

protonated from of carboxylic acids was explicitly considered. This is due to a relatively high contribution 22 

from the anti protonated form of carboxylic acids of ~28% at a very low pH. However, the contribution of 23 

the anti orientation of the proton is expected to be impacted by the ability of the side chains as well as 24 

surrounding protein to relax upon protonation. This effect, as well as the impact of conformational 25 

flexibility on pKa calculations using the polarizable model will be addressed in future studies. 26 

The current implementation of the method for pKa calculations with the Drude-PB models bears 27 

several limitations. Only polarization of one protonation microstate for each possible protonation state of 28 

all residues is computed exactly, while for minor microstates a surrogate of the energy components that 29 

include the residue interaction free energies and self-energies, corresponding to different pH's is used. In 30 

principle, one can consider additional protonation microstates in energy matrix calculations, and use those 31 

energies in the MC simulations. However, the main limitation of the presented method is the lack of 32 

conformational relaxation and fluctuations, which is required to preserve a fixed protein dielectric boundary 33 
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in the Poisson-Boltzmann calculations. Various approximations have been introduced in previous studies 1 

to circumvent this prescription.7c, 8a, 36 We will explore the presented Drude-PB method in combination with 2 

existing approximations to treat protein conformational changes in future studies. 3 
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