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Abstract

In this study, we address the question of the equivalent role of the pressure and

temperature on the mechanical properties of highly filled elastomers. It is well known

that in polymer matrixes, the equivalence of temperature and pressure results from free

volume variations. Our measurements performed on phenylated polydimethylsiloxane

(PDMS) chains filled with silica particles show that a temperature-pressure superpo-

sition property is still observed in both linear and nonlinear regimes in these systems.

However, the temperature-pressure equivalence involves coefficients that are two orders

of magnitude larger than those in non-reinforced matrixes. We suggest that the me-

chanical response of the filled elastomers is controlled by the shape of the rigid network

made by fillers that are connected by rigid polymer bridges. In this frame, we provide

quantitative evidence that the macroscopic behavior of reinforced elastomers is con-

trolled by the variation in the degree of the confinement of polymer chains between

particle surfaces.

1. Introduction

The addition of fillers - spherical particles of carbon black or silica - into a polymer matrix

brings an outstanding enhancement in the mechanical properties.1 Not only does the stiffness

of the material increase but also the hysteresis during cyclic solicitations,2 fatigue strength

and abrasion resistance increase. Hence, filled rubbers have enabled many niche solutions for

the industry.3 Although the addition of fillers results in complex thermomechanical behavior,

the polymer matrix can be satisfactorily described. First, the viscoelastic response of filled

elastomers is different since the classical entropic behavior, i.e., the growth of the modulus

proportional to the temperature, progressively disappears as the filler proportion increases.4

Second, the addition of fillers introduces significant strain amplitude nonlinearities, often re-

ferred to as the Mullins effect5 and Payne effect.6 The specific mechanical features observed

on the filled rubbers are commonly explained by considering a rigid network formed by fillers

2



within a polymer matrix and its modification with the temperature and strain amplitude.7–10

According to this scenario, the variation in the stiffness of the sample is thus controlled by

the connectivity of the network that involves polymer chains close to the particle surface. For

instance, Maier and Goritz11 underlined the influence of the desorption/absorption mecha-

nism for polymer chains near the particle surface. Moreover, the dynamics of the polymer

chains close to the particle surface appears to be slowed down by confinement.12–17 Because

the mechanical response of these chains is stiffer than that in the bulk, the confined polymer

chains form rigid polymer bridges connecting the particles within the sample.

If the temperature and strain amplitude significantly contribute to the mechanical prop-

erties of filled rubbers, then the pressure is also known to influence the mechanical response.

In most industrial applications, parts composed of filled rubbers are preloaded in compres-

sion. If their shape has a large aspect ratio, then the compression force results in a significant

hydrostatic pressure. Studies performed on a pure polymer matrix18–21 have reported a stiff-

ening of the mechanical response due to a decrease in the free volume fraction22 in the sample.

Merabia and Long23 even pointed out that the distribution of the free volume within the

system is at the origin of the observed dynamics. Thus, the increasing pressure shifts the

glass transition temperature toward a high temperature according to the relation:

∂Tg
∂p

= α (1)

where α can be obtained through pressure-volume-temperature measurements,24–27 stress

relaxation modulus experiments,19 and Young’s modulus18 or dielectric properties20 mea-

surements. More recently, the pressure effect was investigated through shear-compression

tests.21 Unanimously, regardless of the experimental technique, the results have shown that

α varies from 0.1 to 0.6 K/MPa depending on the polymer matrix as classified in the stan-

dard pressure-volume-temperature data for polymers.27 In this frame, temperature-pressure

superposition is obtained for the relaxation of the modulus of the polymer matrix.
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Although the pressure dependence of the mechanical response of a pure polymer matrix

has been widely investigated for the last 70 years, there have been only a few studies devoted

to the response of filled rubbers under pressure. Fillers and Tschoegl19 observed the time-

temperature-pressure superposition in the case of elastomers filled with less than 8 % in

volume of carbon black particles; their results were explained by the variation in the free

volume of the samples. However, these authors did not consider the effect of pressure on the

filler network.

In this work, we compare the effect of pressure and temperature on the mechanical

response of a filled rubber that contains a 27 % silica nanoparticle volume. The equivalence

between the temperature and pressure on the linear and nonlinear responses is analyzed by

taking into account the modifications involved by pressure on the rigid network composed

of particles connected by confined polymer chains. In addition, the variation in the free

volume fraction reported for the bulk polymer matrix is also taken into account. With this

objective, we analyzed the effect of pressure on the mechanical response of polymer chains

confined between particle surfaces. Our approach is based on the understanding of the

dynamics of confined polymers built over the last 20 years from experimental measurements,

theories and simulations. Vogt,28 and references therein, has provided a good review on the

significant impact of the confinement of amorphous polymers in nanoscale dimensions on their

mechanical properties. Many authors29–32 have revealed that the glass transition temperature

Tg of thin polymer films strongly interacting with a solid substrate increases with decreasing

film thickness. Similar effects of the confinement on the dynamics of polymer chains located

between neighboring particles are thus expected in filled elastomers. Many studies performed

on filled rubbers have shown the existence of a mobility gradient for polymer chains located

between neighboring particles.12–17 According to the picture developed from the behavior

measured on confined thin films, the slowing down of the polymer dynamics observed in

filled elastomers can be described assuming a glass transition gradient for polymer chains

confined between neighboring particles. A local glass transition temperature Tg(z) can be
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defined, which depends on the distance z of polymer chains from the particle surface. In this

framework, polymer chains with a local Tg(z) higher than the temperature of experiment

T will behave similar to glassy polymers. These chains will form a layer of glassy polymer

that surrounds the particle surface (see Figure 1). Studies have shown that the thickness of

this layer decreases with temperature.4,33,34 If the glass transition temperature at the half

distance between neighboring particles is higher than the temperature of the experiment,

then fillers will thus be connected by rigid bridges made of a glassy-like polymer34,35 (see

Figure 1).

Figure 1: Schematic view of the glassy bridges in filled rubbers at T

These important physical phenomena have already been used by many authors to describe

the mesoscale behavior of filled rubbers. Merabia et al.36 developed a microscopic model by

considering a volume fraction of randomly distributed filler in which the interaction between

two neighboring particles is driven by two forces. A permanent contribution represents

the polymer matrix contribution, and a larger nonpermanent contribution represents the

glassy bridge contribution, which has a finite lifetime depending on the temperature. These
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researchers have pointed out that strong reinforcement is obtained when glassy layers between

fillers overlap. In another example, Froltsov et al.37 investigated the rupture mechanisms in

a glassy bridge through molecular dynamics simulations. These investigators observed the

effects of the confinement, i.e., the glassy bridge length, and the temperature on the structure

and mechanics during a rupture. In more recent studies, Sodhani and Reese38 performed a

finite element (FE) simulation of a nanocomposite microstructure composed of fillers within

a polymer matrix. To incorporate the Tg gradient in the vicinity of the particles, these

authors distinguished two polymer phases by their dynamical properties. In the first phase,

chains were bound to the filler surfaces and were in their glassy state. The second phase

corresponds to the chains in the rubber state. In this approach, the proportion of the two

phases does not evolve with the temperature. Moreover, the micromechanical approaches

described above do not account for the effect of pressure.

The paper is organized as follows. First, the material and the experimental conditions

are described. Experiments under pressure are performed using poker chip geometry sam-

ples,39–41 i.e., whose shape has a large aspect ratio in order to apply a large pressure to the

material. We show that the pressure effect on filled rubbers is larger by approximately two

orders of magnitude than the contribution associated with the variation in the free volume

that is measured on the polymer matrix. Second, we discuss the pressure effect on the dy-

namics of the polymer chains located in glassy bridges. With this objective, we first assume

that the stress is mostly sustained by the particle network connected by the confined poly-

mer in the glassy state. We show that the local behavior is governed by two contributions

at the glassy bridge scale: the confinement of polymer chains between particle surfaces and

the variation in their free volume fraction. In this context, we show that the variation in

the confinement degree controls the macroscopic response of the filled rubbers. Finally, we

derive a new temperature-pressure superposition law for filled rubbers that is validated by

our experiments performed under varying pressure and temperature.

6



2. Experiments

2.1. Material

The experiments are performed on a poly(dimethylsiloxane-codiphenylsiloxane) matrix highly

filled with silica nanoparticles. Based on nuclear magnetic resonance (NMR) measurements,

the molar proportion of diphenylsiloxane groups is estimated at 5 %. The weight fraction

of fillers is found to equal 50 % from thermogravimetric analysis. Assuming the following

densities, 2.65 g/cm3 for the silica and 0.965 g/cm3 for the polymer matrix, the volume

fraction is 27 %. From differential scanning calorimetry (DSC), the bulk glass transition

temperature T∞g is found to be approximately 158 K for a temperature rate of +20 K/min.

2.2. Description of the experimental tests

Cyclic shear tests are carried out under a controlled temperature ranging from 213 K to

303 K in a climatic chamber (Thermcraft incorporated) cooled by injecting nitrogen. Me-

chanical measurements are performed using the following geometries (see Figure 2).

• A double-shearing geometry is used to characterize the material mechanical behavior at

zero pressure (atmospheric pressure). Two rubber pieces, each of them 4 mm thick are

covalently bonded to inox plates with a thickness of 2 mm. Mechanical measurements

are performed with a dynamic mechanical thermal analysis (DMTA) viscoanalyser

(VA4000 from Metravib) applying a cyclic shear strain γ(t) = ∆γ.sin(2πft).

• A poker chip geometry with a large aspect ratio is used to measure the mechanical

response of our filled elastomer under pressure. A 2.5mm thick rubber disc is covalently

bonded between two cylinders made of alloy. The diameter of the disc was chosen to

be 25 mm. The aspect ratio a, which is defined as the ratio between the diameter and

thickness of the disc, is equal to 10. We will show later that such an aspect ratio ensures

a parabolic hydrostatic pressure field within the sample. During an experiment, the
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filled rubber undergoes both a static compression force Fc and a cyclic shear strain

γ(t) = ∆γ.sin(2πft). In our study, Fc is varied from 400 N to 1500 N . For each static

compression force, the amplitude of the cyclic shear strain ∆γ is varied from 2 % to

20 %. Figure 3 presents the experimental setup designed to be adapted in an Instron

8801 testing machine (±50 kN,±75 mm). For symmetry reasons, two poker chips are

loaded simultaneously. The hydraulic cylinder displacement, in the horizontal direction

(in Figure 3), provides the cyclic shear strain. To limit heat build-up due to the

thermomechanical coupling,42 the frequency f is kept at 1 Hz. Two calibrated springs

(HPC R204608, external diameter: 32 mm, internal diameter: 16 mm, free length:

51 mm) of constant stiffness (134 N/mm) are used across the entire experimental

temperature range. Thus, the compression of these two axial springs ensures a static

compression force, independent of the temperature, as the thermal dilation of the setup

does not significantly modify the force exerted by the springs.

Figure 2: Samples geometries. Dimensions are given in mm

Measurements reported in this work have been performed by applying the 3 stage protocol

that is presented in Figure 4:

• Stage 1: The two springs are squeezed to ensure the specified static compression force.

Then, the climatic chamber is sealed and cooled at a temperature rate of approxi-

mately −3 K/min. An isotherm of 60 min at the temperature of the measurements

is applied such that the setup and the sample reached the equilibrium temperature
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Figure 3: Overview of the experimental setup used for the shear-compression tests

at the beginning of the mechanical solicitation. Moreover, the sample temperature is

checked so that it does not evolve during the two following stages of our experimental

procedure.

• Stage 2: As shown by Chazeau et al.,43 to measure the stabilized mechanical response

of our filled elastomers, the Mullins effect5 needs to be erased. Thus, in stage 2, an

increasing strain sweep is applied that is followed by a second decreasing sweep. The

amplitude of the strain ranges between 2 % and 20 %. For each shear strain amplitude

value, 50 cycles are applied to the sample. Figure 4 also illustrates the stress-strain

relation obtained within these two successive strain sweeps. The Mullins effect results

in a change in the mechanical response measured at a given strain amplitude between

the first increasing strain sweep and the next decreasing strain sweep. As expected,

at the end of stage 2, the Mullins effect is erased from the mechanical behavior of our

samples.

• Stage 3: A final increasing strain sweep (ranging from 2 % to 20 %) is applied. As
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shown in Figure 4, the stress-strain relation is perfectly stabilized (green thick curves)

and is similar to the decreasing strain sweep of stage 2. Therefore, all the following

experimental results will be based on the measurements performed in this final stage

and will correspond to the stabilized mechanical behavior of our samples. For each

shear strain amplitude, 50 cycles are applied to the sample. We verified that the

stress-strain responses measured during the last 10 cycles are similar. The values of

the complex shear modulus are determined from the average response estimated from

these last 10 cycles.

Figure 4: Experimental protocol: static compression force, temperature and shear strain
amplitude evolutions
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Measurements with the double-shearing geometry are performed by applying the same

strain sweep history but without an applied compression force applied (Fc = 0 N).

2.3. Experimental results

2.3.1. Shear strain amplitude, temperature and static compression force influ-

ences

Figure 5 presents the variation in the shear storage modulus G′ as a function of the shear

strain amplitude for a set of temperature and compression force conditions (T, Fc). In the

absence of the static compression force (left chart), the dependence on the strain amplitude

and temperature of our samples follows the general trends observed in the filled rubbers.

Indeed, as reported on many filled elastomers for temperatures larger than T∞g + 50 K, the

shear storage modulus of our system decreases with temperature.4 We also observe a decrease

in its value with increasing shear strain amplitude (Payne effect6). All these features are

still observed if a static compression force (Fc 6= 0 N) is applied to the sample (chart at the

center of Figure 5). As shown on the right chart (Figure 5), applying a static compression

force increases the shear storage modulus of our system measured at a given temperature

and strain amplitude.

We must now precise the pressure distribution within the poker chip geometry. The

parabolic pressure profile inside a compressed film is a finding of the lubrication theory by

Reynolds,44 later reconsidered in the context of bounded rubber layers by Rocard, Gent et

al.,45–47 Lindsey et al.39,48 and many other authors.40,41,49–51 We have also investigated the

pressure distribution within the poker chip sample with the aid of a FE analysis described in

the Appendix 6.2. As expected, applying a static compression force on a quasi-incompressible

matrix in the poker chip geometry used in this work is equivalent to applying a hydrostatic

pressure to the sample. Hence, the macroscopic mechanical response of the poker chip sample
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Figure 5: (left) and (center) Experimental measurements of the shear storage modulus as
a function of the shear strain amplitude at various temperatures: (left) Fc = 0 N and
(center) Fc = 1200 N . (right) Experimental measurements of the shear storage modulus
at T = 273 K as a function of the shear strain amplitude under various static compression
force conditions

can be assumed to be the one observed at an average hydrostatic pressure p given by

p =
Fc

S
(2)

where S is the sample disc surface. Therefore, in the following, we will convert the compres-

sion force Fc into an average hydrostatic pressure p.

2.3.2. Temperature-pressure superposition

The experiments performed on our filled rubbers show that the temperature and pressure

play antagonist roles with respect to their shear mechanical behavior. This feature raises

the question of the equivalence between the pressure and temperature. Clearly, Figure 6

shows that equivalent mechanical responses are measured for several experimental conditions
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(T, p). Such a stress-strain curve superposition highlights the existence of a temperature-

pressure equivalence, which is observed in both linear and nonlinear regimes. According to

the complete set of results, we find that an increase in the pressure of 1 MPa is equivalent

to a temperature change of approximately −15 K. Thus, the order of magnitude of the

pressure effect is approximately 15 K/MPa in our filled rubber which is approximately two

orders of magnitude larger than that measured in pure rubbers.

Figure 6: Examples of the stress-strain curve superposition measured at a given shear strain
amplitude ∆γ = 12 %

In the next section, we will analyze our experimental results assuming that the mechanical

response of our system is essentially driven by the behavior of the glassy bridge network.

3. Pressure effect on the glassy bridges

3.1. The concept of glassy bridges

In this work, we assume that the mechanical behavior of filled rubbers is driven at the

mesoscale by a rigid filler network connected by confined polymer chains in the glassy state.

In our approach, each glassy bridge is described by a three-dimensional (3D) orientation and

a length h0, which corresponds to the confinement distance, i.e., the distance between the
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neighboring particle surfaces at rest (see Figure 1). Assuming a Tg gradient for polymer

chains in the vicinity of the particle surface, as proposed by Colombo et al.,35 each glassy

bridge has its own mechanical response depending on its length. As a result, the shape

of the rigid network depends on the temperature. Indeed, the particles will be connected

by a glassy bridge only if the temperature of the experiment is lower than the local glass

transition temperature at the half length of the bridge (z = h0/2 in Figure 1). Accordingly,

the model of Long and Lequeux52 can be expressed by

Tg

(
z =

h0
2

)
= T∞g

(
1 +

4δ

h0

)
(3)

where T∞g is the bulk glass transition temperature of the polymer matrix and δ ∼ 1 nm fixes

the range of the Tg gradient measured by some authors.53–56

Thus, the key point of our model is the value of the glass transition temperature at the

half distance Tg(z = h0/2) between neighboring particles compared to the temperature of

the experiment. Because the value of the modulus of polymer chains abruptly decreases

above Tg, we assume that the mechanical response of a polymer bridge is similar to that

of polymer chains located at the middle of the bridge.35 In this frame, we can compare the

effect of temperature and pressure on the mechanical response of filled rubbers.

3.2. Pressure effects on the filled rubber

When pressure is applied to such a system, three contributions are expected. First, in

accordance with the free volume theory,22 the bulk glass transition temperature is shifted

as the fraction of the free volume within the matrix decreases. According to Eq. 1, that

contribution will induce a shift in the bulk glass transition of approximately 0.3 K/MPa for

a silicone matrix.18,27 Second, if we assume that most of the stress is sustained by the filler

network, then the local pressure within the glassy bridges is amplified due to geometrical

considerations (i.e., a significant ratio between the particle diameter and the bridge length).
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Using the analytical expression given by Cho and Gent,57 we verify that this geometrical

amplification of pressure within the glassy bridge is negligible in terms of the shift in the glass

transition temperature with respect to the free volume theory (approximately 0.6 K/MPa

for a bridge length h0 = 3 nm and a particle diameter 2Rp = 10 nm). Simultaneously, some

aggregates appear closer to each other because of the pressure felt by the filler network.

This modification of the shape of the filler network changes the degree of the confinement

of the polymer chains between aggregates. According to Eq. 3, this behavior results in a

change in the local glass transition within the glassy bridges. Because the effect of pressure

that we macroscopically measured on our filled elastomers is approximately two orders of

magnitude larger than that observed on pure rubbers, we deduce that the effect of pressure

on the confinement degree is the main mechanism that drives the mechanical response of our

filled rubbers under pressure. In addition, according to the literature, we will assume that

the macroscopic stress is mainly sustained by the network in our highly filled rubber.

3.3. Amount of force sustained by the glassy bridges

As described in the introduction (see Eq. 3), the local mechanical behavior of the glassy

bridge is governed by the local confinement, i.e., the distance between neighboring particle

surfaces. We can estimate the amount of force sustained by each glassy bridge.

Assuming that the stress is sustained by the particle network, the force passes from an

aggregate to the another neighboring aggregate. In granular media, under uniaxial loading,

the forces between grains are nearly isotropically distributed along all directions.58 Thus, we

will assume, by analogy, that this is also the case in our filled rubber. In the following, we

will assume that there is also an isotropic distribution of forces in our rigid network, even if

a uniaxial compression force is applied to the samples. Therefore, for the sake of simplicity,

we have chosen the pressure as the relevant parameter to describe the mechanical response

observed in our filled elastomer.

Due to the pressure felt by the network, the aggregates are coming closer, and the axial
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force is transmitted through the neighboring aggregates. In Figure 7, the force fz sustained

by the aggregate is the same as that sustained by the glassy bridge. We can deduce fz from

the pressure applied on the aggregate surface:

fz ' πR2
agp (4)

We can also deduce fz from the local stress sustained by the glassy bridge:

fz ' πR2
cσ

loc
zz with R2

c ' Rph0 (5)

where σloc
zz is the axial local stress within the glassy bridge and Rag, Rp and Rc are the

aggregate radius, the particle radius and the section size of the aforementioned glassy layer

overlap,59 respectively.

Figure 7: Schematic view of the glassy bridge network under pressure

Eqs. 4 and 5 are valid whatever the local orientation of the glassy bridge within the

material. The macroscopic stress is assumed to be mainly supported by the rigid network.

Thus, even if the displacement field is strictly uniaxial within the sample in a poker chip
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geometry, it becomes triaxial due to the presence of the 3D randomly oriented particle

network, as in the case of a granular system.58

3.4. Pressure effect on the local confinement

Assuming that the applied macroscopic pressure is carried out by the particle network, the

aggregates move closer within the polymer matrix under the effect of pressure, resulting in

the shortening of the glassy bridge length. The additional local confinement due to pressure

leads to an increase in the local glass transition temperature in the glassy bridges that can

be predicted as detailed in the following.

The glassy bridge length is assumed to depend on its initial value h0 and on the local

force felt by the aggregate fz. Assuming a locally uniaxial compression condition, it becomes

h ' h0

(
1− fz

πR2
cEg

)
(6)

where Eg is the PDMS Young’s modulus in the glassy state. Consequently, combining Eqs.

3, 4, 5 and 6, we deduce the increase in the local glass transition temperature:

Tg = T∞g

1 +
4δ

h0
.

1

1−
R2

ag

EgRph0
p

 (7)

Applying the typical following values for the material parameters, we verify that the

quantity
R2

ag

EgRph0
p is smaller than 1. We actually find

R2
ag

EgRph0
p ∼ 0.08 � 1, applying

Rag = 50 nm,Eg = 2 GPa,Rp = 5 nm, h0 = 3 nm and p = 1 MPa. As a result, Eq. 7 can

be simplified through a first order Taylor series expansion.

The variation in the local glass transition due to increasing of confinement with pressure

is thus given by:
∂Tg
∂p
'

4T∞g δR2
ag

EgRph20
(8)
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which is the analytical expression of the contribution due to the glassy bridge length short-

ening. As illustrated in Figure 8, the pressure dependence of the local Tg is inversely pro-

portional to the square of the initial length and is larger than the effect of the free volume

decrease induced by pressure. For typical values of the initial bridge length (h0 = 3 nm),

Eq. 8 predicts the variation with the pressure in the local Tg of approximately 17 K/MPa,

consistently with the one determined from our experiments.

To summarize, pressure changes both the free volume and the confinement degree of

polymer chains in the filled rubber. These two mechanisms induce a stiffening on the me-

chanical response that can be represented by a shift in the local glass transition temperature

of the polymer chains connecting the neighboring particles. It clearly appears (see Figure 8)

that the change in confinement due to the shortening of the glassy bridge length dominates.

According to this physical picture, the pressure increases the confinement degree, leading to

a significant shift in the local glass transition temperature for shorter bridges. This mech-

anism seems to drive the temperature-pressure superposition law observed in real samples.

However, the pressure effect strongly depends on the length of the glassy bridges that are

distributed within the system. Thus, to quantitatively describe the macroscopic behavior

measured on our filled elastomers, a scale-up must be performed, which is the focus of the

last section.

4. A new temperature-pressure superposition law

4.1. Derivation of the temperature-pressure superposition law

Let us first recall that the pressure effect on glassy bridge mechanics is mainly reflected in

a stiffening effect due to the increasing confinement induced by the shortening of the bridge

length. Combining Eqs. 4, 5 and 6, the variation in the bridge length with pressure is written

as

h(p) = h0 − βp (9)
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Figure 8: Pressure effects on the local glass transition temperature of glassy bridges with
respect to their initial length: T∞g = 158 K,Rag = 50 nm,Rp = 5 nm, δ = 1 nm,Eg = 2 GPa
and α = 0.3K/MPa

where β =
R2

ag

RpEg

. Accounting for the contribution to the confinement change, the local glass

transition temperature of the glassy bridge (see Eq. 3) also depends on pressure:

Tg

(
z =

h0
2
, p

)
= T∞g

(
1 +

4δ

h0 − βp

)
(10)

Eq. 10 simply reduces to Eq. 3 at atmospheric pressure, which corresponds to the case p = 0

in our approach.

As discussed in the introduction, temperature has a softening effect at the macroscopic

scale, which originates from the progressive loss of glassy bridges at the microscopic scale

because some glassy layers no longer overlap. Therefore, temperature and pressure have

antagonist effects both at the macroscopic scale and at the glassy bridge scale. Thus, different

sets of specified temperatures and pressures should exist for which each of the glassy bridges

of the sample exhibits the same mechanical behavior. For instance, we can search for criteria

implying the glassy bridge to be in its glassy state.
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Let us consider a bridge of initial length h0 at p = 0. The polymer chains confined between

the two particle surfaces behave as glassy polymers if their local glass transition temperature

Tg(z = h0/2, p) (given by Eq. 10) is larger than the temperature of experiment T . On the

other hand, their response is one of a rubber matrix if T is larger than Tg(z = h0/2, p).

Actually, there is a switch from a rubbery response to a glassy response, as the local glass

transition temperature Tg(z = h0/2, p) at the middle point of the bridge becomes larger

than the temperature of experiment T . This situation occurs when the following condition

is verified:

h0 ≤
4δT∞g
T − T∞g

+ βp = h∗(T, p) (11)

We define a critical length h∗(T, p) as the maximum length that a bridge should have to be

in a glassy state under the experimental condition (T, p).

If we now consider another experimental condition (T ′, p′ = 0), then the same glassy

bridge of initial length h0 will behave as a glassy polymer when:

h0 ≤
4δT∞g
T ′ − T∞g

= h∗(T ′, 0) (12)

Let us discuss the physical meaning of the critical length. As discussed before, the

macroscopic mechanical response of a filled rubber is driven by the particle network connected

by glassy bridges. Under a given experimental condition (T, p), all polymer bridges whose

lengths are shorter than the critical length h∗(T, p), given by Eq. 11, are in the glassy state.

Thus, if the condition h∗(T, p) = h∗(T ′, 0) is fulfilled, then the glassy bridge network is strictly

identical for the two experimental conditions. The relationship between the temperatures

and pressures of the experimental conditions is given by

T ′ = T −
T − T∞g

1 +
4T∞g

T − T∞g
π∗

p

(13)

20



where π∗ =
δ

β
=

δRpEg

R2
ag

is a characteristic pressure whose meaning will be discussed in

the next paragraph. Eq. 13 simply reduces to T ′ = T at atmospheric pressure, which

corresponds to the case p = 0 in our approach.

Consequently, if the two experimental conditions (T, p) and (T ′, 0) result in the same

glassy bridge network, we can also expect the macroscopic mechanical properties to be

the same in that case. The shear storage modulus of the real sample G′(T, p) can thus

be predicted from the temperature evolution of the shear storage modulus measured at

atmospheric pressure G′(T ′, 0) as follows:

G′(T, p) = G′

T − T − T∞g

1 +
4T∞g

T − T∞g
π∗

p

, 0

 (14)

We can test this temperature-pressure superposition law on our experimental data mea-

sured on the poker chip geometry.

4.2. Discussion

According to Eq. 14, only two physical parameters T∞g and π∗ are involved in the temperature-

pressure superposition properties of filled elastomers. The bulk glass transition temperature

of the polymer matrix is easily obtained by DSC (see the experimental section). However,

as we cannot measure the value of the characteristic pressure in our real sample, we kept it

as an adjustable parameter for the prediction.

At a given shear strain amplitude, to predict the temperature and pressure dependence

of the shear storage modulus G′(T, p,∆γ), we applied the following procedure. The temper-

ature evolution of the shear storage modulus measured at atmospheric pressure G′(T, 0,∆γ)

(see the black crosses in Figure 9) is fitted. This curve is used as a reference for the prediction

of the temperature dependence of the modulus for a non-zero pressure (see Eq. 14). Then,

we adjusted the value of the characteristic pressure π∗, that is, the single free parameter of
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the problem, to obtain the best description of the experimental data for all strain amplitudes

and pressures. As a result, we found π∗ = 2.2 ± 0.1 MPa. Figure 9 compares the temper-

ature dependence of the shear storage modulus G′(T, p, 4 %) measured at iso pressure (in

triangles, circles, squares and diamonds) to that predicted by our superposition law (dashed

lines). A good agreement is observed between the theoretical predictions and experimental

measurements on the real sample.

Figure 9: Shear storage modulus as a function of the temperature and pressure; comparison
between theoretical predictions (dashed lines) and experimental measurements (markers) for
a shear strain amplitude ∆γ = 4 % for T∞g = 158 K and π∗ = 2.2 MPa

The experimental values of G′(T, p,∆γ) can be represented with respect to the equivalent

temperature at atmospheric pressure T ′, which is given by Eq. 13 considering the measured

bulk glass transition temperature (T∞g = 158 K) and the adjusted characteristic pressure

(π∗ = 2.2±0.1 MPa). A master curve is obtained for each shear strain amplitude, as shown

in Figure 10, which presents data measured at strain amplitudes of 2.4 %, 4 % and 12 %.

The inset chart shows the value of the equivalent temperature at atmospheric pressure T ′

with respect to the experimental conditions (T, p). Only two physical parameters allow the
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model to capture the pressure/temperature relative effects on the shear mechanical behavior,

and to apply them in the linear and nonlinear regimes.

As a final consideration, we can estimate the value of the parameter δ that fixes the Tg

gradient near the particle surface. Assuming that the aggregate radius does not vary with

the strain amplitude and from the literature, Rag = 50 nm,Rp = 5 nm and Eg = 2 GPa, we

find a value of approximately δ = 0.5 nm, which (order of magnitude) agrees with the value

reported in previous studies.54–56 Consequently, these experimental data allow an indirect

measurement of this parameter within real samples.

Figure 10: Master curves obtained at ∆γ = 2.4 %, 4 % and 12 % with T∞g = 158 K and
π∗ = 2.2 MPa. (inset) Equivalent temperature at atmospheric pressure T ′ with respect to
the experimental conditions (T, p)
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5. Conclusion

The addition of fillers into a polymer matrix has a major effect that goes beyond simple rein-

forcement, introducing unusual dependencies and nonlinearities. These specific mechanical

features are commonly explained by considering a rigid network formed by fillers and the

modification of its shape with the temperature and strain amplitude. According to this sce-

nario, fillers are connected by confined polymer chains whose dynamics are slower than those

in the bulk. Assuming that the dynamics of confined polymer chains can be described by the

variation in their glass transition temperature with their degree of confinement, we identify

the mechanism at the origin of the significant pressure effect on the mechanical response of

highly filled elastomers. We show that pressure increases the degree of the confinement of

polymer chains, resulting in an increase in their glass transition temperature and thus in the

stiffening of their response.

In this framework, we proposed a new temperature-pressure superposition law for filled

rubbers that requires only two material parameters. The first is the bulk glass transition

temperature of the polymer matrix. The second is a characteristic pressure that is closely

related to the structural characteristics of the filler network (particle radius, aggregate radius

and range of the glass transition gradient). This new temperature-pressure superposition law

accounts for experimental results measured on a silica highly filled phenylated polydimethyl-

siloxane (PDMS) matrix. As a result, it clearly appears that glassy bridges connecting fillers

play a key role in the mechanics of the filled rubbers.

Finally, we expect the pressure effect to significantly depends on the filler concentration

within the system. As a matter of fact, at lower filler concentrations, for which the inter-

aggregate distances should be larger, we expect fewer glassy bridge connections in the filler

network. In other words, we expect the pressure to induce smaller temperature shifts result-

ing from a larger value of the characteristic pressure π∗. In a future study, the link between

the glassy bridge distribution and mechanical properties will be discussed in detail.
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6. Appendix

6.1. Shear storage and loss modulus calculation: G′, G′′

From the single stress-strain cycles measured during the last increasing strain sweep (stage

3 in Figure 4), we deduce the shear storage modulus G′ and the shear loss modulus G′′ from

the Fourier transform analysis of the stress and strain signals. We verify that the amplitude

of the highest order components of the frequency are negligible (less than a few percent of

the response) compared to the fundamental amplitude. The storage and loss moduli are thus

estimated from the first harmonic of the mechanical response of our samples.

6.2. Pressure distributin within the poker chip sample: FE analysis

In triaxial fracture studies, Lindsey39 investigated the best aspect ratio to impose a triaxial

stress state in a sample that undergoes a compression force. Using an approximate analytical

solution written by Schapery,48 this author showed that the stress field is essentially triaxial

above a critical aspect ratio for values of Poisson’s ratio that are typical for rubber (ν ∼ 0.5).

Moreover, the stress field along the radial position within the sample was either parabolic

or flat depending on the value of the aspect ratio and Poisson’s ratio. These classical results

of confined amorphous polymers were also described and commented on by Creton et al.49

in the case of thin polymer sheets.

In a previous work,51 we showed that FE simulations (Z-set code: www.zset-software.com)

can also be used to investigate the pressure distribution within the poker chip sample. We

used an FE approach to better understand the characteristics of the stress field in our poker

chip samples (a = 10) under a compression force. Using the axisymmetry of the poker chip

geometry, uniaxial compression simulations are carried out by controlling the vertical dis-

placement. In addition, to avoid volumetric locking and pressure oscillations, a three-field

mixed FE formulation50 is used on eight-node axisymmetric elements (CAX8) with a total

of 9408 degrees of freedom. More details can be find in the work of Champagne et al.51
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We computed the triaxiality ratio coming from the deviatoric and hydrostatic parts (i.e.,

pressure) of the stress. For a quasi-incompressible neo-Hookean material (shear modulus

G = 1 MPa and bulk modulus Kv = 2 GPa), we found that more than 80 % of the stress

within the sample is hydrostatic (see the red part on the mesh in Figure 11). Moreover, we

observed a parabolic pressure field along the radial direction ρ: its value is at the maximum

at the centre of the sample (ρ = 0) and decreases toward zero near the outer radial limit of

the sample. In other words, applying a static compression force on a quasi-incompressible

matrix in the poker chip geometry used in this work is equivalent to applying a hydrostatic

pressure to the sample.

Figure 11: Numerical parabolic pressure field along the radial position (a = 10, ν = 0.499)

As shown in this paper, the mechanical properties are almost linearly dependent on the

static compression force (or pressure). Hence, the macroscopic mechanical response of our

poker chip sample can be assumed to be the one observed at an average hydrostatic pressure

p given by Eq. 2.
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